JPS6120383A - Driving circuit for distributed feedback laser diode - Google Patents

Driving circuit for distributed feedback laser diode

Info

Publication number
JPS6120383A
JPS6120383A JP14092384A JP14092384A JPS6120383A JP S6120383 A JPS6120383 A JP S6120383A JP 14092384 A JP14092384 A JP 14092384A JP 14092384 A JP14092384 A JP 14092384A JP S6120383 A JPS6120383 A JP S6120383A
Authority
JP
Japan
Prior art keywords
laser diode
distributed feedback
output
light
bias current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14092384A
Other languages
Japanese (ja)
Inventor
Masami Goto
後藤 正見
Terumi Chikama
輝美 近間
Yoshito Onoda
義人 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14092384A priority Critical patent/JPS6120383A/en
Publication of JPS6120383A publication Critical patent/JPS6120383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

PURPOSE:To make side-mode components difficult to be contained in output light by detecting the variation of side-mode components contained in monitor light with time, and then controlling the bias current according to the result. CONSTITUTION:A monitor light 3 from a distributed feedback laser diode 1 is delivered by means of a photo-branching element 5; an output light 5b is converted into electric signals by means of a photo detector 6; the bias current is controlled in feedback by means of an automatic photo-power control circuit 12, so that the level of a signal-transmission light 4 may be kept constant. Then, a side mode 5' is taken out by making the other output light 5a from the photo- branching element 5 incident by means of a wavelength filter 7, converted into electric signals through a photo detector 8, and then amplified in the amplifier 9; thereafter, the result is inputted to a comparator 14 together with the output of an amplifier 10. An output corresponding to the output ratio of the amplifiers 9 and 10 can be obtained from the comparator 14. Finally, an automatic photo- power control circuit 11 controls the bias current I1 according to the output of the comparator 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分布型帰還レーザダイオード駆動回路において
、特にバイアス電流の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed feedback laser diode drive circuit, and particularly to control of bias current.

単一モードファイバによる光通信において、波長安定性
を必要とする位相変調2周波数変調などを行なう場合は
ほぼ単一の縦モート発振をする分布型帰還レーザダイオ
ードを使用する。通常分布型帰還レーザダイオードとし
てその発振中心波長がファイバの零分散(伝搬モード間
の群遅延が最少となる)波長(1,3μm近傍)のもの
を用いるとそのファイバの光電力損失がやや大きいので
、損失の最も少ない波長(1,5μm近傍)のものを用
いる。ところが、この最低損失の波長はファイバの有限
分散(伝搬モード間の群遅延が出現する)領域にあるの
で、レーザダイオードが完全な単−縦モード発振をして
いない場合ファイバ伝送後でモード分配雑音による波形
劣化が生じる。以上のような現象を防止するためにファ
イバの有限分散波長域でも、伝搬モード間の群遅延が発
生しない様に、レーザ光の中心発振波長に隣接する波長
(サイドモード)の発生を抑制する必要がある。
In optical communication using a single mode fiber, when performing phase modulation, two-frequency modulation, etc. that require wavelength stability, a distributed feedback laser diode that oscillates in a substantially single longitudinal mode is used. If you use a normally distributed feedback laser diode whose oscillation center wavelength is at the fiber's zero dispersion (minimum group delay between propagation modes) wavelength (around 1.3 μm), the optical power loss of the fiber will be somewhat large. , the wavelength with the least loss (near 1.5 μm) is used. However, since the wavelength of this lowest loss is in the fiber's finite dispersion region (where group delay between propagation modes appears), if the laser diode does not oscillate in a complete single longitudinal mode, mode splitting noise will occur after fiber transmission. waveform deterioration occurs. In order to prevent the above phenomena, even in the finite dispersion wavelength range of the fiber, it is necessary to suppress the generation of wavelengths (side modes) adjacent to the central oscillation wavelength of the laser beam so that group delay between propagation modes does not occur. There is.

[従来技術〕 第3図は従来技術を説明する図で、1は分布型帰還レー
ザダイオード、2は電気波形出力装置。
[Prior Art] FIG. 3 is a diagram explaining the prior art, in which 1 is a distributed feedback laser diode, and 2 is an electric waveform output device.

3はモニタ光、4は信号伝送用出力光、6はフォトディ
テクタ、10は増幅器、12は自動光電力制御回路(A
PC)である。従来技術では電気波形出力装置2からの
、信号パルス電流をバイアス電流に重畳して電気波形を
作り、分布型帰還レーザダイオード1を駆動する0分布
型帰還レーザダイオード1は電流を信号に変換させ、信
号伝送用器10によって増幅したのち、自動光電力制御
回路12に入力し分布型帰還レーザダイオード1へのバ
イアス電流を制御し、出力光4を常に一定になるように
制御していた。
3 is a monitor light, 4 is an output light for signal transmission, 6 is a photodetector, 10 is an amplifier, 12 is an automatic optical power control circuit (A
PC). In the prior art, a signal pulse current from an electrical waveform output device 2 is superimposed on a bias current to create an electrical waveform, and the zero distribution feedback laser diode 1 that drives the distributed feedback laser diode 1 converts the current into a signal. After being amplified by the signal transmission device 10, it is input to the automatic optical power control circuit 12 to control the bias current to the distributed feedback laser diode 1 so that the output light 4 is always constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成のものは、出力のレベルを一定にするだけでレ
ーザ光のサイドモード抑圧については全く考慮していな
い。そのうえ分布型帰還レーザダイオードは上記の理由
によりファイバの有限分散領域の波長光を出射するので
、受信側においてモード分配雑音によ苺室波形劣化が生
じ、通信品質の低下を起こすことがあった。
The configuration described above only keeps the output level constant and does not take into account side mode suppression of the laser beam at all. Furthermore, because the distributed feedback laser diode emits wavelength light in the finite dispersion region of the fiber for the above-mentioned reasons, mode distribution noise causes waveform deterioration on the receiving side, which can cause deterioration in communication quality.

〔発明が解決するための手段〕[Means for the invention to solve the problem]

本発明は上記問題点を解消するために、モニタ光に含ま
れるサイドモード成分の時間的変化を検出しその結果に
応じて該バイアス電流を制御し出力光にサイドモード成
分が含まれにくい様にする。
In order to solve the above-mentioned problems, the present invention detects temporal changes in side mode components included in monitor light and controls the bias current according to the results so that side mode components are less likely to be included in output light. do.

〔作用〕[Effect]

一般に分布型帰還レーザダイオードは利得導波形レーザ
に属しているためバイアス電流値を増加すると出力光の
波長スペクトル幅が狭くなり、サイドモードに対応する
波長成分の光電力が低減し、中心モードの光電力が増加
する特性をもっている。
In general, distributed feedback laser diodes belong to gain-guided lasers, so when the bias current value is increased, the wavelength spectrum width of the output light is narrowed, the optical power of the wavelength component corresponding to the side mode is reduced, and the optical power of the wavelength component corresponding to the side mode is reduced. It has the property of increasing power.

従って充分にバイアス電流値を大きくして、サイドモー
ドを抑圧することが考えられるが、余分な電流を使うた
め消費電力が大きくなるとともに、大量の熱が発生する
。一方、サイドモードの光電力は、温度変動、外部帰還
光等により分布型帰還レーザダイオードのレーザ光内部
の利得分布の時間的変化により、短い時間内に大きな変
動を生ずることがある。
Therefore, it is conceivable to suppress the side mode by sufficiently increasing the bias current value, but since the extra current is used, power consumption increases and a large amount of heat is generated. On the other hand, the optical power of the side mode may undergo large fluctuations within a short period of time due to temporal changes in the gain distribution inside the laser light of the distributed feedback laser diode due to temperature fluctuations, external feedback light, and the like.

そこで本発明者等は、サイドモードと中心モードの光電
力比を通信をする上で品質劣化が出ない程度になる様な
バイアス電流を与えて、消費電力を小さくする。またサ
イドモードの光電力が時間変動することによって起きる
、波形劣化を防止するため、例えばモニタ光の平均光電
力Paとサイドモードの平均電力Psをそれぞれ検出し
、比較器によって両者を比較して、エラーレートもしく
は雑音が最小になるようなバイアス電流値をフィードバ
ックする様にした。これにより、サイドモード電力Ps
が増加するとバイアス電流が増加し、中心モード電力P
Oが増えサイドモードとの比を一定値以上に保ことがで
きる。
Therefore, the present inventors reduce power consumption by applying a bias current to a level that does not cause quality deterioration when communicating the optical power ratio of the side mode and center mode. In addition, in order to prevent waveform deterioration caused by temporal fluctuations in the optical power of the side mode, for example, the average optical power Pa of the monitor light and the average power Ps of the side mode are respectively detected, and the two are compared using a comparator. The bias current value that minimizes the error rate or noise is fed back. As a result, the side mode power Ps
increases, the bias current increases and the center mode power P
O increases, and the ratio with the side mode can be maintained above a certain value.

〔実施例〕〔Example〕

以下本発明を第1図の実施例を用いて説明する。 The present invention will be explained below using the embodiment shown in FIG.

図注第3図と同番号は同一部材であり、5は光分ある。Figure Note: The same numbers as in Figure 3 are the same parts, and 5 is the light component.

分布型帰還レーザダイオード1からのモニタ光3を光分
岐素子5で分配して、出力光5bをフォトディテクタ6
で電気信号に変換し自動光電力制御回路12によってバ
イアス電流を帰還制御し、信号伝送用光40レベルを一
定に保ようにする。
The monitor light 3 from the distributed feedback laser diode 1 is distributed by the optical branching element 5, and the output light 5b is sent to the photodetector 6.
The bias current is converted into an electric signal by the automatic optical power control circuit 12, and the bias current is feedback-controlled to keep the level of the signal transmission light 40 constant.

そして光分岐素子5のもう一方の出力光5aを波長フィ
ルタ7にて入射して、サイドモード5a’を取り出し、
フォトディテクタ8で電気信号に変換して増幅器9で増
幅したのち比較器14に増幅器10の出力と共に入力す
る。比較器14からは増幅器9と10の出力の比に応じ
た出力が得られる。そして自動光電力制御回路11は比
較器14の出力に従ってバイアス電流1.を制御する。
Then, the other output light 5a of the optical branching element 5 enters the wavelength filter 7, and the side mode 5a' is extracted.
The photodetector 8 converts the signal into an electrical signal, the amplifier 9 amplifies it, and then inputs it to the comparator 14 together with the output of the amplifier 10 . An output corresponding to the ratio of the outputs of amplifiers 9 and 10 is obtained from the comparator 14. Then, the automatic optical power control circuit 11 outputs a bias current of 1. control.

具体的にはバイアス電流11  を(1)式の関係で制
御する。
Specifically, the bias current 11 is controlled using the relationship expressed by equation (1).

ΔI、  −に6  (P s / P a )  −
(tlただしKは正の比例定数、Psはサイドモードと
全モードとの平均光電力を比較し、この比を通Δ(Ps
/Pa)が増加した時はバイアス電流を増加させる種制
御する。又、+11式において力・ノコ内のP s /
 P aを次の121. (31の様におきかえても同
じ様に制御することができる。
ΔI, −6 to (P s / P a ) −
(tl, where K is a positive proportionality constant, Ps is the average optical power of the side mode and all modes, and this ratio is passed through Δ(Ps
/Pa) increases, the bias current is controlled to increase. Also, in equation +11, force/P s /
P a as the following 121. (Even if it is replaced like 31, it can be controlled in the same way.

Δ I、=にム (P s / P o )  −42
1Δ L   =Kb   (Pa/Po)  −(3
1(2)式においてはサイドモードと中心モードの平均
光電力を比較しこの比を通信中障害がでない範囲に保つ
ため比が増大した時バイアス電流を上げる様に制御を行
なう。ただしPOについては選択をするための第1図の
様に光分岐素子5とフォトディチククロの間にフィルタ
7′を入れなければならない。
Δ I, = Nimu (P s / P o ) −42
1Δ L = Kb (Pa/Po) −(3
In Equation 1 (2), the average optical power of the side mode and the center mode are compared, and in order to keep this ratio within a range that does not cause interference during communication, control is performed so that the bias current is increased when the ratio increases. However, for PO, a filter 7' must be inserted between the optical branching element 5 and the photodetector as shown in FIG. 1 in order to make the selection.

(3)式においては中心モードと全モードの光平均電力
を比較しての比を通信中障害が出ない範囲に保つため、
比が増大した時バイアス電流を上げる様に制御を行なう
。この場合Poについては波長フィルタ7として中心波
長選択性のあるフィルタを使用する。
In equation (3), in order to keep the ratio of the optical average power of the center mode and all modes within a range that does not cause interference during communication,
Control is performed to increase the bias current when the ratio increases. In this case, for Po, a filter with center wavelength selectivity is used as the wavelength filter 7.

コート光分岐素子であり、第1図と同番号は同一部材で
ある。第2図の構成は信号伝送用光4.側にフィルタと
しての機能を有する光分岐素子を設け、波長選択をする
方法である。すなわち図において多層コート光分岐素子
I5は光信号伝送用光4を分岐光13aと13bに分け
る。この内分岐%13bはフィルタリングによりサイド
モード成分のみになっている。この構成では光分岐の他
にフィルタの役割も果たすようになっているため、第1
図の場合に比べて回路に比べて回路に比べて回路の小型
化が見込める。
This is a coated light branching element, and the same numbers as in FIG. 1 are the same members. The configuration shown in Figure 2 is the signal transmission light 4. This is a method in which an optical branching element that functions as a filter is provided on the side to select wavelengths. That is, in the figure, the multilayer coated optical branching element I5 separates the optical signal transmission light 4 into branched lights 13a and 13b. Of these, branch %13b is reduced to only side mode components by filtering. In this configuration, in addition to optical branching, it also serves as a filter, so the first
Compared to the case shown in the figure, the circuit can be expected to be smaller in size compared to the circuit.

〔発明の効果〕〔Effect of the invention〕

本発明は、(1)サイドモードと全モードの平均電力の
比又は、(2)サイドモードと中心モードの平均電力の
比、(3)中心モードと全モードの平均電力の比、に対
応してそれぞれバイアス電流を変化させサイドモードを
抑圧するので伝送信号品質を改善させることができる。
The present invention corresponds to (1) the ratio of the average power of the side mode to all modes, or (2) the ratio of the average power of the side mode to the center mode, or (3) the ratio of the average power of the center mode to all modes. Since the bias current is changed and the side mode is suppressed, the transmission signal quality can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図。 第2FMは、第1図の変型例を説明するための図。 第3図は従来技術を説明するための図である。図中1は
分布型帰還レーザダイオードm、2は電気波形出力装置
、3はモニタ光、4は信号伝送用光出力、5は光分岐素
子、6.8はフォトディテクタ、7.7’はフィルタ、
9.lO増幅器。 11.12はAPC,13a、13bは分岐光。 14は比較器、15は多層コート光分岐素子である。 (−”−’ −”’1
FIG. 1 is a diagram for explaining the present invention in detail. 2nd FM is a diagram for explaining a modification of FIG. 1; FIG. 3 is a diagram for explaining the prior art. In the figure, 1 is a distributed feedback laser diode m, 2 is an electric waveform output device, 3 is a monitor light, 4 is an optical output for signal transmission, 5 is an optical branching element, 6.8 is a photodetector, 7.7' is a filter,
9. lO amplifier. 11.12 is APC, 13a and 13b are branched lights. 14 is a comparator, and 15 is a multilayer coated optical branching element. (−”−'−”'1

Claims (1)

【特許請求の範囲】 1、分布型帰還レーザダイオードからのレーザ光をモニ
タしてバイアス電流をフィードバック制御することによ
り該レーザ出力光の平均電力値を一定に制御する該分布
型帰還レーザダイオード駆動回路において、該レーザ光
に含まれるサイドモード成分の時間的変化を検出し、そ
の結果に応じて該バイアス電流を制御することを特徴と
する分布型帰還レーザダイオード駆動回路。 2、サイドモード成分の時間的変化の検出をサイドモー
ド成分の平均光電力と全モード平均光電力の比の変化を
検出することによって行なうことを特徴とする、特許請
求の範囲第1項記載の分布型帰還レーザダイオード駆動
回路。 3、サイドモード成分の時間的変化の検出をサイドモー
ド平均光電力と中心波長平均電力の比の変化を検出する
ことによって行なうことを特徴とする、特許請求の範囲
第1項記載の分布型帰還レーザダイオード駆動回路。 4、サイドモード成分の時間的変化の検出を中心発振波
長の平均光電力と全モード平均光電力の比の変化を検出
することによって行なうことを特徴とする、特許請求の
範囲第1項記載の分布型帰還レーザダイオード駆動回路
[Claims] 1. The distributed feedback laser diode drive circuit that controls the average power value of the laser output light to be constant by monitoring the laser light from the distributed feedback laser diode and feedback controlling the bias current. A distributed feedback laser diode drive circuit characterized in that the distributed feedback laser diode drive circuit detects a temporal change in a side mode component contained in the laser light and controls the bias current according to the detection result. 2. The method according to claim 1, wherein the temporal change in the side mode component is detected by detecting a change in the ratio of the average optical power of the side mode component to the average optical power of all modes. Distributed feedback laser diode drive circuit. 3. The distributed feedback according to claim 1, wherein the temporal change in the side mode component is detected by detecting a change in the ratio of the side mode average optical power to the center wavelength average power. Laser diode drive circuit. 4. The method according to claim 1, wherein the temporal change in the side mode component is detected by detecting a change in the ratio of the average optical power of the center oscillation wavelength to the average optical power of all modes. Distributed feedback laser diode drive circuit.
JP14092384A 1984-07-06 1984-07-06 Driving circuit for distributed feedback laser diode Pending JPS6120383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14092384A JPS6120383A (en) 1984-07-06 1984-07-06 Driving circuit for distributed feedback laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14092384A JPS6120383A (en) 1984-07-06 1984-07-06 Driving circuit for distributed feedback laser diode

Publications (1)

Publication Number Publication Date
JPS6120383A true JPS6120383A (en) 1986-01-29

Family

ID=15279954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14092384A Pending JPS6120383A (en) 1984-07-06 1984-07-06 Driving circuit for distributed feedback laser diode

Country Status (1)

Country Link
JP (1) JPS6120383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440119A (en) * 1987-08-04 1989-02-10 Toyo Saideingu Kk Production of metallic panel
US4849980A (en) * 1986-12-29 1989-07-18 Fuji Photo Film Co., Ltd. Laser beam recording method and apparatus
JP2016524818A (en) * 2013-06-18 2016-08-18 華為技術有限公司Huawei Technologies Co.,Ltd. Optical element, laser, optical network system and monitoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849980A (en) * 1986-12-29 1989-07-18 Fuji Photo Film Co., Ltd. Laser beam recording method and apparatus
JPS6440119A (en) * 1987-08-04 1989-02-10 Toyo Saideingu Kk Production of metallic panel
JP2016524818A (en) * 2013-06-18 2016-08-18 華為技術有限公司Huawei Technologies Co.,Ltd. Optical element, laser, optical network system and monitoring method

Similar Documents

Publication Publication Date Title
US9147997B2 (en) Optical semiconductor device
JPH10123471A (en) Light transmitter
JP3405046B2 (en) Laser light generator
US5073331A (en) Modulation method for use in a semiconductor laser and an apparatus therefor
JP2002534669A (en) Reducing system of relatively strong noise in fiber optic gyroscope
JPH02184828A (en) Semiconductor optical amplifier
JPH11195839A (en) Laser diode light wavelength controller
JP2520153B2 (en) Semiconductor laser light source control device
US5847856A (en) Optical power monitor device, optical amplifier, and optical transmitter
JPWO2019059066A1 (en) Semiconductor optical integrated device
JPS6120383A (en) Driving circuit for distributed feedback laser diode
GB2282019A (en) Optical amplifier
JPS6318872B2 (en)
GB2163286A (en) Wavelength stabilisation and output power regulation of semiconductor light sources
US20030043862A1 (en) Dispersion compensation using optical wavelength locking for optical fiber links that transmit optical signals generated by short wavelength transmitters
JPH10200483A (en) Optical transmitter
JPH0117614B2 (en)
JPH0218526A (en) System and equipment for optical transmission
JPH10271094A (en) Optical amplifier
JP2000294858A (en) Optical fiber amplifier
JP2022015446A (en) Pulse laser device and processing device
JPS5826705B2 (en) optical transmitter
JP2002286965A (en) Wavelength stabilizing module and device for generating stable wavelength laser beam
EP0483821B1 (en) A method for controlling a tunable filter and an apparatus therefor
JPH0897515A (en) Frequency stabilizing light source