JPS61203578A - Solid electrolyte fuel cell and its manufacture - Google Patents

Solid electrolyte fuel cell and its manufacture

Info

Publication number
JPS61203578A
JPS61203578A JP60043444A JP4344485A JPS61203578A JP S61203578 A JPS61203578 A JP S61203578A JP 60043444 A JP60043444 A JP 60043444A JP 4344485 A JP4344485 A JP 4344485A JP S61203578 A JPS61203578 A JP S61203578A
Authority
JP
Japan
Prior art keywords
cao
fuel cell
solid electrolyte
electrolyte fuel
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60043444A
Other languages
Japanese (ja)
Other versions
JPH0568832B2 (en
Inventor
Toshiro Nishi
敏郎 西
Nobuaki Murakami
信明 村上
Kenji Ueda
健二 植田
Seiichi Shirakawa
白川 精一
Kenichi Hisamatsu
健一 久松
Shozo Kaneko
祥三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60043444A priority Critical patent/JPS61203578A/en
Priority to DE8787111865T priority patent/DE3583150D1/en
Priority to CA000493582A priority patent/CA1263694A/en
Priority to EP87111865A priority patent/EP0275356B1/en
Priority to EP85730145A priority patent/EP0180538A1/en
Priority to US06/790,488 priority patent/US4686158A/en
Publication of JPS61203578A publication Critical patent/JPS61203578A/en
Publication of JPH0568832B2 publication Critical patent/JPH0568832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent any deterioration of the performance of a solid electrolyte fuel cell by increasing the water affinity of the electrolyte by varying its composition along the thickness direction. CONSTITUTION:The thin solid electrolyte film of the fuel cell of this invention consists of an anode-side low-CaO-content film 1, an intermediate high-CaO- content film 2 and a cathode-side low-CaO-content film 3. The low-CaO-content films 1 and 3 contain 10-40mol% of CaO and the high-CaO-content film 2 contains 40-50mol% of CaO. Since moist gas becomes in contact with the low-CaO-content films 1 and 3, almost no reaction occurs between CaO and moisture. Besides, there is no possibility that moisture reaches the high-CaO- content films 2 after permeating the low-CaO-content films 1 and 3. Consequently, it is possible to prevent any deterioration of fuel cell performance which might result from digestion by CaO.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた固体電解質を薄膜として組込んだ燃°料
電幇造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell fabrication method incorporating an excellent solid electrolyte as a thin film.

〔従来の技術〕[Conventional technology]

19世紀の前半、グローブ卿によって発明された燃料電
池は幾多の変遷を経て現在実用化の段階を迎えている。
Fuel cells, invented by Lord Grove in the first half of the 19th century, have gone through many changes and are now at the stage of practical use.

燃料電池は化学エネルギーを直接電気エネルギーに転換
する装置であり、アノード、カソード及び電解質を主た
る構成要素とする。このうち電解質としては通常水溶液
、溶融塩などが用いられるがイオン性電気伝導を示す固
体物質を用いる固体電解質燃料電池(Solid 0x
ide Fluel Ce1l 。
A fuel cell is a device that directly converts chemical energy into electrical energy, and its main components are an anode, a cathode, and an electrolyte. Among these, an aqueous solution, molten salt, etc. are usually used as the electrolyte, but solid electrolyte fuel cells (Solid 0x
ide Fluel Cell.

以下5OFCと呼ぶ)も近年急速な進歩をとげている。5OFC) has also made rapid progress in recent years.

5OFCは第3世代の燃料電池とも呼ばれ、りん酸型(
第1世代)、溶融塩型(第2世代)と比較し、 1)白金等の貴金属融媒全必要としない。
5OFC is also called the third generation fuel cell, and is a phosphoric acid type (
Compared to the 1st generation) and molten salt type (2nd generation), 1) No noble metal melting medium such as platinum is required.

2)エネルギー変換効率が高い。2) High energy conversion efficiency.

3)石炭ガス化ガスのような低質な燃料も使用可能であ
る。
3) Low quality fuels such as coal gasification gas can also be used.

などの利点を有する反面、ZrO2−CaO系等の一般
に用いられる電解質を用いると、作動温度が1000℃
と高いため材料面の問題が太きい。
On the other hand, when commonly used electrolytes such as ZrO2-CaO system are used, the operating temperature is 1000℃.
Because of the high cost, there are serious problems with materials.

固体電解質燃料電池は、化学エネルイーを直接直流電気
エネルギーに変換する。しかし、上に述べたようにその
作動温度は、固体電解質が高い導1性を持つようにする
ため、約700℃以上であり、通常は約1000℃とい
う高温が用いられている。このため、材料面での制限が
著しく厳しい。
Solid electrolyte fuel cells convert chemical energy directly into direct current electrical energy. However, as mentioned above, the operating temperature is about 700° C. or higher, and usually a high temperature of about 1000° C. is used so that the solid electrolyte has high conductivity. For this reason, restrictions in terms of materials are extremely severe.

過去において、多くの電解質が開発されてきたが、燃料
電池用として通常用いられている安定化ノルコニアの1
000℃における導電率は、(Zr02)  (CaO
)、15テ2.5X10−2(ScrIK’)であり、
必ずしも大きい値とはいえず、燃料電池としては薄膜化
が必要である。また、近時セリウム系の良導電性電解質
が開発されたが、これにしても薄膜化が必要なことはい
うまでもない。
Many electrolytes have been developed in the past, but one, stabilized norconia, is commonly used for fuel cells.
The electrical conductivity at 000°C is (Zr02) (CaO
), 15Te2.5X10-2 (ScrIK'),
This is not necessarily a large value, and it is necessary to make the film thinner for fuel cells. Furthermore, a cerium-based electrolyte with good conductivity has recently been developed, but it goes without saying that even with this, it is necessary to make the film thinner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

通常の固体電解質燃料電池では、電解質のカンード側は
酸素中の水分(空気を使用した場合は空気中の水分)と
、またアノード側は生成した水分と接触していることに
なる。このため、CeO2CaO系又はZrO2−Ca
O系等の電解質を用いた場合、 CaO+ )(20→Ca(OH)2 という反応に伴うCaOの消化により燃料電池の性能劣
化が問題となってくる。
In a normal solid electrolyte fuel cell, the cand side of the electrolyte is in contact with the moisture in the oxygen (or the moisture in the air if air is used), and the anode side is in contact with the generated moisture. Therefore, CeO2CaO system or ZrO2-Ca
When an O-based electrolyte is used, performance deterioration of the fuel cell becomes a problem due to the digestion of CaO accompanying the reaction CaO+ )(20→Ca(OH)2).

〔問題点を解決するための手段及び作用〕本願第1の発
明の固体電解質燃料電池は、酸化セリウムとアルカリ土
類金属等の2価又は3価の金属酸化物とを固溶せしめた
電解質を用いた固体電解質燃料電池において、電解質の
膜厚方向にその組成を変化させて対水和性を高めたこと
を特徴とするものである。
[Means and effects for solving the problem] The solid electrolyte fuel cell of the first invention of the present application uses an electrolyte in which cerium oxide and a divalent or trivalent metal oxide such as an alkaline earth metal are dissolved in solid solution. The solid electrolyte fuel cell used is characterized in that the composition of the electrolyte is varied in the thickness direction to improve hydration resistance.

すなわち、CeO2−CaO系電解質の場合、導電率の
極太値はCo0モル分率が十数〜50モルチ程度の広い
範囲にわたっている。したがって、水分を含むガスと接
触する電解質面を低CaOとしても、性能の低下を招く
ことなく、しかも対水利性を賦与することが可能となり
、性能の劣化全防止することができる。また、電解質面
(両側又はアノード側のみ)のCaO比が低く、内部の
CaO比が高いため、原料費の高騰を招くこともない。
That is, in the case of the CeO2-CaO electrolyte, the extremely large value of the electrical conductivity covers a wide range where the Co0 mole fraction ranges from about 10 to about 50 moles. Therefore, even if the electrolyte surface that comes into contact with a gas containing moisture has a low CaO content, it is possible to impart water efficiency without causing a deterioration in performance, and it is possible to completely prevent deterioration in performance. Furthermore, since the CaO ratio on the electrolyte surface (both sides or only on the anode side) is low and the CaO ratio inside is high, the raw material cost does not increase.

本願第2の発明は本願第1の発明の固体電解質燃料電池
を製造するだめの方法である、すなわち、酸化セリウム
とそれ以外の成分となる酸化カル7ウム等とを原料とし
、両者の原料供給量比を調節して溶射することにより、
電解質の膜厚方向にその組成を変化させることを特徴と
するものである。
The second invention of the present application is a method for manufacturing the solid electrolyte fuel cell of the first invention of the present application, that is, cerium oxide and other components such as calcium oxide are used as raw materials, and both raw materials are supplied. By adjusting the quantity ratio and spraying,
This method is characterized by changing the composition of the electrolyte in the thickness direction.

また、本願$3の発明も本願第1の発明の固体電解質燃
料電池を製造するだめの方法である。
Further, the invention of $3 of the present application is also a method for manufacturing the solid electrolyte fuel cell of the first invention of the present application.

すなわち、塩化セリウムとそれ以外の成分となる塩化カ
ルシウム等とを原料ガスとし、両者の流量又は加熱温度
を調節して化学蒸着法(CVD )又は電気化学的蒸着
法(EVD )を行なうことにょシ、電解質の膜厚方向
にその組成を変化させることを特徴とするものである。
In other words, chemical vapor deposition (CVD) or electrochemical vapor deposition (EVD) is performed by using cerium chloride and other components such as calcium chloride as raw material gases and adjusting the flow rate or heating temperature of both. , which is characterized by changing the composition of the electrolyte in the thickness direction.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る燃料電池に用いられる固体電解質
薄膜を示すものであり、アノード側の低CaO膜1、内
部の高CaO膜2及びカンード側の低CaO膜3とから
なる。
FIG. 1 shows a solid electrolyte thin film used in the fuel cell according to the present invention, which consists of a low CaO film 1 on the anode side, a high CaO film 2 on the inside, and a low CaO film 3 on the cando side.

CeO2−CaO系の場合、その導電率が高いことに加
えて、導電率の極大値がCaOモル分率で十数〜50モ
ルパーセントという広い範囲を持つ。
In the case of the CeO2-CaO system, in addition to its high conductivity, the maximum value of the conductivity has a wide range of 10 to 50 mole percent in terms of CaO mole fraction.

このことを有効に利用するため、低CaO膜1゜3とし
てはCaO量が十数〜40モルツヤーセント程度のもの
を、高CaO膜2としてはCaO量が40〜50%ルバ
ーセント程度のものをそれぞれ用いる。なお、高CaO
膜2は一定濃度でも、濃度勾配をつけたものでもよい。
In order to make effective use of this, the low CaO film 1°3 should have a CaO content of about 10 to 40 molar cents, and the high CaO film 2 should have a CaO content of about 40 to 50% levorcent. Use each. In addition, high CaO
The membrane 2 may have a constant concentration or may have a concentration gradient.

このような固体電解質薄膜によれば、上述したように全
体としては導電率の極大値を保った状態で対水利性を賦
与することができる。すなわち、水分を含むガスと接触
するのは低CaO膜1.3であるためCaOと水分との
反応はほとんど起こらず、また緻密な低CaO膜1,3
を水分が浸透して高CaO膜2に達することもほとX7
どない。したがって、CaOの消化等による燃料電池の
性能劣化全防止することができる。
According to such a solid electrolyte thin film, as described above, water efficiency can be imparted while maintaining the maximum value of electrical conductivity as a whole. In other words, since it is the low CaO film 1.3 that comes into contact with the gas containing moisture, almost no reaction between CaO and moisture occurs, and the dense low CaO film 1.3
In most cases, moisture penetrates and reaches the high CaO film 2.
Who? Therefore, performance deterioration of the fuel cell due to CaO digestion etc. can be completely prevented.

なお、本発明に係る燃料電池において用いられる固体電
解質薄膜は第1図図示のものに限らず、第2図に示すよ
うに、アノード側の低CaO膜4と高CaO膜5とから
なるものでもよい。
Note that the solid electrolyte thin film used in the fuel cell according to the present invention is not limited to the one shown in FIG. 1, but may also be one consisting of a low CaO film 4 and a high CaO film 5 on the anode side, as shown in FIG. good.

通常、カンード側の水分量はアノード側に比べて少ない
ので、第2図のような構成でも第1図の固体電解質薄膜
を用いた場合とほぼ同様な効果を得ることができる。
Normally, the amount of water on the canode side is smaller than on the anode side, so even with the configuration shown in FIG. 2, substantially the same effect as in the case of using the solid electrolyte thin film shown in FIG. 1 can be obtained.

次に、第1図及び第2図に示すような固体電解質薄膜を
形成する方法について説明する。まず、溶射法を用いる
場合の装置構成を第3図〜第5図を参照して説明する。
Next, a method for forming a solid electrolyte thin film as shown in FIGS. 1 and 2 will be explained. First, the configuration of the apparatus when using the thermal spraying method will be explained with reference to FIGS. 3 to 5.

第3図は溶射ノズル6と原料供給箱7を接続したもので
ある。原料供給箱7内にはCe02(あるいはZr02
)とCaO等との混合粉が充填される。
FIG. 3 shows the thermal spray nozzle 6 and the raw material supply box 7 connected. Ce02 (or Zr02) is contained in the raw material supply box 7.
) and CaO etc. is filled.

そして、所定の低CaO膜及び高CaO膜が形成できる
ように原料供給箱7内の混合粉の組成を変化させて固体
電解質薄膜の膜厚方向の組成全変化させる。
Then, the composition of the mixed powder in the raw material supply box 7 is changed to completely change the composition in the thickness direction of the solid electrolyte thin film so that a predetermined low CaO film and high CaO film can be formed.

第4図は溶射ノズル8と混合器9fc接続し2、更にこ
の混合器9にCe02(あるいはZr02)供給箱10
及びCaO供給箱11を接続したものである。この場合
には、Ce02(あるいはZr02)供給箱10及びC
aO供給箱1ノからの原料の供給量を変化させることに
より、固体電解質薄膜の膜厚方向の組成を変化させる。
Figure 4 shows a thermal spray nozzle 8 and a mixer 9fc connected 2, and a Ce02 (or Zr02) supply box 10 connected to this mixer 9.
and a CaO supply box 11 are connected. In this case, Ce02 (or Zr02) supply box 10 and C
By changing the amount of raw material supplied from the aO supply box 1, the composition of the solid electrolyte thin film in the film thickness direction is changed.

第5図は溶射ノズル12にCeO2(あるいはZr02
)供給箱13及びCaO供給箱14を接続したものであ
る。各供給箱からの原料はプラズマ状となって混合され
る。この場合にも、C002(あるいはZr02)供給
箱13及びCaO供給箱14からの原料の供給i−を変
化させることにより、固体電解質薄膜の膜厚方向の組成
を変化させる。
Figure 5 shows CeO2 (or Zr02) in the thermal spray nozzle 12.
) The supply box 13 and the CaO supply box 14 are connected. The raw materials from each supply box are mixed in a plasma state. In this case as well, the composition in the thickness direction of the solid electrolyte thin film is changed by changing the supply i- of raw materials from the C002 (or Zr02) supply box 13 and the CaO supply box 14.

以上のような方法により水分との反応に伴う性能劣化の
生じない固体電解質燃料電池を製造することができる。
By the method described above, it is possible to manufacture a solid electrolyte fuel cell that does not suffer performance deterioration due to reaction with moisture.

更に、化学蒸着法(CVD )又は電気化学的蒸着法(
EVD)を用いて第1図及び第2図に示すような固体電
解質薄膜を形成する方法について説明する。
Furthermore, chemical vapor deposition (CVD) or electrochemical vapor deposition (
A method of forming a solid electrolyte thin film as shown in FIGS. 1 and 2 using EVD will be described.

この方法では化学蒸着法又は電気化学的蒸着法の原料ガ
スであるCe CL 2あるいはそれ以外の成分となる
CaC62等の流量又は原料ガスの加熱温度を調整する
ことにより、固体′ζ解質薄膜の膜厚方向の組成を変化
させる。
In this method, by adjusting the flow rate or heating temperature of the raw material gas of Ce CL 2 or other components such as CaC 62, which is the raw material gas of chemical vapor deposition or electrochemical vapor deposition, the formation of a solid ζ solute thin film is performed. Change the composition in the film thickness direction.

このような方法でも水分との反応に伴う性能劣化の生じ
ない固体電解質燃料電池全製造することができる。
Even with this method, a solid electrolyte fuel cell can be completely manufactured without performance deterioration due to reaction with moisture.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、水分との反応に伴う
性能劣化の生じない固体電解質燃料電池及びこうした固
体電解質燃料電池を簡便に製造し得る方法を提供できる
ものである。
As detailed above, according to the present invention, it is possible to provide a solid electrolyte fuel cell that does not suffer performance deterioration due to reaction with moisture, and a method for easily manufacturing such a solid electrolyte fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の固体電解質燃料電池に用いら
れる固体電解質薄板の断面図、第2図は本発明の他の実
施例の固体電解質燃料電池に用いられる固体電解質薄板
の断面図、第3図は本発明の実施例において用いられる
溶射装置の概略構成図、第4図は本発明の他の実施例に
おいて用いられる溶射装置の概略構成図、第5図は本発
明の更に他の実施例において用いられる溶射装置の概略
構成図である。 ノ、 3 、4−・・低CaO膜、2 、5−・・高C
aCJIA。 6.8.12・・・溶射ノズル、7・・・原料供給箱、
9・・・混合器、i o 、 75−ceo2 (ある
いはZr02)供給箱、11.14・・・CaO供給箱
。 第1図 第3図 第5図 第2図 第4図
FIG. 1 is a cross-sectional view of a solid electrolyte thin plate used in a solid electrolyte fuel cell according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a solid electrolyte thin plate used in a solid electrolyte fuel cell according to another embodiment of the present invention. FIG. 3 is a schematic diagram of a thermal spraying device used in an embodiment of the present invention, FIG. 4 is a schematic diagram of a thermal spraying device used in another embodiment of the present invention, and FIG. 5 is a schematic diagram of a thermal spraying device used in another embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a thermal spraying apparatus used in Examples.ノ, 3, 4-...Low CaO film, 2, 5-...High C
aCJIA. 6.8.12... Thermal spray nozzle, 7... Raw material supply box,
9...Mixer, io, 75-ceo2 (or Zr02) supply box, 11.14...CaO supply box. Figure 1 Figure 3 Figure 5 Figure 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)酸化セリウムとアルカリ土類金属等の2価又は3
価の金属酸化物とを固溶せしめた電解質を用いた固体電
解質燃料電池において、電解質の膜厚方向にその組成を
変化させて耐水和性を高めたことを特徴とする固体電解
質燃料電池。
(1) Divalent or trivalent cerium oxide and alkaline earth metals, etc.
1. A solid electrolyte fuel cell using an electrolyte in which a valent metal oxide is dissolved in solid solution, the solid electrolyte fuel cell being characterized in that the composition of the electrolyte is changed in the thickness direction of the electrolyte to improve hydration resistance.
(2)酸化セリウムとアルカリ土類金属等の2価又は3
価の金属酸化物との固溶体又は粉砕混合体を原料として
溶射法を用いて固体電解質燃料電池を製造する際、原料
供給量比を調節して溶射することにより、電解質の膜厚
方向にその組成を変化させることを特徴とする固体電解
質燃料電池の製造方法。
(2) Divalent or trivalent cerium oxide and alkaline earth metals, etc.
When manufacturing a solid electrolyte fuel cell using a thermal spraying method using a solid solution or a pulverized mixture with a valent metal oxide as a raw material, the composition of the electrolyte can be changed in the thickness direction of the electrolyte by adjusting the raw material supply ratio and spraying. 1. A method for manufacturing a solid electrolyte fuel cell, characterized by changing.
(3)塩化セリウムとアルカリ土類金属等の2価又は3
価の金属塩化物とを化学蒸着法又は電気化学的蒸着法を
用いて固体電解質燃料電池を製造する際、原料ガスの流
量又は加熱温度を調節することにより、電解質の膜厚方
向にその組成を変化させることを特徴とする固体電解質
燃料電池の製造方法。
(3) Cerium chloride and divalent or trivalent alkaline earth metals, etc.
When producing solid electrolyte fuel cells using chemical vapor deposition or electrochemical vapor deposition, the composition of the electrolyte can be adjusted in the thickness direction of the electrolyte by adjusting the flow rate or heating temperature of the raw material gas. A method for manufacturing a solid electrolyte fuel cell characterized by changing the solid electrolyte fuel cell.
JP60043444A 1984-10-23 1985-03-05 Solid electrolyte fuel cell and its manufacture Granted JPS61203578A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60043444A JPS61203578A (en) 1985-03-05 1985-03-05 Solid electrolyte fuel cell and its manufacture
DE8787111865T DE3583150D1 (en) 1984-10-23 1985-10-22 SOLID ELECTROLYTE FUEL CELL AND METHOD FOR THE PRODUCTION THEREOF.
CA000493582A CA1263694A (en) 1984-10-23 1985-10-22 Solid electrolyte fuel cell and method for preparing it
EP87111865A EP0275356B1 (en) 1984-10-23 1985-10-22 Solid electrolyte fuel cell and method for preparing it
EP85730145A EP0180538A1 (en) 1984-10-23 1985-10-22 Solid electrolyte fuel cell and method for preparing it
US06/790,488 US4686158A (en) 1984-10-23 1985-10-23 Solid electrolyte fuel cell and method for preparing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043444A JPS61203578A (en) 1985-03-05 1985-03-05 Solid electrolyte fuel cell and its manufacture

Publications (2)

Publication Number Publication Date
JPS61203578A true JPS61203578A (en) 1986-09-09
JPH0568832B2 JPH0568832B2 (en) 1993-09-29

Family

ID=12663871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043444A Granted JPS61203578A (en) 1984-10-23 1985-03-05 Solid electrolyte fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS61203578A (en)

Also Published As

Publication number Publication date
JPH0568832B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
Shi et al. Electrolyte materials for intermediate-temperature solid oxide fuel cells
US4686158A (en) Solid electrolyte fuel cell and method for preparing it
Lashtabeg et al. Solid oxide fuel cells—a challenge for materials chemists?
US3847672A (en) Fuel cell with gas separator
Singhal Solid oxide fuel cells
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
US8518598B1 (en) Solid oxide fuel cell power plant with a molten metal anode
JPH04341765A (en) Manufacture of lanthanum chromite film and interconnector for solid electrolyte fuel cell
Wang et al. Proton uptake kinetics and electromotive force in BaCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ cathode material with e−/O2−/H+ three mobile carriers for protonic ceramic fuel cells
Chandran et al. A review of materials used for solid oxide fuel cell
Cassir et al. Technological applications of molten salts: the case of the molten carbonate fuel cell
WO2017116307A1 (en) A promising co- electrolyzer for the direct use of flue gas from power plant
Zhang et al. Material design and performance of carbon monoxide‐fueled solid oxide fuel cells: A review
McPhail et al. Molten carbonate fuel cells
JPS61203578A (en) Solid electrolyte fuel cell and its manufacture
JP2009520320A (en) Fuel cell structure having electrolyte dopant
Ma et al. Solid oxide fuel cell development by using novel plasma spray techniques
JP3330198B2 (en) Solid oxide fuel cell
JPS61198569A (en) Manufacture of solid electrolyte fuel cell
JP2009263741A (en) High-temperature steam electrolytic cell
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
Jena et al. Perovskite Manganite Materials: Recent Advancements and Challenges as Cathode for Solid Oxide Fuel Cell Applications
JP5684887B2 (en) Connecting material for solid oxide fuel cell and method for manufacturing the connecting material
JP7048427B2 (en) Solid oxide type electrolytic cell, electrolytic system, carbon monoxide and hydrogen production method
Cassir et al. ALD‐Processed Oxides for High‐Temperature Fuel Cells

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees