JPS61199466A - Temperature compensation system for switching power source - Google Patents

Temperature compensation system for switching power source

Info

Publication number
JPS61199466A
JPS61199466A JP3947985A JP3947985A JPS61199466A JP S61199466 A JPS61199466 A JP S61199466A JP 3947985 A JP3947985 A JP 3947985A JP 3947985 A JP3947985 A JP 3947985A JP S61199466 A JPS61199466 A JP S61199466A
Authority
JP
Japan
Prior art keywords
voltage
output
switching power
comparator
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3947985A
Other languages
Japanese (ja)
Inventor
Shoichi Kawashima
祥一 川島
Shigeji Yamashita
茂治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP3947985A priority Critical patent/JPS61199466A/en
Publication of JPS61199466A publication Critical patent/JPS61199466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To compensate the variation in the environmental temperature by controlling the duty ratio of a drive pulse constant in response to the temperature change of a storage time of a switching element. CONSTITUTION:A DC voltage is converted by a switching element to pulse, rectified and smoothed to obtain the prescribed output voltage. Thus, the output voltage and a reference voltage are compared by a comparator 9 to obtain an error voltage, which is applied to a comparator 10. The output of a CR oscillator 7 for deciding the oscillating frequency by external resistor 7-1 and a capacitor 7-2 is converted to a triangular wave by a triangular wave generator 8 and applied to the comparator 10. A drive pulse varied in the width corresponding to the error voltage is obtained from the output of the comparator 10. In this case, a posistor having a temperature change corresponding to the temperature change of the storage time of a switching element is used as the resistor 7-1. Thus, even if the environmental temperature varies, the duty can be maintained constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は安定化された直流電源を必要とする電子機器に
使用されるスイッチング電源の温度補償方式の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in the temperature compensation method of a switching power supply used in electronic equipment requiring a stabilized DC power supply.

直流定電圧電源を得る方法としてシリースレギュレータ
、シャントレギュレータ、スイッチングレギュレータ等
が用いられているが、スイッチングレギュレータ(以下
スイ・7チング電源と云う)は他の方法に比べて小型・
軽量で75〜80%もの高い変換効率を有する等の特徴
を有するので広く使用されている。
Series regulators, shunt regulators, switching regulators, etc. are used to obtain DC constant voltage power supplies, but switching regulators (hereinafter referred to as switching power supplies) are smaller and smaller than other methods.
It is widely used because it is lightweight and has a high conversion efficiency of 75 to 80%.

近年は、例えば200〜400vも変動する直流入力電
圧を一定の直流出力電圧に変換する電源にも使用されて
いるが、この様に入力変動が大きくなると3周囲の温度
変化の影響を受けて一定の出力電圧を得る事が難しくな
る。
In recent years, it has also been used as a power supply to convert DC input voltage, which fluctuates by 200 to 400V, into a constant DC output voltage. It becomes difficult to obtain an output voltage of

そこで、周囲温度が変化しても一定の出力電圧が得られ
るスイッチング電源用温度補償方式が要望されている。
Therefore, there is a need for a temperature compensation system for switching power supplies that can provide a constant output voltage even when the ambient temperature changes.

〔従来の技術〕[Conventional technology]

一般に、スイッチング電源は入力された直流電圧をパル
スに変換する際、フォワード方式又はブリッジ方式の何
れかを使用している。
In general, switching power supplies use either a forward method or a bridge method when converting input DC voltage into pulses.

第3図はフォワード一方式を用いるスイッチング電源の
ブロック図を、第4図は第3図の動作図を示す。
FIG. 3 shows a block diagram of a switching power supply using a forward type, and FIG. 4 shows an operation diagram of FIG. 3.

□第3図において、入力された商用交流電圧は整流・平
滑部]で整流・平滑され直流電圧に変換される。この直
流電圧は直流・パルス変換部2でスイッチング動作をし
ているトランジスタ2−2によりパルスに変換された後
、トランス2−1.整流・平滑部3を介して直流出力電
圧が外部に送出される。
□ In Fig. 3, the input commercial AC voltage is rectified and smoothed by the rectifier/smoothing section and converted into a DC voltage. This DC voltage is converted into a pulse by a transistor 2-2 performing a switching operation in a DC/pulse converter 2, and then converted into a pulse by a transistor 2-1. The DC output voltage is sent to the outside via the rectifier/smoothing section 3.

一方、直流出力電圧の一部は制御回路4−1で基準電圧
と比較されて誤差電圧が取出され、この誤−スに加えら
れる。そこで、誤差電圧が0になる様にトランジスタ2
−1のスイッチング動作が制御される。
On the other hand, a part of the DC output voltage is compared with a reference voltage in the control circuit 4-1, and an error voltage is taken out and added to this error voltage. Therefore, transistor 2 is set so that the error voltage becomes 0.
-1 switching operation is controlled.

ここで、トランス2−1の電圧は第4図に示す様に変化
する。即ち、トランジスタ2−2がオンの時(時間To
n )にトランス2−1にエネルギーが貯えられ、オフ
の時(時間Tof f )に貯えられたエネルギーを全
部放出しなiJればならないので、Ton≦%・Tにし
なければならない。尚、Tば周期を示ず。
Here, the voltage of the transformer 2-1 changes as shown in FIG. That is, when the transistor 2-2 is on (time To
Since energy is stored in the transformer 2-1 during the time (time Toff) and all of the stored energy must be released when the transformer is turned off (time Toff), Ton≦%·T must be satisfied. Note that T does not indicate the period.

そこで、TonがO−%・Tの近くまで制御できる様に
しておけば、制御範囲が広がり大きな変動を持つ直流入
力電圧に対しても一定の直流出力電圧が得られる様にな
る。
Therefore, if it is possible to control Ton close to O-%.T, the control range will be expanded and a constant DC output voltage can be obtained even for DC input voltages that have large fluctuations.

第5図はブリッヂ方式のスイッチング電源の従来例のブ
ロック図を、第6図は第5図の動作図を示す。
FIG. 5 shows a block diagram of a conventional example of a bridge type switching power supply, and FIG. 6 shows an operation diagram of FIG. 5.

第5図において、トランジスタ6−1 と6−4が同時
にオンになり、@流が点線の様に流れる。この時、トラ
ンジスタ6−2と6−3はオフになっている。
In FIG. 5, transistors 6-1 and 6-4 are turned on at the same time, and @ current flows as shown by the dotted line. At this time, transistors 6-2 and 6-3 are off.

次に、トランジスタ6−2と6−3が同時にオンになり
、電流が一点鎖線の様に流れるが、l・ランジスタロー
1 と6−4はオフになっている(第6図参照)。
Next, transistors 6-2 and 6-3 are turned on at the same time, and a current flows as shown by the dash-dotted line, but transistor rows 1 and 6-4 are turned off (see FIG. 6).

そこで、トランス2−1には交流が流れ、これを整流・
平滑部3に送出する。
Therefore, alternating current flows through the transformer 2-1, which is rectified and
Send it to the smoothing section 3.

その後はフォワード方式の場合と同一の動作をする。After that, the operation is the same as in the forward method.

ここで、休止期間Tdは後述の様にトランジスタ6−1
〜6−4の破壊を防く為に必要な期間であるが、この期
間を小さくすればする程、大きな変動を持つ直流入力電
圧に対して直流出力電圧をより一定にする事が出来る。
Here, the rest period Td is the transistor 6-1 as described later.
This period is necessary to prevent the destruction of 6-4, and the shorter this period is, the more constant the DC output voltage can be with respect to the DC input voltage that has large fluctuations.

即ち、何れの方式でもデユーティD=Ton/Tは%に
近い方が制御範囲が広がる。
That is, in either method, the closer the duty D=Ton/T is to %, the wider the control range becomes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ここで、トランジスタのコレクタ電流はベース電流が0
になってもストレージ時間Ts tgの間流れる。しか
も、この時間は周囲温度の変化に対応して変化するので
Tonは周囲温度に対応して変化する。しかし、周期T
は周囲温度に無関係になる様に設定されているので、D
の値は周囲温度により変化する。
Here, the collector current of the transistor is such that the base current is 0.
It continues for the storage time Ts tg even if it becomes. Moreover, since this time changes in response to changes in ambient temperature, Ton changes in response to ambient temperature. However, the period T
is set to be independent of the ambient temperature, so D
The value of varies depending on the ambient temperature.

今、D>%になったとすると、 フォワード方式の場合、トランス2−1に貯えられたエ
ネルギーが全部放出されないうちに、再びエネルギが貯
えられるので、これが累積されてトランジスタ2−2に
過大電流が流れ、このトランジスタが破壊される。
Now, if D>%, in the case of the forward method, the energy stored in the transformer 2-1 is stored again before it is completely released, so this accumulates and causes an excessive current in the transistor 2-2. current and destroys this transistor.

ブリッジ方式の場合、休止時間Tdが無くなって両方の
トランジスタ6−1.6−2及び6−3.6−4がオン
になるので、大きな短絡電流が流れこれらのトランジス
タは破壊する。
In the case of the bridge method, since the rest time Td disappears and both transistors 6-1.6-2 and 6-3.6-4 are turned on, a large short-circuit current flows and these transistors are destroyed.

従って、ストレージ時間Ts tgの温度変化も含めて
05%になる様にしなければならないので、T。
Therefore, it is necessary to make the storage time Ts 05% including the temperature change of Ts tg.

nを%・Tに、 Tdを0に近づけることは困難となり
、変動の大きな直流入力電圧に対して出力電圧を一定に
する事が難しいと云う問題点が生ずる。
It becomes difficult to bring n close to %·T and Td close to 0, resulting in the problem that it is difficult to keep the output voltage constant against a DC input voltage that fluctuates greatly.

C問題点を解決するだめの手段〕 上記の問題点は、スイッチング素子のストレージ時間の
温度変化に対応して駆動パルスのデユーティ社が一定に
なる様に駆動パルスの周期を制御する様にした本発明の
スイッチング電源用温度補償方式により解決する。
[Means to Solve Problem C] The above problem can be solved by using a book that controls the period of the drive pulse so that the duty cycle of the drive pulse remains constant in response to temperature changes during the storage time of the switching element. This problem is solved by the temperature compensation method for switching power supplies of the invention.

〔作用〕 本発明はスイッチング動作の周期を、このスイノヂング
素子のストレージ時間の温度変化に対応して変化させる
様にした。即ち、周囲温度の変化を考慮したDは(To
n −1−ΔTon ) /Tとなる。
[Function] According to the present invention, the period of the switching operation is changed in accordance with the temperature change of the storage time of the switching element. In other words, D considering changes in ambient temperature is (To
n −1−ΔTon ) /T.

ここで、Ton は例えば周囲温度20°Cのときのス
イッチングトランジスタのコレクタ電流の流れる時間、
ΔTonは周囲温度が20°Cより変化した事によって
生したストレージ時間Ts tgの変化分の時間、Tは
周期である。
Here, Ton is, for example, the time during which the collector current of the switching transistor flows when the ambient temperature is 20°C.
ΔTon is the time corresponding to the change in storage time Tstg caused by the ambient temperature changing from 20°C, and T is the period.

今、ΔTonがOよりも大きいと、Dの値は20°Cの
時の値よりも大きなって50%を越える可能性が生ずる
ので、TをΔTonに対応してΔT変化させる。これに
より、Dは温度に無関係にほぼ一定にできる。
Now, if ΔTon is larger than O, there is a possibility that the value of D is larger than the value at 20° C. and exceeds 50%, so T is changed by ΔT in accordance with ΔTon. Thereby, D can be kept almost constant regardless of temperature.

この為、周囲温度が変化しても直流出力電圧を一定にす
る事ができる。
Therefore, the DC output voltage can be kept constant even if the ambient temperature changes.

〔実施例〕〔Example〕

以下図示実施例により、本発明を具体的に説明する。面
、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically explained below with reference to illustrated examples. The same reference numerals indicate the same objects throughout the drawings.

上記の周期Tは制1ff1回路4−1に含まれる例えば
CR発振器の発振周波数によって決まる。そこで、この
発振周波数をストレージ時間に対応して制御する様にし
た。
The above period T is determined by the oscillation frequency of, for example, a CR oscillator included in the control 1ff1 circuit 4-1. Therefore, this oscillation frequency was controlled in accordance with the storage time.

第1図は本発明の一実施例のブロック図を、第2図は第
1図の動作波形図を示す。
FIG. 1 shows a block diagram of an embodiment of the present invention, and FIG. 2 shows an operation waveform diagram of FIG. 1.

面、第1図の部分は第3図の制御部4に含まれる。The portion shown in FIG. 1 is included in the control section 4 shown in FIG.

図において、外付けの抵抗器7−1 とコンデンサ7−
2の値によって発振周波数が決まるCP発振器7の出力
は、三角波発生部8で三角波に変換された後、比較器I
Oに加えられる。
In the figure, external resistor 7-1 and capacitor 7-
The output of the CP oscillator 7, whose oscillation frequency is determined by the value of
Added to O.

一方、スイッチング電源の直流出力電圧の一部は比較器
9で基準電圧と比較されて誤差電圧が得られ、同しく比
較器10に加えられる。
On the other hand, a part of the DC output voltage of the switching power supply is compared with a reference voltage by a comparator 9 to obtain an error voltage, which is also applied to a comparator 10.

そこで比較器10の出力に誤差電圧に対応して幅の変化
した駆動パルスが得られる(第2図−■。
Therefore, a drive pulse whose width changes in accordance with the error voltage is obtained at the output of the comparator 10 (Fig. 2-2).

■参照)。■Reference).

今、例えば抵抗器7−1 としてΔTonの変化と同じ
温度変化を有するポジスタを用いる事により、周囲温度
の変化に対応して点線の様に三角波の周期を変化させ、
パルスの周2!IlTをT+ΔTに変化させる事ができ
る。
Now, for example, by using a POSISTOR that has the same temperature change as the change in ΔTon as the resistor 7-1, the period of the triangular wave can be changed as shown by the dotted line in response to the change in ambient temperature.
Pulse cycle 2! It is possible to change IIT to T+ΔT.

そごで、周囲温度が変化してもDを一定の値にする事が
できた(第2図−■参照)。
As a result, we were able to keep D at a constant value even if the ambient temperature changed (see Figure 2-■).

〔発明の効果〕〔Effect of the invention〕

上記で詳細に説明した様に、周囲温度の変化を補償しζ
常にDの値を2近くに保つ事ができるので、変動の大き
な直流入力電圧に対して直流出力電圧をより一定にする
事ができると云う効果がある。
As explained in detail above, it compensates for changes in ambient temperature and ζ
Since the value of D can always be kept close to 2, there is an effect that the DC output voltage can be made more constant even with the DC input voltage having large fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は第1
図の動作波形図、 第3図はスイッチング電源の従来例のブロック図、第4
図は第3図の動作図、 第5図は別のスイッチング電源の従来例のブロック図、 第6図は第5図の動作図、 図において、 7はCR発振器、 8は三角波発生部、 9.10は比較器を示す。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
Figure 3 is a block diagram of a conventional switching power supply; Figure 4 is a block diagram of a conventional example of a switching power supply;
The figure shows the operation diagram of Figure 3, Figure 5 is a block diagram of another conventional example of a switching power supply, and Figure 6 is the operation diagram of Figure 5. In the figure, 7 is a CR oscillator, 8 is a triangular wave generator, 9 .10 indicates a comparator.

Claims (1)

【特許請求の範囲】[Claims] 入力した直流電圧をスイッチング素子によりパルスに変
換する直流・パルス変換部と、該直流・パルス変換部の
出力を整流し、平滑して直流電圧に変換する整流・平滑
部と、該直流・平滑部の出力の一部と基準電圧とを比較
して得られた誤差電圧に対応する幅の駆動パルスを発生
させて該スイッチング素子に加える制御部とから構成さ
れたスイッチング電源において、該スイッチング素子の
ストレージ時間の温度変化に対応して該駆動パルスのデ
ュティ比が一定になる様に該駆動パルスの周期Tを制御
する様にした事を特徴とするスイッチング電源用温度補
償方式。
a DC/pulse converter that converts input DC voltage into pulses using a switching element; a rectifier/smoothing unit that rectifies and smoothes the output of the DC/pulse converter to convert it into DC voltage; and a DC/smoother A switching power supply comprising a control unit that generates a drive pulse with a width corresponding to an error voltage obtained by comparing a part of the output of the output with a reference voltage and applies it to the switching element. A temperature compensation system for a switching power supply, characterized in that the period T of the drive pulse is controlled so that the duty ratio of the drive pulse becomes constant in response to temperature changes over time.
JP3947985A 1985-02-28 1985-02-28 Temperature compensation system for switching power source Pending JPS61199466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3947985A JPS61199466A (en) 1985-02-28 1985-02-28 Temperature compensation system for switching power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3947985A JPS61199466A (en) 1985-02-28 1985-02-28 Temperature compensation system for switching power source

Publications (1)

Publication Number Publication Date
JPS61199466A true JPS61199466A (en) 1986-09-03

Family

ID=12554199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3947985A Pending JPS61199466A (en) 1985-02-28 1985-02-28 Temperature compensation system for switching power source

Country Status (1)

Country Link
JP (1) JPS61199466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274369A (en) * 1987-04-30 1988-11-11 Tokin Corp Dc-dc converter
EP0483852A2 (en) * 1990-10-31 1992-05-06 Kabushiki Kaisha Toshiba Power source circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274369A (en) * 1987-04-30 1988-11-11 Tokin Corp Dc-dc converter
EP0483852A2 (en) * 1990-10-31 1992-05-06 Kabushiki Kaisha Toshiba Power source circuit
US5408401A (en) * 1990-10-31 1995-04-18 Kabushiki Kaisha Toshiba Power source circuit with a compact size and operating efficiently at low temperature

Similar Documents

Publication Publication Date Title
US6101104A (en) Predictive threshold synchronous rectifier control
JP3947682B2 (en) Switching power supply circuit
US5264782A (en) Dropout recovery circuit
US20030026115A1 (en) Switching-type DC-DC converter
US4502104A (en) Bootstrapped AC-DC power converter
JPH11178327A (en) Switching type direct current power device
JP5038841B2 (en) Switching power supply
JP2002252971A (en) Switching power unit
JP4339129B2 (en) Switch mode power supply
JPH11235023A (en) Switching regulator
JPS61199466A (en) Temperature compensation system for switching power source
US6215255B1 (en) Electric ballast system
JPH08294282A (en) Voltage booster power factor improving circuit
JPH1127934A (en) Power supply equipment
JPH10127046A (en) Control circuit for step-up converter
JP2976638B2 (en) Switching power supply
JP2000197351A (en) Power supply having improved power factor
JP3545376B2 (en) AC-DC converter
JPS5930032B2 (en) Constant voltage control method
JP2000148256A (en) Power converting device
JPH0686539A (en) Converter circuit
JP2001112257A (en) Power supply unit
JP2617911B2 (en) Ringing Chiyoke Converter
JP2005143197A (en) Time ratio control method and circuit of pwm signal, and dc-dc converter
JPH0729746Y2 (en) Multi-output stabilized power supply