JPS61200450A - Nuclear magnetic resonance probe - Google Patents

Nuclear magnetic resonance probe

Info

Publication number
JPS61200450A
JPS61200450A JP60040898A JP4089885A JPS61200450A JP S61200450 A JPS61200450 A JP S61200450A JP 60040898 A JP60040898 A JP 60040898A JP 4089885 A JP4089885 A JP 4089885A JP S61200450 A JPS61200450 A JP S61200450A
Authority
JP
Japan
Prior art keywords
coil
transmitting
receiving coils
hold
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60040898A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
博 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60040898A priority Critical patent/JPS61200450A/en
Publication of JPS61200450A publication Critical patent/JPS61200450A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/422Screening of the radio frequency field

Abstract

PURPOSE:To make the inductance of a coil variable without disturbing the uniformity of a static magnetic field, by providing a pair of conductive members close to a coil and arranged almost symmetrically so as to hold the coil therebetween and a moving mechanism for moving a pair of the conductive members to mutually opposite directions while holding the symmetric relation interposing the coil. CONSTITUTION:Conductor rings 3, 4 are symmetrically arranged so as to hold transmitting and receiving coils 1 and, because the nuts 7, 8 supporting said rings 3, 4 take the relation of mutually reverse screws, the conductor rings 3, 4 are moved by the same distance to opposite directions by rotating a screw rod 10 while hold the center surfaces of the transmitting and receiving coils 1. By this method, the inductances shown by the transmitting and receiving coils 1 can be regulated and the variable range of tuning frequency can be drastically enlarged. Further, by taking the capacity of a condenser in a high range (relatively small capacity) of Q and reducing the inductances of the transmitting and receiving coils, the capacity Q of a tuning circuit can be enhanced even in a high frequency region.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は核磁気共鳴袋M (NMR装置)に用いられる
核磁気共鳴プローブ(NMRプローブ)に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear magnetic resonance probe (NMR probe) used in a nuclear magnetic resonance bag M (NMR apparatus).

[従来技術] NMR装置においては、静vns中に配置した試料に高
周波パルス磁場を照射し、共鳴に伴って試料から発生ず
る共鳴信号を検出し、フーリエ変換処理を施してNMR
スペクトルを得ている。NMRプローブはその際、試料
の保持及び回転、内蔵する送受信コイル及び送受信回路
による高周波パルスの照射及び共鳴信号の受信など極め
て重要な役割を受は持っている。
[Prior art] In an NMR apparatus, a sample placed in a static VNS is irradiated with a high-frequency pulsed magnetic field, a resonance signal generated from the sample due to resonance is detected, and a Fourier transform process is performed to obtain an NMR signal.
Obtaining a spectrum. In this case, the NMR probe plays extremely important roles, such as holding and rotating the sample, irradiating high-frequency pulses using the built-in transmitter/receiver coil and transmitter/receiver circuit, and receiving resonance signals.

従来このNMRプローブは、観測核の種類に応じて専用
のものが用意されており、観測核が変わるとその都度プ
ローブを交換しなければならなかったが、最近は1つの
プローブで複数の観測核の測定がおこなえる可変同調プ
ローブが普及して来ている。
Conventionally, this NMR probe was prepared specifically for each type of observation nucleus, and the probe had to be replaced each time the observation nucleus changed, but recently, one probe can be used for multiple observation nuclei. Variable tuning probes that can perform measurements are becoming popular.

第3図はそのような可変同調プローブに用いられる送受
信回路の例を示す。第3図においてしは送受信コイル、
CVは同調可変用バリコン、CIはマツチング調整用バ
リコンであり、CVをプローブ外部から調整することに
より同調周波数を変えることができる。バリコンを調整
する代わりに、第4図に示すように切換スイッチSWを
設け、送受信コイルしにコンデンサC1やコンデンサC
2と外部コイルLOを選択的に接続して同調周波数を変
えることもおこなわれている。
FIG. 3 shows an example of a transmitter/receiver circuit used in such a variable tuning probe. In Fig. 3, there are transmitting and receiving coils,
CV is a variable capacitor for tuning variation, and CI is a variable capacitor for matching adjustment. By adjusting CV from outside the probe, the tuning frequency can be changed. Instead of adjusting the variable capacitor, a changeover switch SW is provided as shown in Figure 4, and the capacitor C1 and capacitor C are connected to the transmitting and receiving coil.
2 and an external coil LO are selectively connected to change the tuning frequency.

[発明が解決しようとする問題点1 しかしながら、第3図の回路ではバリコンの容量の可変
幅が大きくとれないので同調周波数の可変幅に限界があ
るし、同調回路のQがバリコンのQに左右されるため、
特に周波数の高い領域では高いQを実現することはでき
なかった。
[Problem to be solved by the invention 1 However, in the circuit shown in Fig. 3, the variable capacitance of the variable capacitor cannot be varied widely, so there is a limit to the variable range of the tuning frequency, and the Q of the tuning circuit is influenced by the Q of the variable capacitor. In order to be
In particular, it was not possible to achieve a high Q in a high frequency region.

また第4図の回路では外部コイルLOによる同調回路の
Qの低下が大きいという問題がある。
Furthermore, the circuit shown in FIG. 4 has a problem in that the external coil LO greatly reduces the Q of the tuned circuit.

本発明は上述した点に鑑みてなされたものであり、送受
信コイル自身のインダクタンスを調整可能とすることに
より上記問題点を解決したNMRプローブを提供するこ
とを目的としている。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an NMR probe that solves the above-mentioned problems by making it possible to adjust the inductance of the transmitter/receiver coil itself.

[問題点を解決するための手段1 この目的を達成するため本発明にかかるNMRプローブ
は、試料が配置される領域の周囲に巻回されるコイルと
、該コイルに近接し且つ該コイルを挟んで略対称に配置
される1対の導電性部材と、該1対の導電性部材を前記
コイルを挟んだ対称関係を保ったまま互いに反対方向へ
移動さ往るための移動機構とを備えたことを¥#徴とし
ている。
[Means for Solving the Problem 1] In order to achieve this object, the NMR probe according to the present invention includes a coil wound around a region where a sample is placed, and a coil located close to and sandwiching the coil. a pair of conductive members disposed approximately symmetrically, and a moving mechanism for moving the pair of conductive members in opposite directions while maintaining a symmetrical relationship with the coil sandwiched therebetween. This is marked as a ¥# sign.

[実施例] 以下、図面に基づき本発明の一実施例を詳説する。[Example] Hereinafter, one embodiment of the present invention will be explained in detail based on the drawings.

第1図は本発明を実施したNMRプローブの要部を示し
、第2図はそれをX−Y平面で切った断面図である。第
1図及び第2図において1は鞍型の送受信コイル、2は
コイルボビンで、試料を収容した試料管は静磁場が印加
されるZ軸に沿ってこのボビン内に挿入される。3.4
はボビンより若干大きな径が与えられた例えば銅製の導
体リングで、固定子5.6を介してナツト7.8に取付
けられている。ナツト7.8は互いに逆ネジの関係にあ
り、全長の半分が右ネジ半分が左ネジにネジ満が切られ
ておりプローブ基台9に回転可能に保持されているネジ
棒10に螺合している。11はリングの回転を防止する
ために固定子5.6を貫通するガイド棒であり、基台9
に取付けられている。12はプローブ外部から前記ネジ
棒10を回転さ往るためのツマミである。
FIG. 1 shows the main parts of an NMR probe embodying the present invention, and FIG. 2 is a cross-sectional view of the probe taken along the X-Y plane. In FIGS. 1 and 2, 1 is a saddle-shaped transmitting/receiving coil, 2 is a coil bobbin, and a sample tube containing a sample is inserted into this bobbin along the Z axis to which a static magnetic field is applied. 3.4
is a conductor ring made of copper, for example, which has a slightly larger diameter than the bobbin, and is attached to the nut 7.8 via the stator 5.6. The nuts 7 and 8 have opposite threads to each other, half of the total length is a right-hand thread, half is a left-hand thread, and the nuts 7 and 8 are fully threaded, and are screwed into a threaded rod 10 rotatably held on the probe base 9. ing. Reference numeral 11 denotes a guide rod that passes through the stator 5.6 to prevent rotation of the ring, and the base 9.
installed on. 12 is a knob for rotating the threaded rod 10 from outside the probe.

上記構成において、導体リング3.4は送受信コイル1
を挟んで対称に配置されており、しかも夫々を支持する
ナツト7.8が互いに逆ネジの関係にあるため、ネジ棒
10を回転すると該導体リング3,4は送受信コイル1
の中心面(X−Y平面)を挟んで反対方向に同じ距離移
動する。即ち、ネジ棒10を回転することにより、2つ
のリングのX−Y平面に関する対称性を保ったまま、2
つのリングと送受信コイル1との距離あるいは重なりの
程度を適宜1節することができる。
In the above configuration, the conductor ring 3.4 is connected to the transmitter/receiver coil 1.
The conductor rings 3 and 4 are arranged symmetrically across the transmitter/receiver coil 1, and since the nuts 7 and 8 supporting each are in a reverse threaded relationship with each other, when the threaded rod 10 is rotated, the conductor rings 3 and 4
move the same distance in opposite directions across the center plane (X-Y plane). That is, by rotating the threaded rod 10, the two rings can be rotated while maintaining the symmetry of the two rings with respect to the X-Y plane.
The distance or the degree of overlap between the two rings and the transmitting/receiving coil 1 can be set appropriately.

ところで、コイルに近接して導電性部材が配置されると
、コイルから発生する交流磁場により導電性部材内部あ
るいは表面に渦電流が流れ、その渦電流によって生じる
磁束によってコイル内部の磁束の分布が変わるため、コ
イルのインダクタンスは導電性部材が無い場合と異なっ
た値になる。
By the way, when a conductive member is placed close to a coil, an eddy current flows inside or on the surface of the conductive member due to the alternating magnetic field generated by the coil, and the magnetic flux generated by the eddy current changes the distribution of magnetic flux inside the coil. Therefore, the inductance of the coil has a value different from that without the conductive member.

その導電性部材とコイルとの相対位置関係を変化させれ
ば、コイルのインダクタンスを任意に変化させることが
可能である。
By changing the relative positional relationship between the conductive member and the coil, it is possible to arbitrarily change the inductance of the coil.

従って、上述の如くリングと送受信コイル1との距離あ
るいは重なりの程度を適宜調節することにより、送受信
コイル1の示すインダクタンスを調節することができ、
このような送受信コイルを例えば第3図の回路に用いれ
ば、バリコンにより容量のみを可変して同調周波数を調
節していた従来に比べ、同調周波数の可変範囲を飛躍的
に拡大することができる。
Therefore, by appropriately adjusting the distance or degree of overlap between the ring and the transmitting/receiving coil 1 as described above, the inductance exhibited by the transmitting/receiving coil 1 can be adjusted.
If such a transmitting/receiving coil is used in the circuit shown in FIG. 3, for example, the range of tuning frequency can be dramatically expanded compared to the conventional method in which the tuning frequency is adjusted by varying only the capacitance using a variable capacitor.

また、コンデンサの容量をQの高い範囲(比較的小官f
f1)にとり、且つ送受信コイルのインダクタンスを小
さくしてrt451周波数を高めることが可能であり、
周波数の高い領域においても同調回路のQを高めること
が可能となる。
In addition, the capacitance of the capacitor should be set in a high Q range (relatively small
f1), and it is possible to increase the rt451 frequency by reducing the inductance of the transmitting and receiving coils,
It becomes possible to increase the Q of the tuned circuit even in a high frequency region.

更にまた、第4図の回路に第1図の送受信コイルを用い
れば、外部コイルLOを省略することが可能で、該コイ
ルloによるQの低下の問題を解決できる。
Furthermore, if the transmitter/receiver coil shown in FIG. 1 is used in the circuit shown in FIG. 4, it is possible to omit the external coil LO, and the problem of Q reduction due to the coil LO can be solved.

このように本発明によれば同調周波数可変の面で大きな
効果が得られるが、リングの移動により静磁場の均一度
が乱されるようでは、分解能の低下という大きな代償を
払わねばならない。その点、本発明においては、2つの
リングを送受信コイルを挟んで(厳密にはX−Y平面を
挟んで)対称に配置し、しかも対称に移動するようにし
たため、静磁場に与える乱れが2つのリングでキャンセ
ルされるかたちとなり、均一度の低下を最小限に抑える
ことができる。
As described above, according to the present invention, a great effect can be obtained in terms of tuning frequency variation, but if the uniformity of the static magnetic field is disturbed by the movement of the ring, a large price must be paid in terms of a decrease in resolution. In this regard, in the present invention, the two rings are arranged symmetrically across the transmitter/receiver coil (strictly speaking, across the X-Y plane) and move symmetrically, so that the disturbance imparted to the static magnetic field is reduced to 2. The two rings cancel each other out, and the reduction in uniformity can be minimized.

尚、上記実施例では観測系の送受信コイルに本発明を適
用したが、照射系のデカップリング用コイルにも適用で
きることは言うまでもない。
In the above embodiments, the present invention is applied to the transmitter/receiver coil of the observation system, but it goes without saying that it can also be applied to the decoupling coil of the irradiation system.

ネジ棒の回転量を指示するような目盛あるいは計器を設
ければ、同調周波数の読取りや観測核の設定の際に操作
が容易になり、実用的である。
Providing a scale or a meter to indicate the amount of rotation of the threaded rod will make operations easier and more practical when reading the tuned frequency and setting the observation nucleus.

[発明の効果J 以上訂述した如く、本発明によれば、静磁場の均一度を
乱すことなくコイルのインダクタンスを可変できるNM
Rプローブが実現される。
[Effect of the invention J As described above, according to the present invention, the inductance of the coil can be varied without disturbing the uniformity of the static magnetic field.
An R probe is implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施したNMRプローブの要部を示す
図、第2図はそれをX−Y平面で切った断面図、第3図
及び第4図は従来の送受信回路を説明するための図であ
る。 1:送受信コイル  2:コイルボビン3.4:導体リ
ング 5.6:固定子 7.8:ナツト   9ニブロ一ブ基台10:ネジ棒 
   11ニガイド棒 12:ツマミ
Fig. 1 is a diagram showing the main parts of an NMR probe embodying the present invention, Fig. 2 is a cross-sectional view taken along the X-Y plane, and Figs. 3 and 4 are for explaining the conventional transmitting/receiving circuit. This is a diagram. 1: Transmitting/receiving coil 2: Coil bobbin 3.4: Conductor ring 5.6: Stator 7.8: Nut 9 Nibro One base 10: Threaded rod
11 Guide rod 12: Knob

Claims (1)

【特許請求の範囲】[Claims] 試料が配置される領域の周囲に巻回されるコイルと、該
コイルに近接し且つ該コイルを挟んで略対称に配置され
る1対の導電性部材と、該1対の導電性部材を前記コイ
ルを挟んだ対称関係を保ったまま互いに反対方向へ移動
さ往るための移動機構とを備えたことを特徴とする核磁
気共鳴プローブ。
a coil wound around an area where a sample is placed; a pair of conductive members disposed close to the coil and approximately symmetrically across the coil; A nuclear magnetic resonance probe characterized in that it is equipped with a movement mechanism for moving in opposite directions while maintaining a symmetrical relationship with a coil in between.
JP60040898A 1985-03-01 1985-03-01 Nuclear magnetic resonance probe Pending JPS61200450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040898A JPS61200450A (en) 1985-03-01 1985-03-01 Nuclear magnetic resonance probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040898A JPS61200450A (en) 1985-03-01 1985-03-01 Nuclear magnetic resonance probe

Publications (1)

Publication Number Publication Date
JPS61200450A true JPS61200450A (en) 1986-09-05

Family

ID=12593327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040898A Pending JPS61200450A (en) 1985-03-01 1985-03-01 Nuclear magnetic resonance probe

Country Status (1)

Country Link
JP (1) JPS61200450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439306B1 (en) * 2001-07-20 2004-07-07 전인 Auto tuning apparatus and method of LCR circuit using the variable inductance detection coil for Nuclear Quadrupole Resonance and Nuclear Magnetic Resonance
JP2009041963A (en) * 2007-08-07 2009-02-26 Jeol Ltd Nmr apparatus
US9973167B2 (en) 2015-09-25 2018-05-15 Shenyang Neusoft Medical Systems Co., Ltd. Impedance matching circuit and method for radio frequency transmission coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439306B1 (en) * 2001-07-20 2004-07-07 전인 Auto tuning apparatus and method of LCR circuit using the variable inductance detection coil for Nuclear Quadrupole Resonance and Nuclear Magnetic Resonance
JP2009041963A (en) * 2007-08-07 2009-02-26 Jeol Ltd Nmr apparatus
US9973167B2 (en) 2015-09-25 2018-05-15 Shenyang Neusoft Medical Systems Co., Ltd. Impedance matching circuit and method for radio frequency transmission coil

Similar Documents

Publication Publication Date Title
EP0957368B1 (en) RF coils for magnetic resonance imaging
KR880001528B1 (en) Radio frequency field coil for nmr
US5489847A (en) RF probe for MRI
US6396271B1 (en) Tunable birdcage transmitter coil
US8067938B2 (en) Microcoil NMR detectors
US5173661A (en) Nuclear magnetic resonance spectrometer
JP4155988B2 (en) Birdcage coil and NMR system
Hoult et al. Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers
US5212450A (en) Radio frequency volume resonator for nuclear magnetic resonance
US9274199B2 (en) NMR RF probe coil exhibiting double resonance
JP2001507265A (en) Quadrature elliptical bird cage coil for NMR
JPS61249458A (en) Nuclear spin tomographic apparatus
US5483163A (en) MRI coil using inductively coupled individually tuned elements arranged as free-pivoting components
EP0173363B1 (en) Mr-apparatus having a transmission-measuring coil for high frequencies
JPS6195234A (en) Radiofrequency coil for nuclear magnetic resonance
JP3595339B2 (en) RF coil arrangement for magnetic resonance equipment
EP1071964A1 (en) Magnetic gradient field projection
US4748412A (en) High-frequency coil for nuclear magnetic resonator
JPS61200450A (en) Nuclear magnetic resonance probe
US6175237B1 (en) Center-fed paralleled coils for MRI
JP5390537B2 (en) Differential tuning of quadrature mode of magnetic resonance coil
US4734645A (en) NMR magnetometer probe with a tuneable cavity in its center and a double central cylindrical member
JP2953745B2 (en) High frequency probe for magnetic resonance equipment
Flokstra et al. Two high-frequency mutual inductance bridges with high resolution
JP3100642B2 (en) Magnetic resonance imaging equipment