JPS61202203A - Conversion method for coordinate system of robot and work - Google Patents

Conversion method for coordinate system of robot and work

Info

Publication number
JPS61202203A
JPS61202203A JP4263285A JP4263285A JPS61202203A JP S61202203 A JPS61202203 A JP S61202203A JP 4263285 A JP4263285 A JP 4263285A JP 4263285 A JP4263285 A JP 4263285A JP S61202203 A JPS61202203 A JP S61202203A
Authority
JP
Japan
Prior art keywords
robot
coordinate system
work
workpiece
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263285A
Other languages
Japanese (ja)
Inventor
Kuniaki Ozawa
小沢 邦昭
Hideki Nakada
英樹 中田
Kenjiro Kumamoto
熊本 健二郎
Kichizo Akashi
明石 吉三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4263285A priority Critical patent/JPS61202203A/en
Publication of JPS61202203A publication Critical patent/JPS61202203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the teaching time of a robot by teaching a substitute point on a work without teaching directly a point on an X or Y axis of a work coordinate system. CONSTITUTION:The coordinate systems are converted between a robot 7 and a work 10 by means of a storing device 1 for the work form data defined by the work coordinate system, a device 2 which produces a robot action locus in the work coordinate system from the form of the work 10, a device 3 which calculates the conversion equation (homogeneous conversion matrix) between the robot and work coordinate systems, a conversion device 4 for said conversion equation, a robot controller 6, etc. The signal 11 that described the coordinate value of a substitute point on the work 10 in the work coordinate system is supplied to the device 3 together with the signal 12 which described three point on the work 10. Then the homogeneous conversion signal 13 of the work coordinate system to the robot coordinate system is delivered to perform the conversion between the substitute point coordinate system and the robot coordinate system. Then the conversion is carried out between the robot and work coordinate systems.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、ワーク座標系で記述された教示点をロボット
座標系における前述に変換するための座標系の変換方法
に係り、特に、形状が複雑でワーク座標系上の3点を直
接教示できない場合に好適な、ロボットとワークの座標
系変換方法に関する。 〔発明の背景〕 ロボットの教示の手間を省く方法を大別すると次の2通
りに分類できる。 (1)1度教示したデータを利用して、新たな教示デー
タを作成する方法 (2)CADデータ等を利用してワーク座標系で記述し
た教示点を、ロボット座標系における記述に変換する方
法 (1)の方法は、ワークの形状が同一で、その位置が前
と変わった場合等に有効であり、公知例として、例えば
特開昭57−182205号公報が知られている。 一方、(2)の方法は、ワーク座標系でロボット動作軌
跡を記述するのが容易な場合に有効である、異なる座標
系間の変換を実現するためには、・さらに、ホモジニア
ス変換は、一方の座標系を基準にして他方の座標系の原
点、X軸、y軸、Z軸の各単位ベクトルの合計4個の点
の位置座標が分ればよいことも知られている(例えば、
若松他著。 「耐能ロボット読本」、日刊工業新聞社、P 136)
。 従って、(2)の方法を実現するには、ロボット座標系
を基準にしてワーク座標系の上記4点の位置座標が分れ
ばよいことになる。 ロボット座標系を基準にしてワーク座標系lOOの上記
4点をロボットを用いて計測する方法は、ロボット言語
ALで開発された。−1の計i法は、若松らの同上書の
139頁に説明されてい墨ように、ワーク座標系の原点
0.X軸上の1点!20゜Y軸上の1点130の合計3
点をロボットの手先に付けたポインタ140(位置計測
用治具)で接触できるように教示すればよい(第1図(
a)参、1 照)、X軸上の点は、X軸の単位ベクトル
とY軸の単位ベクトルの外積によって求まる。上述の計
測法を以下3点計測法と呼ぶことにする。なお、測定軸
はX、Y、Z軸のうちの任意の2軸でよいが、説明の便
宜上、X軸、Y軸を用いることにする。 3点計測法の考え方を使った公知例としては、特開昭5
9−60507号公報があるが、ワークの形状を考慮に
入°れて31計測法を論じたものは見あたらない6例え
ば、第1図(b)に示す自由曲面のワーク200では第
1図(a)の場合と違って、パ X軸、Y軸上の点がワ
ーク上に存在しないので、空間上に存在するそれらの点
を直接教示することは事実上できない、このため、3点
計測法を利用した座標系の変換方法を改良する必要があ
った。 〔発明の目的〕 本発明め目的は、ワークが1由曲面を成すため9 に、
ワーク座標系9x軸上の点またはY軸上の点を直接教示
!きない場合に・も有効な、ロボットとワークの座標系
変換方法を提供することにある。 〔発明の概要〕 上記目的を実現するために本発明では、ワーク座標系の
X軸あるいはY軸上の点を直接教示する代りに、ワーク
上の代替点210..’220を教示する方法を取る(
第1図(b)参照)、教示によって得られた代替点の座
標値から、まず、ロボット座標系と、仮に設けた代替点
座標系との変換を求める0次に1代替点座標系とワーク
座標系との変換を求める。これら2つの変換から、ロボ
ット座標系とワーク座標系の変換を求めるのが、本発明
の特徴である。
[Field of Application of the Invention] The present invention relates to a coordinate system conversion method for converting a teaching point described in a workpiece coordinate system to the aforementioned teaching point in a robot coordinate system. This invention relates to a method for converting coordinate systems between a robot and a workpiece, which is suitable for cases where points cannot be directly taught. [Background of the Invention] Methods for saving the labor of teaching robots can be broadly classified into the following two types. (1) A method of creating new teaching data using data that has been taught once. (2) A method of converting a teaching point described in the workpiece coordinate system using CAD data etc. into a description in the robot coordinate system. Method (1) is effective when the workpieces have the same shape but their positions have changed from before, and a known example is, for example, Japanese Unexamined Patent Publication No. 182205/1983. On the other hand, method (2) is effective when it is easy to describe the robot motion trajectory in the workpiece coordinate system.In order to realize transformation between different coordinate systems, homogeneous transformation is It is also known that it is only necessary to find the position coordinates of a total of four points, the origin of the other coordinate system, the unit vectors of the X-axis, y-axis, and Z-axis, with reference to the coordinate system of
Written by Wakamatsu et al. “Endurance Robot Reader”, Nikkan Kogyo Shimbun, p. 136)
. Therefore, in order to implement method (2), it is sufficient to know the position coordinates of the four points in the workpiece coordinate system based on the robot coordinate system. The method of measuring the above four points of the workpiece coordinate system lOO using the robot with reference to the robot coordinate system was developed in the robot language AL. -1 calculation i method is explained on page 139 of Wakamatsu et al., supra, where the origin of the workpiece coordinate system is 0. One point on the X axis! 20° 1 point on the Y axis 130 total 3
It is only necessary to teach the robot so that the point can be touched with a pointer 140 (position measurement jig) attached to the robot's hand (see Fig. 1).
(See a), 1) A point on the X-axis is determined by the cross product of the unit vector of the X-axis and the unit vector of the Y-axis. The above measurement method will hereinafter be referred to as a three-point measurement method. Note that the measurement axes may be any two axes among the X, Y, and Z axes, but for convenience of explanation, the X and Y axes will be used. A known example using the concept of the three-point measurement method is
9-60507, but I have not found anything that discusses the 31 measurement method taking into consideration the shape of the workpiece6. For example, for the workpiece 200 with a free-form surface shown in FIG. 1(b), the measurement method shown in FIG. Unlike case a), the points on the X and Y axes do not exist on the workpiece, so it is virtually impossible to directly teach those points that exist in space.For this reason, the three-point measurement method It was necessary to improve the method of converting the coordinate system using . [Object of the Invention] The object of the present invention is to form a workpiece with a one-dimensional curved surface.
Directly teach points on the X-axis or Y-axis of the workpiece coordinate system! The purpose of this invention is to provide a method for converting coordinate systems between a robot and a workpiece, which is effective even when the robot and workpiece cannot be used. [Summary of the Invention] In order to achieve the above object, in the present invention, instead of directly teaching points on the X-axis or Y-axis of the workpiece coordinate system, alternative points 210. .. Take the method of teaching '220 (
(See Figure 1(b)). First, from the coordinate values of the alternative point obtained by teaching, we first calculate the transformation between the robot coordinate system and the temporarily provided alternative point coordinate system. Find the transformation to and from the coordinate system. A feature of the present invention is that the transformation between the robot coordinate system and the workpiece coordinate system is determined from these two transformations.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ワーク座標系の軸上の点がワーク上に
ない場合にも、ロボット座標系とワーク座標系の変換関
係(ホモジニアス変換)を算出できるので、いかなる形
状のワークに対しても、ワーク座標系で記述したロボッ
ト動作軌跡をロボット座標系での記述に変換できる。こ
の結果、ワーク座標系でロボット動作軌跡を記述すれば
教示は済むので、実機を用いて教示する場合と比較して
、教示時間を1710程度に短縮できる。特にCADデ
ータと結合してワーク座標系でロボット動作軌跡を自動
的に生成する場合には、その効果はさらに大きくなる。
According to the present invention, the transformation relationship (homogeneous transformation) between the robot coordinate system and the workpiece coordinate system can be calculated even when the point on the axis of the workpiece coordinate system is not on the workpiece, so it can be used for any shape of workpiece. , the robot motion trajectory described in the workpiece coordinate system can be converted to a description in the robot coordinate system. As a result, since teaching can be completed by describing the robot motion locus in the workpiece coordinate system, the teaching time can be reduced to about 1710 seconds compared to teaching using an actual machine. In particular, the effect becomes even greater when the robot motion trajectory is automatically generated in the workpiece coordinate system by combining it with CAD data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する図、第2図は実施例の
構成図、第3図は本発明の処理手順を示すフローチャー
ト図、第4図は本発明の座標系の変換法を説明する図で
ある。 1・・・ワーク形状データ格納装置、2・・・ロボット
座標系におけるロボット動作軌跡生成装置、3・・・ロ
ボット座標系とワーク座標系の変換演算装置、4・・・
ロボット動作軌跡の、ロボット竺標系における記述この
変換装置・5°°°0ボット関節の回転角度波束装置、
6・・・ロボットコントローラ、7・・・多−節ロボッ
ト、8・・・ポインタ、9・・・テイーチングボ□ ツクス、10・・・ワーク、1.1・・・ワーク上の代
替点の座標値をワーク座標系で記述した信号、12・・
・ワーク上の3点をロボット座標系で記述した信号、1
3・・・ワーク輝標系の!ポット座標系に対するホVJ
r  図 (’(L)、    ’ (bン。
Fig. 1 is a diagram explaining the present invention in detail, Fig. 2 is a configuration diagram of an embodiment, Fig. 3 is a flowchart showing the processing procedure of the present invention, and Fig. 4 is a diagram illustrating the coordinate system conversion method of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Workpiece shape data storage device, 2... Robot motion trajectory generation device in robot coordinate system, 3... Conversion calculation device between robot coordinate system and workpiece coordinate system, 4...
Description of the robot motion trajectory in the robot axis system This conversion device: 5°°°0 robot joint rotation angle wave packet device,
6...Robot controller, 7...Multi-joint robot, 8...Pointer, 9...Teaching button □x, 10...Workpiece, 1.1...Coordinates of alternative point on workpiece Signal whose value is described in the work coordinate system, 12...
・Signal that describes three points on the workpiece in the robot coordinate system, 1
3... Work bright standard system! HoVJ for pot coordinate system
r Figure ('(L), '(bn.

Claims (1)

【特許請求の範囲】[Claims] 1、ワーク座標系で定義したワーク形状データの格納手
段と、ワークの形状データからロボット動作軌跡をワー
ク座標系で決定する演算手段と、ロボット座標系とワー
ク座標系の変換手段と、ワーク座標系で記述されたロボ
ット動作軌跡をロボット座標系における記述に変換する
手段と、ロボット座標系での動作軌跡からロボットの各
関節角を時系列的に求める演算手段と、ロボット・コン
トローラと、多関節ロボットと、該多関節ロボットの先
端に取付けた位置測定用治具と、該治具を所望の位置に
動かす手段とからなるロボット教示システムにおいて、
ワーク座標系の軸上の点を計測する代りに、ワーク上の
代替点を計測することを特徴とする、ロボットとワーク
の座標系変換方法。
1. Storage means for workpiece shape data defined in the workpiece coordinate system, calculation means for determining the robot motion trajectory in the workpiece coordinate system from the workpiece shape data, means for converting between the robot coordinate system and the workpiece coordinate system, and the workpiece coordinate system. means for converting the robot motion trajectory described in the robot coordinate system into a description in the robot coordinate system, a calculation means for calculating each joint angle of the robot in time series from the motion trajectory in the robot coordinate system, a robot controller, and an articulated robot. A robot teaching system comprising: a position measuring jig attached to the tip of the articulated robot; and means for moving the jig to a desired position.
A coordinate system conversion method for a robot and a workpiece, which is characterized by measuring an alternative point on the workpiece instead of measuring a point on the axis of the workpiece coordinate system.
JP4263285A 1985-03-06 1985-03-06 Conversion method for coordinate system of robot and work Pending JPS61202203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263285A JPS61202203A (en) 1985-03-06 1985-03-06 Conversion method for coordinate system of robot and work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263285A JPS61202203A (en) 1985-03-06 1985-03-06 Conversion method for coordinate system of robot and work

Publications (1)

Publication Number Publication Date
JPS61202203A true JPS61202203A (en) 1986-09-08

Family

ID=12641388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263285A Pending JPS61202203A (en) 1985-03-06 1985-03-06 Conversion method for coordinate system of robot and work

Country Status (1)

Country Link
JP (1) JPS61202203A (en)

Similar Documents

Publication Publication Date Title
Zhuang et al. Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX= YB
US4698572A (en) Kinematic parameter identification for robotic manipulators
JPS6125207A (en) Setting system of tool coordinate system
JP2004094399A (en) Control process for multi-joint manipulator and its control program as well as its control system
Pickett et al. RoboTeach: An off-line robot programming system based on GMSolid
JP2979552B2 (en) Robot control method
JPS61202203A (en) Conversion method for coordinate system of robot and work
JPS62165213A (en) Work environment teaching device
CN109773581B (en) Method for applying robot to reappear machining
JPH05303425A (en) Direct teaching type robot
JP2000112510A (en) Robot teaching method and its device
JP2000039911A (en) Robot controller
JP2913661B2 (en) Robot control method
JP2002215211A (en) Numerical controller
TSAI et al. Mathematical model for robotic arc-welding off-line programming system
JPH01283603A (en) Robot off-line teaching system
JPS61250705A (en) Coordinate conversion system for industrial robot
JPS61177509A (en) Control system for position and attitude of robot arm
JP2932443B2 (en) Circular interpolation posture control method of robot
JP2576176B2 (en) Robot control method
JP2804474B2 (en) Teaching method for industrial robots
JPH08255011A (en) Control method for robot
Chuang et al. Dynamics analysis and learning control for 3-PRPS platform
JPH07205068A (en) Coordinate system setting method of robot
JPH02148307A (en) Teaching data preparing device for industrial robot