JPS61204023A - Desulfurizing method using pressurized water - Google Patents

Desulfurizing method using pressurized water

Info

Publication number
JPS61204023A
JPS61204023A JP60044587A JP4458785A JPS61204023A JP S61204023 A JPS61204023 A JP S61204023A JP 60044587 A JP60044587 A JP 60044587A JP 4458785 A JP4458785 A JP 4458785A JP S61204023 A JPS61204023 A JP S61204023A
Authority
JP
Japan
Prior art keywords
water
gas
line
sulfur
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60044587A
Other languages
Japanese (ja)
Other versions
JPH054123B2 (en
Inventor
Hiroo Matsuoka
松岡 洋夫
Tsutomu Toida
戸井田 努
Takao Takinami
滝浪 高男
Senji Takenaka
竹中 戦児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP60044587A priority Critical patent/JPS61204023A/en
Priority to DE19863607029 priority patent/DE3607029A1/en
Priority to FR868603157A priority patent/FR2578531B1/en
Priority to SU864027127A priority patent/SU1715196A3/en
Priority to CN86101352A priority patent/CN1008905B/en
Priority to CA000503628A priority patent/CA1282940C/en
Publication of JPS61204023A publication Critical patent/JPS61204023A/en
Priority to US07/117,908 priority patent/US4855124A/en
Publication of JPH054123B2 publication Critical patent/JPH054123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove H2S and SO2 in the simple treatment by sending both a gas contg. H2S and a gas contg. SO2 simultaneously and continuously into the pressurized water free form an additive and allowing both to perform the Claus reaction. CONSTITUTION:Both a gas contg. H2S and a gas contg. SO2 are sent into a reactor 1 charged with water free from an additive through the lines 2, 3 and the soln. in bubbled in the pressurization. The Claus reaction is made active together with passage of time and elemental sulfur is produced and made slurry. The slurry of sulfur is sent to a separator 5 through a line 4 to separate it into water and sulfur and sulfur is discharged through a line 6 and water after the separation is circulated to the reactor 1 through a line 7. After the desulfu rized gas removed with the large parts of H2S and SO2 is sent to a cooler 11 via a line 10 to condense and separate the accompanied steam, it is washed with water in a purification tower 13 to remove the nonreacted H2S and SO2 and discharged or recovered through a line 14.

Description

【発明の詳細な説明】 この発明は硫化水素(H2S)又は亜硫酸ガス(SO2
)を含有するガスを脱硫する方法に関する。
Detailed Description of the Invention This invention provides hydrogen sulfide (H2S) or sulfur dioxide gas (SO2
).

従」Lの」L術 H2Sと302を反応させて元素硫黄を生成させるクラ
ウス反応は、H2SまたはSO2を含有するガスの脱硫
法として広く使用されている。
The Claus reaction, in which H2S and 302 are reacted to produce elemental sulfur, is widely used as a desulfurization method for gases containing H2S or SO2.

水中でクラウス反応を行わせる方法も試みられているが
、この場合H2sとS02を同時に水中に送入しても、
それぞれの水に対する溶解速度が異なるために効果的に
反応しないとされている。
A method of conducting the Claus reaction underwater has also been attempted, but in this case, even if H2s and S02 are simultaneously introduced into the water,
It is said that they do not react effectively because their dissolution rates in water are different.

本発明者等の追試によっても、水のみを張り込んだ吸収
反応器に、S02 :2,500ppm。
In additional tests conducted by the present inventors, S02 was 2,500 ppm in an absorption reactor filled only with water.

H2S:5.OOOppm(残りは窒素)を含有するガ
スを送入し40Kg/cm2Gに保った場合の反応器出
口ガス中のH2Sは4,000ppmに達し、殆ど吸収
も反応もしていない。(S02は水に対する吸収速度が
速いために反応器出口ガス中には当初微量しか検出され
ない、)そこで適当な吸収促進剤、例えば硼素の酸素酸
塩、燐の酸素酸塩、クエン酸塩などを溶解した水性媒体
を使用し、そのような水性媒体にまずS02を吸収させ
(吸収工程)、その吸収水にH2S含有ガスを加圧下に
送入してクラウス反応を行わせる(反応工程)2段法(
特公昭52−28113、特開昭59−207808)
が提案されている。
H2S:5. When a gas containing OOppm (the rest is nitrogen) is fed and maintained at 40 kg/cm2G, H2S in the reactor outlet gas reaches 4,000 ppm, with almost no absorption or reaction. (Due to the fast absorption rate of S02 into water, only a trace amount is initially detected in the reactor outlet gas.) Therefore, suitable absorption enhancers such as boron oxyacid, phosphorus oxyacid, citrate, etc. Using a dissolved aqueous medium, the aqueous medium first absorbs S02 (absorption step), and the absorbed water is fed with H2S-containing gas under pressure to perform the Claus reaction (reaction step) in two stages. Law (
(Special Publication No. 52-28113, Japanese Patent Publication No. 59-207808)
is proposed.

また反応を続行するに従って水性媒体中に820s′、
5406’ 、SOa’等ノイオンカ生成しPHが低下
して502の溶解度が減少し反応速度が低ドしたり、装
置材料の腐食を生じたりすることも問題とされている。
In addition, as the reaction continues, 820 s' in the aqueous medium,
There are also problems in that ions such as 5406' and SOa' are produced, the pH is lowered, the solubility of 502 is reduced, the reaction rate is lowered, and equipment materials are corroded.

発明が解決しようとする問題点 本発明はこのような液相クラウス法に伴なう問題点を解
決し、簡単な手段で効果的にH2Sまたは502を含有
するガスの脱硫を行う方法を提供することを目的とする
Problems to be Solved by the Invention The present invention solves the problems associated with the liquid phase Claus method and provides a method for effectively desulfurizing gas containing H2S or 502 by simple means. The purpose is to

発明の構成 問題点を解決するための手段 本発明者等は液相クラウス法を利用する脱硫方法を研究
するに際して、最も基本的な、添加剤を加えずに水のみ
を使用する場合の反応機構や反応速度について試験を行
ったところ、意外にも従来常識とされ、また本発明者等
の追試によっても確認された、H2Sと502を同時に
水中に送入しても十分に反応せずH2Sが流出するとい
う現象は反応開始後しばらくの間であって、そのような
状態にも拘らず反応を続行していると5次第に脱硫率が
白土することを見出した。
Composition of the Invention Means for Solving the Problems When researching a desulfurization method using the liquid-phase Claus method, the present inventors investigated the most basic reaction mechanism when only water is used without adding any additives. When we conducted tests on the reaction rate and reaction rate, we surprisingly found that even if H2S and 502 were simultaneously introduced into water, they did not react sufficiently and H2S It has been found that the phenomenon of outflow occurs for a while after the start of the reaction, and if the reaction is continued despite such conditions, the desulfurization rate gradually decreases.

その状況を第2図により説明すると、水のみを張り込ん
だ吸収反応器にSO2:2,500ppm、H2S二5
.OOOppm(残りは窒素)を含有するガスを送入し
40Kg/cm2Gに保った場合反応器出口ガス中のH
2Sは当初4.000PPmであったが、10時間後に
は370ppmとなり、以後そのレベルが維持される。
To explain the situation using Figure 2, an absorption reactor filled with only water contains SO2: 2,500 ppm, H2S25
.. When a gas containing OOOppm (the rest is nitrogen) is fed and maintained at 40Kg/cm2G, H in the reactor outlet gas
2S was initially 4.000 PPm, but after 10 hours it became 370 ppm, and that level was maintained thereafter.

さらに200時間続行しても反応速度の低下は認められ
なかった。
Even after continuing for 200 hours, no decrease in the reaction rate was observed.

本発明の脱硫方法はこのような新規の知見に基づいて完
成されたものであって、H2S含有ガスと502含有ガ
スとを、添加剤を実質的に含まない加圧水中に同時に、
即ち同一水相に連続的に送入し、水中でクラウス反応を
行わせることを特徴とする。
The desulfurization method of the present invention was completed based on such new knowledge, and involves simultaneously immersing H2S-containing gas and 502-containing gas in pressurized water that does not substantially contain additives.
That is, it is characterized in that it is continuously fed into the same aqueous phase and the Claus reaction is carried out in water.

本発明を実施するためのプロセスの一例を第1図に示す
An example of a process for carrying out the invention is shown in FIG.

水(添加剤を含まない)を張り込んだ反応器lにライン
2及び3からH2S含有ガスとS02含有ガスとを送入
して加圧下でバブリングさせる。
A H2S-containing gas and a S02-containing gas are fed from lines 2 and 3 to a reactor l filled with water (not containing additives) and bubbled under pressure.

第2図に示した試験結果かられかるように、時間の経過
と共にクラウス反応は活発となり1元素硫黄が生成して
反応器I内に蓄積しスラリー状になる。硫黄スラリーは
ライン4で分離器5に送り、ここで水と硫黄とを分離す
る。硫黄は約120’0で液状になるので、分離器をこ
の温度以上に維持すれば、硫黄は液状で分離器下部のラ
イン6から排出される。硫黄を分離した水はライン7に
より反応器1に循環され、またクラウス反応により生成
した水やガス洗浄のために系内に加えた水は過剰となる
ので、中和槽8に送り中和してライン9から排出する。
As can be seen from the test results shown in FIG. 2, as time passes, the Claus reaction becomes more active and elemental sulfur is produced, which accumulates in the reactor I and becomes slurry. The sulfur slurry is sent via line 4 to separator 5 where water and sulfur are separated. Sulfur becomes liquid at about 120'0, so if the separator is maintained above this temperature, the sulfur will be discharged in liquid form from line 6 at the bottom of the separator. The water from which sulfur has been separated is circulated to the reactor 1 via line 7, and since the water generated by the Claus reaction and the water added to the system for gas cleaning are excessive, they are sent to the neutralization tank 8 for neutralization. and discharge from line 9.

H2SとS O2の大部分が除去された脱硫ガスはライ
ン10で冷却器11に送り、同伴する水蒸気を凝縮分離
してからライン12で精製塔13に送り、ライン15か
ら供給される木で洗浄して未反応のH2SとSO2を除
去してからライン14により排出又は回収する。
The desulfurized gas from which most of H2S and SO2 have been removed is sent via line 10 to a cooler 11, where the accompanying water vapor is condensed and separated, and then sent via line 12 to a purification tower 13, where it is washed with wood supplied from line 15. to remove unreacted H2S and SO2, which are then discharged or recovered via line 14.

また冷却器li中でも5凝縮した水中でH2SとSO2
のクラウス反応が進行し、脱硫効率を向トさせる。
Also, in the condenser li, H2S and SO2 are present in the condensed water.
The Claus reaction proceeds and increases the desulfurization efficiency.

冷却器11で分離された水はライン16を経てライン1
5から供給される水と共に洗浄水として使用し、さらに
ライン17により反応器lへの循環水ライン7へ送入す
る。
The water separated by the cooler 11 passes through the line 16 to the line 1.
Together with the water supplied from 5, it is used as wash water and is further fed via line 17 into the circulating water line 7 to the reactor 1.

本発明の効果を実証する為、2涛孔径シンタートメタル
を分散板としたステンレス製(内径27mm)気泡塔型
反応器に所定量の水を張った後、所定量のH2s−N2
及び5O2−N2混合カスを流峻計を介して供給し、反
応器出口のガス組成の経時変化を、その組成が一定にな
るまでガスクロマトグラフィー(100ppm以下は検
知管)で分析、追跡した。
In order to demonstrate the effects of the present invention, a stainless steel (inner diameter 27 mm) bubble column reactor with a 2-hole diameter sintered metal dispersion plate was filled with a predetermined amount of water, and then a predetermined amount of H2s-N2
and 5O2-N2 mixed scum was supplied through a flow meter, and the change in gas composition at the outlet of the reactor over time was analyzed and tracked by gas chromatography (detection tube for 100 ppm or less) until the composition became constant.

実施例1 H2SおよびSO2の転化率に対する圧力の影響を試験
した。結果を第1表に示す。
Example 1 The effect of pressure on H2S and SO2 conversion was tested. The results are shown in Table 1.

第  1  表 低力の鋸の 実施例1から明らかなように、反応水の圧力はゲージ圧
0.5Kg/cm2でも60%程度の脱硫率が得られる
が、ゲージ圧5 K g / c m 2以上では約9
0%の脱硫率を達成することができる。
Table 1 As is clear from Example 1 of the low-force saw, a desulfurization rate of about 60% can be obtained even when the pressure of the reaction water is 0.5 Kg/cm2; however, when the pressure of the reaction water is 5 Kg/cm2 The above is about 9
A desulfurization rate of 0% can be achieved.

ゲージ圧40Kg/cm2ではH2S転化率、S02転
化率共に98%以上、ゲージ圧60〜80K g / 
c m 2では共に99%以上となる。これ以上の圧力
は有害ではないが特に顕著な効果もないので、原料カス
が保有する圧力を越えてこれ以北の圧力を使用する必要
はない。
At a gauge pressure of 40Kg/cm2, both the H2S conversion rate and S02 conversion rate are 98% or more, and the gauge pressure is 60-80Kg/cm2.
At cm2, both are 99% or more. There is no need to use pressures further north than those possessed by the raw material waste, as higher pressures are not harmful but do not have any particularly significant effect.

一万〇圧力の上限界は脱硫率を一定にするのであれば、
処理ガス中のH2S及びS O2e度が高い程低くでき
る傾向にあるが、第1表より圧力効果が顕著になる5 
K g / CDI 2以トが好ましい。
If the upper limit of 10,000 pressure is to keep the desulfurization rate constant,
The higher the H2S and SO2e content in the process gas, the lower it tends to be, but from Table 1, the pressure effect becomes more pronounced5.
K g /CDI of 2 or more is preferred.

実施例2 H2SおよびSO2の転化率に対するS02/H2Sの
モル比の影響を試験した。結果を第2表に示す。
Example 2 The effect of the S02/H2S molar ratio on the conversion of H2S and SO2 was tested. The results are shown in Table 2.

SO2/H2Sの供給モル比はクラウス反応の理論値0
.5付近でほぼ完全な反応率を達成できるので、通常0
.4〜1の範囲が好ましい。しかし組み合せるプロセス
によっては意識的に502/H2Sを理論値よりはずし
て一方な残留させ他方をより確実に除去す己こともでき
乙。
The supply molar ratio of SO2/H2S is the theoretical value of Claus reaction 0.
.. Almost complete reaction rate can be achieved at around 5, so it is usually 0.
.. The range of 4 to 1 is preferable. However, depending on the combination process, it is also possible to consciously remove 502/H2S from the theoretical value, leaving one to remain and the other to be removed more reliably.

中 も−lid  Q H2SおよびS02の転化率に対する接触時間の影響を
試験した。結果を第3表に示す。
The effect of contact time on the conversion of H2S and S02 was tested. The results are shown in Table 3.

0.003時間(10,8秒)あれば十分で。0.003 hours (10.8 seconds) is enough.

圧力及びSO2/H2Sモル比が最適であれば第1、第
2表から明らかなように0.0017時間(6,1秒)
でも良好な脱硫率を達成できる。
If the pressure and SO2/H2S molar ratio are optimal, it will take 0.0017 hours (6.1 seconds) as is clear from Tables 1 and 2.
However, good desulfurization efficiency can be achieved.

実施例4 H2Sおよび502の転化率に対する反応温度の影響を
試験した。結果を第4表に示す。
Example 4 The effect of reaction temperature on the conversion of H2S and 502 was tested. The results are shown in Table 4.

第4表によれば反応温度は脱硫率に殆ど影響を与えない
が、常温〜160℃で操業することが好ましい。160
℃以上では生成f&黄の取り扱いが厄介になる。
According to Table 4, the reaction temperature has little effect on the desulfurization rate, but it is preferable to operate at room temperature to 160°C. 160
If the temperature is above ℃, handling of the produced f&yellow becomes difficult.

また反応器を120℃以上に維持すれば、生成した硫黄
は液状なので、別個に分離器を設置せずに反応器で硫黄
の生成と分離を行うようにすることができる。
Furthermore, if the temperature of the reactor is maintained at 120° C. or higher, the produced sulfur is in a liquid state, so sulfur can be produced and separated in the reactor without installing a separate separator.

実施例3から明らかなように、本発明は原料ガス中0.
3%(3,000p pm)という低濃度(7)H2S
、又は0.18%(1,800ppm)という低濃度の
502であっても100%近い高い転化率を達成できる
。だが原料ガス中のSO2及びH2Sの濃度はそれぞれ
100ppnn以りであるガスを対象とするのが適当で
ある。これ以ドの濃度では両者の溶解量が小さく、十分
な脱硫率を期待することができない。
As is clear from Example 3, the present invention is effective in reducing the amount of 0.0% in the raw material gas.
Low concentration (7) H2S of 3% (3,000 ppm)
, or even at a low concentration of 502 of 0.18% (1,800 ppm), a high conversion rate of nearly 100% can be achieved. However, it is appropriate to target a gas in which the concentrations of SO2 and H2S in the raw material gas are each 100 ppnn or more. At concentrations lower than this, the amounts of both dissolved are small and a sufficient desulfurization rate cannot be expected.

本発明は例えばH2Sを含有する天然ガス、重油及び石
炭の部分酸化ガス、石油精製時のH2S含有オフガス、
クラウス法のテールガス、あるいはSO2を含有する燃
焼排ガスの精製等に好適である。またこれらのほかにC
O2を含有するガスであっても選択的に脱硫することが
できる。とくに、H2S及びCO2を含有する天然ガス
からメタノール合成ガスを発生させるためのH2S除去
に最適である。
The present invention is applicable to, for example, natural gas containing H2S, partially oxidized gas of heavy oil and coal, off-gas containing H2S during petroleum refining,
It is suitable for refining Claus process tail gas or combustion exhaust gas containing SO2. In addition to these, C
Even gases containing O2 can be selectively desulfurized. In particular, it is suitable for removing H2S to generate methanol synthesis gas from natural gas containing H2S and CO2.

本発明は吸収液のPHが6以下1程度までの高酸性領域
で実施できる。第1図に示したように、吸収液には精製
塔における洗浄水とクラウス反応による副生水とが常時
追加され、過剰の水は中和槽から排出されるので、吸収
液中への酸性イオンの蓄積は一定限度に抑制され、中和
剤、PH調節剤を添加しなくても上記最適PH範囲内に
維持される。
The present invention can be carried out in a highly acidic region where the pH of the absorption liquid is 6 or less and about 1. As shown in Figure 1, washing water in the purification tower and by-product water from the Claus reaction are constantly added to the absorption liquid, and excess water is discharged from the neutralization tank, so that acidity in the absorption liquid increases. The accumulation of ions is suppressed to a certain limit, and the pH is maintained within the above-mentioned optimum pH range even without adding a neutralizing agent or a pH regulator.

発明の効果 a)筒中な処理でH2S及びSO2を容易に11000
pp以トに除去することができる。
Effects of the invention a) H2S and SO2 can be easily removed by in-cylinder treatment.
It can be removed in less than pp.

b)吸収液として水のみを使用するので、従来法の如く
吸収を促進するためのPH緩衝剤その他の薬剤を必要と
せず、運転コストの削減が期待できる。
b) Since only water is used as the absorption liquid, there is no need for PH buffers or other chemicals to promote absorption as in conventional methods, and a reduction in operating costs can be expected.

C)気相接触酸化法の如く触媒を必要としないので、触
媒にまつわるトラブルを考慮する必要がないHに、原料
の予熱を必要とせず熱エネルギーの削減が期待できる。
C) Unlike the gas phase catalytic oxidation method, it does not require a catalyst, so there is no need to consider troubles related to the catalyst.

d)低温でクラウス反応を行うので、生成硫黄中へのH
2SXの副生量が少なく、H2SX除去工程の簡略化が
期待できる。
d) Since the Claus reaction is carried out at low temperature, H into the produced sulfur is
The amount of 2SX by-product is small, and the H2SX removal process can be expected to be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するためのプロセスフローシート
の一例を示す図、第2図は脱硫率が時間の経過と共に向
上し、一定時間後は高水準で安定するという本発明の基
本原理を示す図である。 出願人  日  揮  株  式  会  社代理人 
弁理士 青 麻 昌 二 第 711
Figure 1 shows an example of a process flow sheet for carrying out the present invention, and Figure 2 shows the basic principle of the present invention that the desulfurization rate improves over time and stabilizes at a high level after a certain period of time. FIG. Applicant JGC Co., Ltd. Company Agent
Patent Attorney Masa Ao Asa No. 2 711

Claims (1)

【特許請求の範囲】 1 H_2S含有ガスとSO_2含有ガスとを、添加剤
を実質的に含まない加圧水中に同時に連続的に送入し、
水中でクラウス反応を行わせることよりなる加圧水を用
いる脱硫方法。 2 ゲージ圧5Kg/cm^2以上の加圧下で、水を使
用する特許請求の範囲第1項記載の方法。
[Claims] 1 H_2S-containing gas and SO_2-containing gas are simultaneously and continuously fed into pressurized water that does not substantially contain additives,
A desulfurization method using pressurized water, which involves carrying out a Claus reaction in water. 2. The method according to claim 1, wherein water is used under pressure of 5 kg/cm^2 or more gauge pressure.
JP60044587A 1985-03-08 1985-03-08 Desulfurizing method using pressurized water Granted JPS61204023A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60044587A JPS61204023A (en) 1985-03-08 1985-03-08 Desulfurizing method using pressurized water
DE19863607029 DE3607029A1 (en) 1985-03-08 1986-03-04 METHOD FOR THE DESULURIZATION OF GAS CONTAINING SULFUR HYDROGEN
FR868603157A FR2578531B1 (en) 1985-03-08 1986-03-06 PROCESS FOR THE SULFURIZATION OF GAS CONTAINING HYDROGEN SULFIDE
SU864027127A SU1715196A3 (en) 1985-03-08 1986-03-07 Method of cleaning gas of hydrogen sulfide
CN86101352A CN1008905B (en) 1985-03-08 1986-03-07 Process for the desulfurization of gas containing hydrogen sulfide
CA000503628A CA1282940C (en) 1985-03-08 1986-03-10 Process for the desulfurization of gas containing hydrogen sulfide
US07/117,908 US4855124A (en) 1985-03-08 1987-11-04 Process for the desulfurization of gas containing hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044587A JPS61204023A (en) 1985-03-08 1985-03-08 Desulfurizing method using pressurized water

Publications (2)

Publication Number Publication Date
JPS61204023A true JPS61204023A (en) 1986-09-10
JPH054123B2 JPH054123B2 (en) 1993-01-19

Family

ID=12695611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044587A Granted JPS61204023A (en) 1985-03-08 1985-03-08 Desulfurizing method using pressurized water

Country Status (2)

Country Link
JP (1) JPS61204023A (en)
SU (1) SU1715196A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154503A (en) * 2003-11-21 2005-06-16 Kumamoto Technology & Industry Foundation Method for removing hydrogen sulfide from biogas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154503A (en) * 2003-11-21 2005-06-16 Kumamoto Technology & Industry Foundation Method for removing hydrogen sulfide from biogas

Also Published As

Publication number Publication date
SU1715196A3 (en) 1992-02-23
JPH054123B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US5223173A (en) Method and composition for the removal of hydrogen sulfide from gaseous streams
US4076621A (en) Chelate oxidation of hydrogen sulfide in sour water
US4079118A (en) Method for removing nitrogen oxides using ferricion-EDTA complex solutions
US4278646A (en) Oxidative removal of hydrogen sulfide from gaseous streams
CA3059554C (en) Systems and processes for removing hydrogen sulfide from gas streams
US4085194A (en) Waste flue gas desulfurizing method
US4774071A (en) Process and composition for the removal of hydrogen sulfide from gaseous streams
US6872371B2 (en) Method and apparatus for NOx and SO2 removal
JPH0712411B2 (en) Removal of hydrogen sulfide from sour gas streams
US3932583A (en) Method of removing hydrogen sulfide from a gas containing carbon dioxide
US5273734A (en) Conversion of H2 to sulfur
US3687615A (en) Desulfurization of flue gas
US20080050302A1 (en) Process for producing ammonium thiosulfate
JPH08506993A (en) Method and apparatus for absorbing hydrogen sulfide
CA1221223A (en) Tail gas treating process
US4816238A (en) Method and composition for the removal of hydrogen sulfide from gaseous streams
US4222991A (en) Process for removing SOx and NOx compounds from gas streams
US4781901A (en) Method and composition for the removal of hydrogen sulfide and carbon dioxide from gaseous streams
US4871468A (en) Method and composition for the removal of hydrogen sulfide and carbon dioxide from gaseous streams
JPS61204023A (en) Desulfurizing method using pressurized water
EP1156867B1 (en) Method for conversion of hydrogen sulfide to elemental sulfur
CA2006093C (en) Removing hydrogen sulphide from a gas mixture
US3690824A (en) Desulfurization of flue gas
US4014983A (en) Removal of hydrogen sulfide from gases
JPS6022997A (en) Desulphurization process in methane fermentation treatment