JPS61202796A - Production of flux-cored wire - Google Patents

Production of flux-cored wire

Info

Publication number
JPS61202796A
JPS61202796A JP4124285A JP4124285A JPS61202796A JP S61202796 A JPS61202796 A JP S61202796A JP 4124285 A JP4124285 A JP 4124285A JP 4124285 A JP4124285 A JP 4124285A JP S61202796 A JPS61202796 A JP S61202796A
Authority
JP
Japan
Prior art keywords
flux
shaped
wire
shape
filling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4124285A
Other languages
Japanese (ja)
Inventor
Itaru Yamashita
山下 至
Matsushige Nakajima
中島 松重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4124285A priority Critical patent/JPS61202796A/en
Publication of JPS61202796A publication Critical patent/JPS61202796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain a wire which is uniformly filled with a flux and prevents moisture absorption by projecting the edge of a steel strip positioned on top in the stage of forming an outside flux filling body and bending the projecting part toward the inside in the stage of incorporating an inside flux therein. CONSTITUTION:The steel strip 1 is bent to a U trough shape and the outside flux 4 is supplied to the inside thereof. Both ends of the strip 1 are bent to the inside to form the outside flux filling body 21. The edge end 31 on the front layer side is made longer than the peripheral length on the inside circle of the wire to be formed. The body 21 is bent to the U trough shape and the inside flux 5 is supplied to the inside thereof. The edge part 31 projected to the front surface side is bent to the inside and the U trough-shaped body 22 is tightened and formed to a circular section, by which the flux-cored wire of a double-layer type is obtd. The moisture absorption of the filled flux is prevented by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重型フラックス入りワイヤの改善された製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improved method of manufacturing double flux-cored wire.

〔従来の技術〕[Conventional technology]

フラックス入りワイヤはこれまで種々のものが提案され
、それをワイヤの断面形状で示すと第5図のようなもの
である。
Various flux-cored wires have been proposed so far, and the cross-sectional shape of the wire is shown in FIG.

第5図(a)は合わせ目のないワイヤであって充填フラ
ックス2の耐吸湿性には優れているが、フラックスを挿
入できるパイプの長さには頽約があり、フラックス充填
がバッチ式になること、フラックスのパイプ内の充填の
均一化と密度を高めるためにパイプに与えられるバイブ
レーションによって配合されたフラックスが分離、偏析
することのないよう、挿入前のフラックスの事前処理が
必要になること、2mmφ以下の仕上げ径まで伸線する
ためには、その伸線途中に焼鈍工程を要し、生産コスト
を引とげる要因を抱えていること、およびこの焼鈍温度
で熱分解する原料はフラックスとして使用できない等か
ら、この(a)のワイヤが適用できる溶接方法にも限界
が生ずる嫌いがある。
Figure 5 (a) shows a wire with no joints, and the filling flux 2 has excellent moisture absorption resistance, but there are restrictions on the length of the pipe into which the flux can be inserted, and flux filling is done in a batch manner. In order to make the flux filling in the pipe more uniform and increase its density, it is necessary to pre-treat the flux before insertion to prevent the blended flux from separating and segregating due to the vibrations applied to the pipe. In order to draw wire to a finished diameter of 2 mmφ or less, an annealing process is required during the wire drawing, which reduces production costs, and the raw material that thermally decomposes at this annealing temperature is used as flux. For this reason, there are limits to the welding methods to which the wire (a) can be applied.

一方第5図の(a)以外のフラックス入りワイヤ(b)
〜(j)は帯状の軟鋼材等1でフラックス2,4.5を
巻き込んで成形するもので、一般には巻締めワイヤとも
言われる。これらの巻締めワイヤは製造面では前記(a
)ワイヤのような制約が無いので有利である。
On the other hand, flux-cored wires other than (a) in Fig. 5 (b)
-(j) are formed by rolling a flux 2,4.5 into a band-shaped mild steel material 1, and are generally also called crimped wires. These winding wires are manufactured using the above-mentioned method (a).
) It is advantageous because there are no restrictions like wires.

これらの(b)〜(j)に示した多種の巻締めワイヤは
それぞれに特徴があり、それぞれの状況に応じて使い分
けられているが、本発明者らの最近の詳細な検討による
と、断面形状(j)のような外包フラックス4と内包フ
ラックス5とを内蔵する2重型のフラックス入りワイヤ
(特公昭44−2336)が溶接時および溶接金属の諸
特性が最も優れている。特に溶接中にアーク被包用のガ
スあるいは溶剤を外部から供給することなく大気中で溶
接を可能にするいわゆる無被包アーク溶接に使用するフ
ラックス入りワイヤについて有利であるとの事実を認識
するに至っている。
The various types of crimp wires shown in (b) to (j) each have their own characteristics and are used depending on the situation, but according to a recent detailed study by the present inventors, the cross-sectional A double type flux-cored wire (Japanese Patent Publication No. 44-2336) having an outer flux 4 and an inner flux 5 as shown in shape (j) has the best properties during welding and of the weld metal. In particular, it is recognized that flux-cored wires are advantageous for use in so-called unencapsulated arc welding, which allows welding in the atmosphere without the need for an external supply of arc encapsulating gas or solvent during welding. It has been reached.

しかしながら、このような(j)の断面形状を有するワ
イヤの製造および製品を使用するに当り、次の点が問題
点として挙げられる。
However, when manufacturing a wire having the cross-sectional shape of (j) and using a product, the following points are raised as problems.

(1)内包フラックス5が外気と通ずる開口部6を有し
ているため、内包フラックス5が吸湿し、その結果、拡
散性水素に起因する割れ、ピットあるいはブローホール
などの気孔が溶接金属に発生する恐れがある。
(1) Since the embedded flux 5 has an opening 6 that communicates with the outside air, the embedded flux 5 absorbs moisture, and as a result, pores such as cracks, pits, or blowholes caused by diffusible hydrogen occur in the weld metal. There is a risk that

これまで、フラックス原料、あるいは製品の初期水分値
を下げるための技術的提案は数多くさなれてきたが、巻
締めワイヤでの付き合わせ部に存在する開口部6からの
吸湿防止に対してはこれと言った決め手がないまま今日
に至っている。二重型フラックス入りワイヤでも同様の
問題があった。
Until now, many technical proposals have been made to lower the initial moisture value of flux raw materials or products, but these proposals have not been effective in preventing moisture absorption from the openings 6 that exist in the joints of the crimp wires. To this day, there is no decisive factor. A similar problem existed with dual flux-cored wire.

(2)製造時に際して、外包フラックス4は問題無いが
、内包フラックス5が成形直後の伸線初期段階でワイヤ
に捩れが生ずると第6図の断面形状のものが第7図のよ
うに開口部6が広がり、内包フラックス5の移動と、フ
ラックス5のワイヤ外へのこぼれ落ちが生じ、当該ワイ
ヤの内部充填フラックス5の分布に粗密を生じ、極端な
場合にはフラックス充填が殆ど無い個所が生じ、溶接不
能となったり、溶接金属の性能劣化の原因となる。
(2) During manufacturing, there is no problem with the outer flux 4, but if the inner flux 5 twists in the wire at the initial stage of wire drawing immediately after forming, the wire with the cross-sectional shape shown in Fig. 6 will have an opening as shown in Fig. 7. 6 spreads, the embedded flux 5 moves, and the flux 5 spills out of the wire, causing the distribution of the internal filling flux 5 of the wire to become uneven, and in extreme cases, there are places where there is almost no flux filling, This may cause welding to become impossible or the performance of the weld metal to deteriorate.

あるいはフラックスが偏って過剰になった所では、伸線
中に破断し易くなる傾向があった。
Alternatively, in areas where the flux was biased and excessive, there was a tendency for the wire to break easily during wire drawing.

以上の(1)、(2)の問題について、以下の解決を試
みたが、次のような問題から不成功に終った。
The following attempts were made to solve problems (1) and (2) above, but they were unsuccessful due to the following problems.

まず、このワイヤの成形工程を第8図に模式的に示した
First, the forming process of this wire is schematically shown in FIG.

第5図(j)断面の二重型フラックス入りワイヤは第5
図の(b)、(c)、(f)  。(h)のワイヤに比
べると板厚が薄い帯鋼材が使われる。
The double flux-cored wire with the cross section shown in Fig. 5 (j) is the fifth
Figures (b), (c), and (f). A steel strip material with a thinner plate thickness than the wire in (h) is used.

ワイヤ仕上り径で、使い分けられるが、仕上り径2mm
〜1.6mmφのワイヤ用には一般には板厚0、15 
mm−0,25mmのものが使われる。
The finished diameter of the wire can be used differently, but the finished diameter is 2mm.
For wires with a diameter of ~1.6 mm, the plate thickness is generally 0 or 15 mm.
mm-0.25 mm is used.

この帯鋼は成形ロールでフラックスが充填された母線に
成形され、その後、ダイスを通して伸線される。成形ロ
ールにはロール自体を駆動するドライブロールタイプと
ロールは駆動せずに帯鋼に引張機で引張駆動を与え成形
するアイドルロールタイプがあるが、ドライブロールタ
イプでは成形時に生ずるワイヤの圧延延びを微妙に調節
するスピード制御が難しく、また装置が非常に高価なも
のとなるため、最近では二重型フラックス入りワイヤで
もアイドルロールタイプの成形機が使われるし、また使
えるようにする必要に迫られている。
The strip is formed into a flux-filled generatrix using forming rolls and then drawn through a die. There are two types of forming rolls: the drive roll type, which drives the roll itself, and the idle roll type, which does not drive the roll and applies tension drive to the steel strip using a tension machine to form it. However, the drive roll type uses a drive roll to control the rolling elongation of the wire that occurs during forming. Since delicate speed control is difficult and the equipment is very expensive, recently idle roll type forming machines are used even for double type flux-cored wire, and there is a need to make them usable again. There is.

ここではアイドルロールタイプの成形機を用いる場合に
ついて概略説明する。
Here, a case where an idle roll type molding machine is used will be briefly described.

:FfJ9図に示す如く帯鋼は引張4!!102により
駆動され、成形機101の一連のアイドル成形ロ−ルを
通過し成形される。
:As shown in Figure FfJ9, the steel strip is tensile 4! ! 102, and passes through a series of idle forming rolls of the forming machine 101 to be formed.

成形工程を第8図(イ)〜(す)によって詳細に説明す
ると、 第1工程・・・・・・帯鋼は(イ)の状態で供給され(
ロ)を経て()\)のように帯鋼の両側がU形樋状に成
形された後、U型機内に外包フラックス4がホッパー1
1より投入され、その後(ニ)。
The forming process will be explained in detail with reference to Figures 8 (a) to (s). The first step...The steel strip is supplied in the state shown in (a).
After passing through (b), both sides of the steel strip are formed into a U-shaped gutter shape as shown in ()\), and the outer flux 4 is transferred to the hopper 1 in the U-shaped machine.
It is introduced from 1, and then (d).

(ホ)のようにU型機状帯鋼の両エツジ部を内側に折り
曲げて重ね矩形断面をもつ外包フラックス充填体21が
まず成形される。
As shown in (e), both edge portions of a U-shaped machine steel strip are bent inward to form an outer flux filling body 21 having a rectangular cross section.

第2工程・・・・・・この矩形断面の外包フラックス充
填体21は(へ)、(ト)に示すように更にU型機状に
成形され、そのU字溝内に内包フラックス5がフラック
スホツパ−12より投入される。
Second step...The outer flux filling body 21 with a rectangular cross section is further formed into a U-shaped machine shape as shown in (F) and (G), and the inner flux 5 is filled in the U-shaped groove. It is fed from the hopper 12.

第3工程・・・・・・その後、(チ)、(す)のように
U形樋状充填体22を締めつけ円形の充填体23.24
に成形し内包フラックス4を中心部に内蔵させる。
Third step...Then, the U-shaped gutter-shaped filling body 22 is tightened as shown in (H) and (S), and the circular filling body 23.24
The inner flux 4 is built into the center.

前述したように、このU形樋状充填体22から成形され
る充填体24はフラックスを包み込んだもので、かなり
大きな圧下を加えないと内包フラックス5が簡単に移動
できる状態にとどまってしまい、前述のワイヤ内のフラ
ックスの分布に粗密を生ずる問題がある。
As mentioned above, the filling body 24 formed from this U-shaped trough-like filling body 22 encloses flux, and unless a considerable reduction is applied, the enclosed flux 5 will remain in a state where it can be easily moved. There is a problem in that the distribution of flux within the wire is uneven.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような問題を防ぐために、上記第3工程での成形時
のロール圧下刃を増したり、あるいは成形ロール数を増
して絞り込みを強化すると、内包フラックスの移動を止
めることはできる。しかし、このU形樋状充填体22、
円形充填体23゜24に大きな圧下刃が加えられると過
剰な負荷が生じ、この帯鋼を引張るために大きな引張り
トルクを要することになり、成形後の帯鋼引張機102
との間に大きな引張力が生じ、その結果当該ブラックス
入りワイヤ母線が破断してしまう。
In order to prevent such a problem, the movement of the embedded flux can be stopped by increasing the number of roll reduction blades during forming in the third step, or by increasing the number of forming rolls to strengthen squeezing. However, this U-shaped gutter-like packing body 22,
When a large rolling blade is applied to the circular filling bodies 23 and 24, an excessive load is generated, and a large tensile torque is required to pull the steel strip.
A large tensile force is generated between the two, and as a result, the black wire busbar breaks.

また大きな圧下刃を加え過ぎると当該ワイヤの表皮とな
る薄い帯鋼上に傷が生じ易くなり、これもワイヤ破断の
一因となる。
Furthermore, if too large a reduction blade is applied, scratches are likely to occur on the thin steel strip that forms the skin of the wire, which also becomes a cause of wire breakage.

本発明はこのような新たな問題を生ずることなく、前記
問題点の(1)と(2)を解決することのできる二重型
フラッグス入りワイヤの製造方法を提供することを目的
とする。
An object of the present invention is to provide a method for manufacturing a double flag-cored wire that can solve problems (1) and (2) above without causing such new problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の&)、b)、c)3つの工程から成る従来
の二重型ブラックス入りワイヤの製造方法を改善した新
しい技術手段から成るものである。
The present invention consists of new technical means that improve the conventional method of manufacturing double black-cored wire, which consists of the following three steps: &), b), and c).

a)帯鋼を連続的に成形する装置を用いてまずU形樋状
に曲げ、U形樋状帯鋼のU字内側に外包フラックスを供
給し、該U形樋状帯鋼の両側エツジ部を内側に折り曲げ
て重ね、外包フラックスを包み込んだ平たい矩形断面の
外包フラックス充填体を形成する第1工程。
a) Using a device that continuously forms the steel strip, first bend it into a U-shaped trough shape, supply outer flux to the inside of the U shape of the U-shaped trough-shaped steel strip, and form the edges of the U-shaped trough-shaped steel strip on both sides. The first step is to form an outer flux filling body with a flat rectangular cross section that envelops the outer flux by folding them inward and stacking them on top of each other.

b)この外包フラックス充填体をU形樋状に曲げ、該U
形樋状充填体のU字内側に内包フラックスを供給する第
2工程。
b) Bend this outer flux filling body into a U-shaped gutter shape, and
A second step of supplying embedded flux to the U-shaped inside of the trough-shaped packing body.

C)次いで該U形樋状充填体を円形断面に締めつけ成形
し、内包フラックスを中心部に内蔵させる第3工程。
C) A third step in which the U-shaped trough-like filling body is then tightened and formed into a circular cross section, and the encapsulated flux is built into the center.

以上の従来の二重型フラックス入り溶接ワイヤの連続的
成形工程において、 A)前記第1工程では帯鋼の重なり部の表層側の板の幅
を円形断面に成形される二重型フラックス入りワイヤの
内側円の周長より長くしておくこと。
In the above conventional continuous forming process of double type flux-cored welding wire, A) In the first step, the width of the plate on the surface side of the overlapping part of the steel strip is changed to the inner side of the double type flux-cored wire which is formed into a circular cross section. Make it longer than the circumference of the circle.

B)前記第3工程では、前記表層側の板の幅方向自由端
部をU字の内側に先ず曲げ、次いで前記U形樋状充填体
を円形に曲げること。
B) In the third step, first bend the free end in the width direction of the surface plate to the inside of the U-shape, and then bend the U-shaped trough-like filling body into a circle.

の技術手段を採った。technical measures were adopted.

第1図(a)〜第1図(f)は上記第8図の従来成形工
程の(ホ)〜(す)に対応する部分の工程を示す成形過
程のワイヤの断面形状である。
FIGS. 1(a) to 1(f) are cross-sectional shapes of the wire during the forming process, showing steps corresponding to (E) to (S) of the conventional forming process shown in FIG. 8 above.

本発明が従来技術と最も違う所は、上記第1工程におけ
る矩形断面の外包フラックス充填体21の断面形状にあ
る。従来技術と比較し、外側からt面に折り曲げられた
帯鋼のエツジ部が外包フラックス充填体21より外側に
突出しているか、もしくは外包フラックス充填体21を
U形樋状に曲げたとき帯鋼エツジ部の表層側の板31が
突出すこと、すなわち折り曲げ重ねられた帯鋼エッジ部
の表層側の板31の板幅を円形断面に成形されるワイヤ
の内側円の周長より長くしておくことが本発明の第1の
特徴である。
The main difference between the present invention and the prior art lies in the cross-sectional shape of the outer envelope flux filler 21 having a rectangular cross section in the first step. Compared to the conventional technology, the edge portion of the steel strip bent from the outside in the T-plane protrudes outward from the outer flux filling body 21, or when the outer flux filling body 21 is bent into a U-shaped gutter shape, the edge of the steel strip In other words, the width of the plate 31 on the surface side of the folded steel strip edge portion should be longer than the circumference of the inner circle of the wire formed into a circular cross section. This is the first feature of the present invention.

この形状を得るためには上記第1工程での帯鋼左右エツ
ジ部の折り曲げ部の幅を調整すればよい。
In order to obtain this shape, the width of the bent portions of the left and right edge portions of the steel band in the first step may be adjusted.

以下にその調整方法について説明する。The adjustment method will be explained below.

従来は、第8図に明らかなように帯鋼の両エツジ部がU
形樋状から円形に成形される前記第3工程のと3に横方
向に突出さないように矩形に折り込まれている。
Conventionally, as shown in Fig. 8, both edges of the steel strip were U-shaped.
In the third step of forming the shape from a gutter shape to a circular shape, it is folded into a rectangular shape so as not to protrude laterally.

これは、外包フラックス充填体21の折り込み両エツジ
部の板幅を大きくしておくと、0字成形時に折り込まれ
た内側のエツジ部は内部で第10図に示すように複雑に
座屈し、外包フラックスの分布に粗密が生じやすく、伸
線時断線が生じやすくなる。
This is because if the plate width of both folded edges of the outer envelope flux filling body 21 is made large, the inner edge portion folded in during 0-shape forming will buckle in a complicated manner internally as shown in FIG. Differences in flux distribution tend to occur, making wire breakage more likely to occur during wire drawing.

一方折り込まれた表層側エツジ部は第11図に示す如く
U時成形する前記第2工程で突出し、次の第3工程の円
形締めつけ成形時および伸線工程でダイス荒れや、ロー
ラーダイスの異常摩耗を生じたり5 さらには断線が生
じやすくなるためである。
On the other hand, the folded surface edge part protrudes during the second step of U-forming as shown in FIG. 11, and during the third step of circular tightening forming and wire drawing, the die becomes rough and abnormal wear of the roller die occurs. This is because wire breakage is more likely to occur.

本発明は、前述のように矩形断面の板状外包フラックス
充填体21を成形する際、表層側上面に位置する折り込
み帯鋼エツジ部の板幅を円形断面に成形されるワイヤの
内側円の周長より長くしておき、外包フラックス充填体
21をU形樋状に成形されたとき突出るようにする。こ
の突出し部は本発明では次の第3工程でU形樋状内部に
折り込み成形するので前記のダイス荒れその他の問題は
ない。
As described above, when forming the plate-shaped outer envelope flux filling body 21 with a rectangular cross section, the plate width of the folded steel band edge portion located on the upper surface of the surface layer is adjusted to the circumference of the inner circle of the wire to be formed into a circular cross section. It is made longer than the length so that it protrudes when the outer envelope flux filling body 21 is formed into a U-shaped gutter shape. In the present invention, this protrusion is folded into the U-shaped trough-like interior in the next third step, so there is no problem such as the roughness of the die.

矩形断面の板状外包フラックス充填体21成形時におけ
る表層側折り込みエツジ部31の板輻立は次のようにし
て決定される。
The plate convergence of the surface side folded edge portion 31 during molding of the plate-shaped outer envelope flux filler 21 having a rectangular cross section is determined as follows.

第2図(a)、(b)に示すように矩形断面の板状フラ
ックス充填体21は、厚みWを有しておりU形樋状成形
時当然U形樋状内径rは外径Rよりも小さくなる。
As shown in FIGS. 2(a) and 2(b), the plate-shaped flux filler 21 with a rectangular cross section has a thickness W, and when forming into a U-shaped trough, the inner diameter r of the U-shaped trough is naturally larger than the outer diameter R. will also become smaller.

U形樋状外周長りは0式で表わされ、 πR+2H=L      ・・・・・・■一方U形樋
状内周全長は0式で表される。
The length of the outer periphery of the U-shaped trough is expressed by the formula 0, and πR+2H=L... ■On the other hand, the total length of the inner periphery of the U-shaped trough is expressed by the formula 0.

πr + 2 H+ X = L  ・・・・・・■■
、■式から X=π(R−r) =π(r+W)   ・・・・・・■ となる。
πr + 2 H+ X = L ・・・・・・■■
, ■From the formula, X=π(R-r) =π(r+W)...■.

ここで0字成形時所望の突出し長さXを得るだには、下
式で表すことができる。
Here, in order to obtain the desired protrusion length X during zero-shape molding, it can be expressed by the following formula.

X=又−(πr+2H)・・・・・・@従って、帯鋼か
ら矩形成形体のり、Wおよび0字成形の内径rが決まれ
ば0式よりHが求まり、所望の突出し長さXを決めれば
0式から文が求まる。
X = Also - (πr + 2H) ... @ Therefore, if the rectangular shaped shape from the steel strip, W, and the inner diameter r of the 0-shaped molding are determined, H can be found from the 0 formula, and the desired protrusion length X can be determined. The sentence is found from the formula.

見=πr+2H+X   ・・・・・・■また、突出し
長さXはU字内に内包フラックス供給後、U字内に折り
込むための機器成形上少なくとも0.5 m m以上突
出すようにする必要があり、またU字内のフラー、クス
上面全体を覆う長さとする方が好ましい、あまり長いと
U字内に折り込み成形が難しくなることを考慮し決定す
ることができる。
= πr + 2H + In addition, it is preferable to set the length to cover the entire upper surface of the fuller and box inside the U-shape.If it is too long, it will be difficult to fold it into the U-shape.

このようにして得られた矩形断面の板状フラックス充填
体がU形樋状に成形された後、フラックスホッパ−12
から内包用充填フラックス5が0字の内側に投入される
のは従来法と変りない。
After the plate-shaped flux filling body with a rectangular cross section obtained in this way is formed into a U-shaped gutter shape, the flux hopper 12
It is the same as in the conventional method that the filling flux 5 for inclusion is injected into the inside of the 0 character.

フラックスの締付は工程であるが、従来法ではU形樋状
そのものを圧下成形することで締付も同時に行おうとす
るものであったが、本発明によれば、第1図(C)、(
d)、(e)に示すようにU形樋状の板状フラックス充
填棒全体を締付けるに先立って、予め突出している帯鋼
エツジ部31のみを内側に折り込み、内包フラックス5
に蓋を覆せるように圧下するものである。
Tightening the flux is a process, and in the conventional method, the tightening was performed at the same time by forming the U-shaped gutter shape itself under pressure, but according to the present invention, as shown in FIG. 1(C), (
As shown in d) and (e), before tightening the entire U-shaped gutter-shaped plate-shaped flux filling rod, only the protruding edge portion 31 of the steel strip is folded inward, and the embedded flux 5 is
The lid is pressed down so that it can be turned over.

本方法によると、わずかな圧下力、で当該突出し帯鋼エ
ツジ部31は容易に変形し、内包用充填フラックスを確
実に締めつけることが可能となった。これが本発明の第
2の特徴である。
According to this method, the protruding steel band edge portion 31 is easily deformed by a slight rolling force, and it becomes possible to reliably tighten the filling flux for inclusion. This is the second feature of the present invention.

このようにして内包フラックスの締付けを完了した後、
フラックス充填体全体を締め、円形に仕上げ成形するこ
とにより得られるワイヤの断面を模式的に示したのが、
第3図である。
After completing the tightening of the included flux in this way,
The cross-section of the wire obtained by tightening the entire flux filling body and final forming it into a circular shape is shown below.
FIG.

〔実施例〕〔Example〕

本発明の方法により、第3図に示す断面形状の二重フラ
ックス入りワイヤ(実施例)を製造した。また比較のた
めに、第6図に示す断面形状の二重フラックス入りワイ
ヤ(比較例)を製造した。その製造諸元は以下の通りで
ある。
By the method of the present invention, a double flux-cored wire (Example) having the cross-sectional shape shown in FIG. 3 was manufactured. For comparison, a double flux-cored wire (comparative example) having the cross-sectional shape shown in FIG. 6 was manufactured. Its manufacturing specifications are as follows.

実施例     比較例 帯鋼の板厚   0.15mm    0.18mm帯
鋼の幅   22mm    20mm外包フラックス 充填体の形状 (第2図参照) L      8 mm      8 mmWO98
mm     0.8mm W IO,7m m     0.8 m m見   
  7.5 m m     5.2 m mr   
   1.35mm X           2.Om mワイヤ形状  
   第3図    第6図仕上りワイヤ線径 1.8
 m mφ  1.8mmφフランクス包含比 外包フラックス  15%     15%内包フラッ
クス  io%     10%上記実施例と比較例と
を30℃、湿度80%の雰囲気で吸湿促進試験を行った
後、J I SZ3113に準拠した拡散性水素量の測
定を行った結果を第4図に示した。
Example Comparative example Plate thickness of steel strip 0.15 mm 0.18 mm Width of steel strip 22 mm 20 mm Shape of outer flux filling body (see Figure 2) L 8 mm 8 mm WO98
mm 0.8mm W IO, 7mm m 0.8mm m view
7.5 mm 5.2 m mr
1.35mm x 2. Om m wire shape
Figure 3 Figure 6 Finished wire diameter 1.8
m mφ 1.8 mmφ Franks inclusion ratio External flux 15% 15% Inner flux io% 10% The above examples and comparative examples were subjected to a moisture absorption acceleration test in an atmosphere of 30°C and 80% humidity, and then tested in accordance with J I SZ3113. Figure 4 shows the results of measuring the amount of diffusible hydrogen.

溶接条件は次の通りである。Welding conditions were as follows.

溶接時の雰囲気=15℃×湿度68% 溶接電流   :250Amp 溶接電圧   : 23vo l を 溶接速度   :25cm/min ワイヤエクステンション:25mm 極性     : DC−RP 第4図から明らかなように、比較例では放置時間と共に
拡散性水素量が増加し、また第4図中のA−Fで示す点
では次のような溶接欠陥が発生した。
Welding atmosphere = 15℃ x humidity 68% Welding current: 250Amp Welding voltage: 23vol Welding speed: 25cm/min Wire extension: 25mm Polarity: DC-RP As is clear from Figure 4, in the comparative example, the standing time was At the same time, the amount of diffusible hydrogen increased, and the following welding defects occurred at points A-F in FIG.

A   ・・・溶接時ビード表面にアバタ発生BCDE
F・・・溶接時ビード表面にヘリンボーン発生 CDEF・・・X線試験の結果溶接金属内部にブローホ
ール発生 F   ・・・溶接ビードにピット発生これに比し実施
例では放置時間による拡散性水素量の変化はなく、また
溶接時のビードは全て無欠陥であった。
A... Avatar generated on the bead surface during welding BCDE
F...A herringbone is generated on the bead surface during welding.CDEF...A blowhole is generated inside the weld metal as a result of an X-ray test.F...A pit is generated in the weld bead.In comparison, in the example, the amount of diffusible hydrogen due to the standing time There was no change in the welding temperature, and all beads during welding were defect-free.

参考例 本誌と同じ効果を期待するものとして前記第8図の第3
工程で外側上面に折り込み済みの帯鋼エツジ部のみを選
択的に内側にフラックスを覆うように折り込む方法も考
えられるが、研究の結果、4mmφ以下の母線を得るよ
うな成形課程では当該帯鋼エツジ部のみを選択的に加工
するにはラインの精度を飛躍的に向上させ、ローラーも
非常に高価なものを必要とし、実用性はなかった。
Reference example No. 3 in Figure 8 above is an example that is expected to have the same effect as this magazine.
One possible method is to selectively fold only the edges of the steel strip that have already been folded onto the outer upper surface in the process to cover the flux, but as a result of research, we have found that in the forming process to obtain a generatrix of 4 mmφ or less, the edges of the steel strip are In order to selectively process only certain parts, the precision of the line would have to be dramatically improved, and rollers would have to be extremely expensive, making it impractical.

〔発明の効果〕〔Effect of the invention〕

本発明のフラックス入りワイヤの製造方法によれば、 1)上述するように内包フラックスが小さな圧下刃でも
十分に帯鋼内に締めつけ固定されるため、成形母線を得
るためにはその後の成形ロールの圧下刃は単に円形にす
るだけのものでよいことになった。
According to the method for producing a flux-cored wire of the present invention, 1) As described above, since the embedded flux is sufficiently tightened and fixed in the steel strip even with a small rolling blade, it is necessary to use the subsequent forming rolls in order to obtain a forming generatrix. It was decided that the reduction blade could simply be made circular.

従って、帯鋼の引張りトルクは小さくて済み、成形機と
引張期間で過剰な張力が発生せず、破断も回避された。
Therefore, the tensile torque of the steel strip was small, no excessive tension was generated in the forming machine and during the tensile process, and breakage was avoided.

2) 第3′5!Jの断面形状をみて明らかな如く、内
包用充填フラックスは前述の突出した帯鋼エツジ部によ
って開口と完全に遮断されているため、成形後の伸線工
程の初期段階でワイヤに捩りが生じても、充填フラック
スのこぼれ落ちを生じない、さらに内側に折り込まれた
内包フラックス分布が粗密となることも解消される。
2) 3'5! As is clear from the cross-sectional shape of J, the filling flux for the inner encapsulation is completely blocked from the opening by the above-mentioned protruding edge of the steel band, so twisting occurs in the wire at the initial stage of the wire drawing process after forming. In addition, the filling flux does not spill out, and the distribution of the included flux folded inside is also prevented from becoming dense.

3) 内包フラックスが開口部と完全に遮断されている
ことによって外気と充填フラックスが遮断されるため、
充填フラックスの吸湿もほぼ完全に防止できることが確
認された。
3) Since the internal flux is completely blocked from the opening, the outside air and the filling flux are blocked.
It was confirmed that moisture absorption of the filling flux could be almost completely prevented.

以上詳述した如く本発明方法によれば、フラー。As detailed above, according to the method of the present invention, fuller.

クスの均一な吸湿性のない、フラックス充填ワイヤを常
に安定して製造できるもので、工業的価値は極めて高い
This method allows stable production of flux-filled wire without the uniform hygroscopicity of flux, and has extremely high industrial value.

本発明はセルフシールドアーク溶接用ワイヤの製造に適
用されるが、当然のことながら、溶接部分を炭酸ガスま
たはアルゴン等の不活性ガスで被包するガス被包溶接用
や、溶剤で溶接部分を覆う潜弧自動溶接用のフラックス
入りワイヤにも全く同じ効果を発揮することはいうまで
もない。
The present invention is applied to the production of wire for self-shielded arc welding, but it can also be used for gas encapsulation welding, in which the welded part is encapsulated in an inert gas such as carbon dioxide or argon, or in which the welded part is covered with a solvent. Needless to say, the same effect can be exerted on flux-cored wire for automatic submerged arc welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の工程を示す成形体の横断面図、第
2図は本発明の帯鋼の寸法関係を示す説明図、第3図は
本発明による仕上りワイヤの横断面図、第4図は実施例
の効果を示すグラフ、第5rl!Jは従来のフラッグス
入すワイヤの断面図。 第6図、第7図は従来の二重型フラックス人すワイヤの
断面図、第8図は従来の二重型フラッグク入すワイヤの
製造丁程図、第9図はその製造ラインの配置図、第10
図 第11図は二重型フラックス入りワイヤの製造工程
における好ましくない断面形状図である。 ■・・・帯鋼 2.4.5・・・フラックス 6・・・開口部 11.12・・・ホッパ 21・・・外包フラックス充填体 22・・・U型機状充填体 23.24・・・円形充填体
FIG. 1 is a cross-sectional view of a formed body showing the steps of the method of the present invention, FIG. 2 is an explanatory diagram showing the dimensional relationship of the steel strip of the present invention, and FIG. Figure 4 is a graph showing the effect of the example, 5th rl! J is a cross-sectional view of the wire used to insert conventional flags. Figures 6 and 7 are cross-sectional views of a conventional double-type flux wire, Figure 8 is a manufacturing process diagram of a conventional double-type flux wire, and Figure 9 is a layout diagram of the manufacturing line. 10
FIG. 11 is a diagram showing an unfavorable cross-sectional shape in the manufacturing process of a double type flux-cored wire. ■...Strip steel 2.4.5...Flux 6...Opening 11.12...Hopper 21...Outer envelope flux filling body 22...U-shaped mechanical filling body 23.24.・Circular filling body

Claims (1)

【特許請求の範囲】 1 帯鋼を連続的にU形樋状に曲げ、該U形樋状帯鋼の
U字内側に外包フラックスを供給し、該U形樋状帯鋼の
両エッジ部を内側に折り曲げて重ね、矩形断面の外包フ
ラックス充填体を形成する第1工程、 該外包フラックス充填体をU形樋状に曲げ、該U形樋状
充填体のU字内側に内包フラックスを供給する第2工程
、 次いで該U形樋状充填体を円形断面に締めつけ成形し、
内包フラックスを中心部に内蔵させる第3工程、 からなる二重型フラックス入り溶接ワイヤの連続成形方
法において、 前記第1工程では折り曲げ重ねるエッジ部の表層側の板
の幅を円形断面に成形される二重型フラックス入りワイ
ヤの内側円の周長より長くしておくと共に、 前記第3工程では、前記エッジ部の表層側の板の幅方向
自由端部をU字の内側に先ず曲げ、次いで前記U形樋状
充填体を円形断面に締めつけ成形することを特徴とする
二重型フラックス入りワイヤの製造方法。
[Claims] 1. Continuously bending a steel strip into a U-shaped trough shape, supplying outer flux to the inside of the U shape of the U-shaped trough-shaped steel strip, and bending both edges of the U-shaped trough-shaped steel strip. A first step of folding inward and overlapping to form an outer flux filling body with a rectangular cross section, bending the outer flux filling body into a U-shaped gutter shape, and supplying the inner flux to the U-shaped inside of the U-shaped gutter-shaped filling body. Second step: Next, the U-shaped gutter-like filling body is tightened and formed into a circular cross section,
A method for continuously forming a double flux-cored welding wire, which comprises: a third step of incorporating embedded flux in the center; The length is made longer than the circumference of the inner circle of the heavy-duty flux-cored wire, and in the third step, the free end in the width direction of the plate on the surface side of the edge portion is first bent inside the U-shape, and then the U-shape is A method for producing a double flux-cored wire, which comprises tightening and forming a trough-like filling body into a circular cross section.
JP4124285A 1985-03-04 1985-03-04 Production of flux-cored wire Pending JPS61202796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124285A JPS61202796A (en) 1985-03-04 1985-03-04 Production of flux-cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124285A JPS61202796A (en) 1985-03-04 1985-03-04 Production of flux-cored wire

Publications (1)

Publication Number Publication Date
JPS61202796A true JPS61202796A (en) 1986-09-08

Family

ID=12602961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124285A Pending JPS61202796A (en) 1985-03-04 1985-03-04 Production of flux-cored wire

Country Status (1)

Country Link
JP (1) JPS61202796A (en)

Similar Documents

Publication Publication Date Title
US4048705A (en) Method of making soldering wire constituted by a core of powder and a metallic tube enclosing the core
EP1961501A1 (en) Method of manufacturing electric resistance welded tube with excellent weld characteristic
EP2841232B1 (en) Flux cored wire and manufacturing method thereof and manufacturing device thereof
JPS6338278B2 (en)
JPS61202796A (en) Production of flux-cored wire
US7318279B2 (en) Method of manufacturing annular body
JPS6240999A (en) Production of flux cored wire
CN110877060B (en) Production method of double-layer core wire
JPS62183997A (en) Production of flux cored wire
CN111100969A (en) Core-spun yarn and manufacturing method thereof
JPS6340696A (en) Flux cored wire for welding
JPH0211298A (en) Forming of duplex flux-cored wire
JPS59125214A (en) Forming method of pipe
JPH0211297A (en) Manufacture of duplex flux-cored welding wire
JPS633751Y2 (en)
JPS608918B2 (en) Small diameter flux-cored welding wire with good feedability
JPS59125225A (en) Method and device for forming seam bound part of steel vessel
JPH0211296A (en) Manufacture of flux-cored welding wire
SU1489870A1 (en) Method of producing welded pipes
JP2589519Y2 (en) Roll for manufacturing flux cored wire
JPH04371392A (en) Production of wire including flux for welding
JPH0390293A (en) Production of flux cored wire for welding
JPH0129637B2 (en)
JPH0565278B2 (en)
JPH0647130B2 (en) Method for manufacturing electrode wire for wire cut electric discharge machining