JPS6119923A - Ignition device in internal-combustion engine - Google Patents

Ignition device in internal-combustion engine

Info

Publication number
JPS6119923A
JPS6119923A JP14048984A JP14048984A JPS6119923A JP S6119923 A JPS6119923 A JP S6119923A JP 14048984 A JP14048984 A JP 14048984A JP 14048984 A JP14048984 A JP 14048984A JP S6119923 A JPS6119923 A JP S6119923A
Authority
JP
Japan
Prior art keywords
spark
ignition
fuel
atomized fuel
gaps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14048984A
Other languages
Japanese (ja)
Inventor
Minoru Imashiro
今城 実
Yasunori Iwakiri
保憲 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14048984A priority Critical patent/JPS6119923A/en
Publication of JPS6119923A publication Critical patent/JPS6119923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/006Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Spark Plugs (AREA)

Abstract

PURPOSE:To spark a spark gap which has much chances to come into contact with atomized fuel which is formed at a shifted injecting position, by arranging a plurality of ignition electrodes in the peripheral section of a space through which atomized fuel stream from a fuel injection device passes, circumferentially with respect to the axial direction of the atomized fuel stream, and by arranging spark gaps formed by the electrodes in parallel with each other. CONSTITUTION:An atomized fuel stream injected from a jet port in a fuel injection valve reaches a through-hole 4, and is evaporated successively from liquid drops. The thus evaporated fuel is mixed with air introduced from the outer peripheral edge of the atomized fuel stream to form a burnable mixture while the evaporated fuel passes through spark gaps 23 formed between high voltage side electrodes 11 and grounded electrodes 13 and moves toward a vortex chamber. One of spark gaps 23 which is easiest to spark, generates a spark while the other spark gaps 23 do not spark since the spark gaps 23 establish the indefinte number of paralle gaps, equivalent to a high ignition voltage supply section 12. Accordingly, even if the position of the atomized fuel stream is shifted, natural spark is effect at a spark gap 23 which has a maximum possibility to come into contact with this atomized fuel, so that a spark initiation demand voltage may be made lower.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は一般に内燃機関の点火装置に関し、より詳しく
は燃料噴射装置を備えた内燃機関の点火装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention generally relates to an ignition system for an internal combustion engine, and more particularly to an ignition system for an internal combustion engine equipped with a fuel injection device.

[従来技術及びその問題点コ 内燃機関、特にディーゼル機関のごとき燃焼室に噴射し
た燃料を圧縮着火する機関であっても、例えば冷間時の
着火性を改善する意図から点火栓を設けて燃料噴射に同
期して点火するようにした装置が公表されている(小松
技報、昭和56年4月25日発行)。
[Prior art and its problems] Even in internal combustion engines, especially diesel engines, which compress and ignite the fuel injected into the combustion chamber, spark plugs are provided with the intention of improving ignition performance when the fuel is cold. A device that ignites in synchronization with injection has been published (Komatsu Giho, published April 25, 1980).

第2図は上述した点火′IN置を図示したもので、該装
置は点火栓113の点火位置が燃料噴射弁101の噴口
103から遠く離れて設けられており、放電部105は
1箇所からしか火花が飛ばない所謂1点着火力式を採用
している。そのため、燃料噴霧が点火位置に到達する間
にかなりの燃料が噴射されてしまうので、燃焼状態どし
ては噴射される燃料が順次燃えてい(層状的な燃焼とい
うよりも、空気と予混合された燃料が時間遅れをもって
、−気に燃焼するという予混合燃焼の割合が増し、特に
回転数の低いアイドル時などにディーゼルノックが発生
しやすくなるという不具合が生じた。
FIG. 2 shows the above-mentioned ignition 'IN' position. In this device, the ignition position of the ignition plug 113 is provided far away from the nozzle 103 of the fuel injection valve 101, and the discharge part 105 is only emitted from one location. It uses a so-called one-point ignition power type that does not produce sparks. Therefore, a considerable amount of fuel is injected while the fuel spray reaches the ignition position, so the combustion state is that the injected fuel is burned sequentially (rather than stratified combustion, it is premixed with air). The ratio of premixed combustion, in which fuel is combusted with a time delay, increases, resulting in a problem in which diesel knock is more likely to occur, especially when idling at low engine speeds.

そこでこのような不具合を改善するものとして新たな提
案が行なわれたく実願昭58−172゜080号)。該
提案の概要は以下のようである。
Therefore, a new proposal has been made to improve this problem (Utility Application No. 172゜080/1980). The outline of the proposal is as follows.

即ち渦流室に臨ませた燃料噴射弁の噴出口の先端近傍の
周辺部に点火高電圧が印加される点火′M極と複数の放
電中間電極と接地電極とを周方向に等間隔に配設すると
ともに、各々の電極が形成する間隙(即ちギャップ〉を
所定幅に設定して放電間隙(放電ギャップ)としこれら
ギャップをシリーズギャップに構成したものである(所
謂多点”着火方式)。
That is, an ignition M pole to which a high ignition voltage is applied, a plurality of discharge intermediate electrodes, and a ground electrode are arranged at equal intervals in the circumferential direction around the vicinity of the tip of the fuel injection valve's jet port facing the swirl chamber. At the same time, the gap formed by each electrode (that is, the gap) is set to a predetermined width to form a discharge gap (discharge gap), and these gaps are configured as a series gap (so-called multi-point ignition method).

しかしながら上述のごとき構成において、各々の電極が
形成する点火ギャップがシリーズギャップに構成されて
いるため、放電開始に際して必要とされる電圧は、前記
各々の点火ギVツブにかかる要求電圧の総和となるので
、高電圧が要求される。したがって要求電圧が低く最も
着火しやすい最適噴霧状態の箇所に着火するに際しても
必要以上に高い電圧をかけることとなる。又前記中間電
極でのh交電を確保するため前記点火電極と接地電極と
の間隔を所定値以上とる必要があるので、電極を燃料噴
霧の外縁部に全周的に均等配置することはできない。そ
のため機関の運転条件の変化や燃料噴射弁の劣化等によ
り燃料の噴射位置がズしたすして最も着火しやすい最適
噴霧状態の箇所が電極の配設間隔の比較的大きい部分に
移動したような場合には、噴霧燃料と点火火花の接触機
会が減少するので着火が不安定になるというおイれbあ
った。
However, in the above configuration, since the ignition gap formed by each electrode is configured as a series gap, the voltage required to start discharge is the sum of the required voltages applied to each of the ignition gear V-tubes. Therefore, high voltage is required. Therefore, even when igniting a location in an optimal spray state where the required voltage is low and ignition is most likely to occur, an unnecessarily high voltage is applied. In addition, in order to ensure h-current exchange at the intermediate electrode, it is necessary to maintain a distance between the ignition electrode and the ground electrode at a predetermined value or more, so it is not possible to arrange the electrodes evenly around the outer edge of the fuel spray. . Therefore, if the fuel injection position shifts due to changes in engine operating conditions or deterioration of the fuel injection valve, the location where the optimal spray condition is most likely to ignite has moved to a part where the electrode spacing is relatively large. However, there was a problem that ignition became unstable because the chances of contact between the atomized fuel and the ignition spark decreased.

[目的] 従って本発明は従来の技術の上記に鑑みてなされたもの
で、その目的は、点火ギャップの構造が簡単で点火プラ
グにかかる要求電圧が低電圧C−汎み、機関の運転条件
の変化や燃料噴射弁の劣化等によって燃料の噴射位置が
ズしても噴′a燃料どの接触機会の最も多い箇所で火花
放電を発生させることができる安定した着火が可能な内
燃機関の点火装置を提供することにある。
[Purpose] Therefore, the present invention has been made in view of the above-mentioned problems of the prior art.The purpose of the present invention is to simplify the structure of the ignition gap so that the required voltage applied to the spark plug is low and consistent with the operating conditions of the engine. The ignition system for internal combustion engines is capable of stable ignition, which can generate spark discharge at the point where there is the most contact with the injected fuel even if the injection position of the fuel shifts due to changes in the fuel injection valve or deterioration of the fuel injection valve. It is about providing.

[構成] 上記目的を達成するための本発明の特徴は、燃料噴射装
置を備えた内燃機関において、該燃料噴射装置から噴射
された噴霧流の通過空間の周辺部に、電源側電極と接地
側電極とが対向づる点火用電極を噴霧流の軸方向に対し
て周方向に配設し、前記対向する電極部が形成する点火
ギャップは甲i1に月つ連続的に構成してなるごとき内
燃機関の点火装置にある。
[Configuration] A feature of the present invention for achieving the above object is that, in an internal combustion engine equipped with a fuel injection device, a power supply side electrode and a ground side electrode are provided at the periphery of a space through which a spray stream injected from the fuel injection device passes. An internal combustion engine in which ignition electrodes facing the electrodes are disposed circumferentially with respect to the axial direction of the spray flow, and the ignition gap formed by the facing electrode portions is continuously configured as shown in FIG. in the ignition system.

[作用コ 上記のごどさ構成において、給電された点火高電1tE
 Lユ最り″4火し9づい最適噴霧状態(即ち理論空燃
比に近い状態)にある混合気が点火ギャップに到達した
箇所において火花放電を起こすので、放電開始に際して
の要求電圧が低くて済み着火の安定性を図ることができ
る。
[Action] In the above configuration, the supplied ignition high current 1tE
Spark discharge occurs at the point where the air-fuel mixture in the optimum spray state (that is, close to the stoichiometric air-fuel ratio) reaches the ignition gap, so the required voltage at the start of discharge is low. It is possible to improve the stability of ignition.

: ノ5/11!! 例] 以下図面により本発明の詳細な説明する。なお第1図、
第3図〜第6図に(bいて参照番号が同省8のt)のは
同一物を示号。
: ノ5/11! ! Example] The present invention will be explained in detail below with reference to the drawings. Furthermore, Figure 1,
In Figures 3 to 6, (b and reference number 8 and t) indicate the same item.

;1)1図、第31¥1、第4図は本発明の第1の実施
iKI lこ従う内燃機関(狛にディーゼル機関等)の
点火装置を示したしのである。
1) Figures 1, 31, and 4 show an ignition system for an internal combustion engine (such as a diesel engine) according to the first embodiment of the present invention.

第1図にa3いて、燃オ′1噴射弁1の渦流蛮7寄り部
分及びハイテンションコード15の点火高電圧供給部1
2寄りの部分は夫々その外周部をホルダ?5(こ1ミー
)て滉I)されている。該ホルダ25はシリンダヘッド
19に取り何りられている。前記燃料噴射弁1の渦流室
7側には、該噴射弁1に近接して放電電極部5が設けら
れており、該放電電極部5はその外周部を断面が略り字
形状を〒し、ぞの端部が前記ホルダ25の端部と接して
いるとともにワッシャ22を有づる金属製の克持δIS
祠21によって支持されている。該金属製の支持部+)
J21も前記シリンダヘッド19に取り付(JられCい
る。
In Fig. 1, a3 shows the part of the fuel oil injection valve 1 near the whirlpool 7 and the ignition high voltage supply part 1 of the high tension cord 15.
Is the outer periphery of each part closer to 2 a holder? 5 (this 1 me) has been done. The holder 25 is attached to the cylinder head 19. A discharge electrode portion 5 is provided on the vortex chamber 7 side of the fuel injection valve 1 in close proximity to the injection valve 1, and the discharge electrode portion 5 has an abbreviated cross section at its outer periphery. , the ends of which are in contact with the ends of the holder 25 and have washers 22.
It is supported by a shrine 21. The metal support part +)
J21 is also attached to the cylinder head 19.

前みd放電電極部5は、燃料a(1用弁1に1.シ+)
られでいる噴出口3の近傍に取り付(りられCおり、該
放電電極部5に隣接して噴孔1(3を介して主燃焼室1
7と連通している渦流¥7が設りられでいる。
The front d discharge electrode part 5 is connected to the fuel a (1.
The main combustion chamber 1 is connected to the main combustion chamber 1 through the nozzle hole 1 (3) adjacent to the discharge electrode part 5.
A vortex stream ¥7 communicating with 7 is provided.

該放電電極部5は、渦流室7の1〕向から兇たll7i
面が第3図のごとき形状を呈し、中央に貫通孔4を形成
してなる絶縁リング9と、前記貫通孔4の外縁部にリン
グ状に形成される高電汀側電極11と、該電極11と対
向しリング状に形成される接地電極13によって構成さ
れている。該貫通孔4には前記噴出口3が臨んでおり、
該貫通孔4は前記噴出口3から1(1用された噴霧流の
通過空間を形成しくいる。前記高電圧側電極と接地電極
13とによ−)(後jホするように平行な点火ギャップ
23が全周にわたって連続的に形成されており、梧点火
ギ鬼・ツブ23(j前配口通孔4に臨んでいる。前記高
電圧側電極11の点火高電圧供給部12には図示しない
点火コイルに接続されいるハイテンシミン」〜1〜15
が接続されでいる。
The discharge electrode section 5 is arranged in a direction 17i of the vortex chamber 7.
An insulating ring 9 whose surface has a shape as shown in FIG. 3 and has a through hole 4 formed in the center, a high voltage side electrode 11 formed in a ring shape at the outer edge of the through hole 4, and the electrode. The ground electrode 13 is formed in a ring shape and faces the ground electrode 11 . The spout 3 faces the through hole 4,
The through hole 4 forms a passage space for the spray flow from the jet nozzle 3 to the high voltage side electrode and the ground electrode 13. A gap 23 is formed continuously over the entire circumference, and faces the front outlet passage hole 4. High tensile strength that is not connected to the ignition coil ~1 ~ 15
is connected.

第3図(,1本発明の第1の実施例に従う内燃機関のL
−+7火装買の要部切断面図、第4図は第3図の■−I
VI!i!断面図を示したものである。
FIG. 3 (,1) L of the internal combustion engine according to the first embodiment of the present invention
Figure 4 is a cross-sectional view of the main parts of -+7 fire equipment, and ■-I in Figure 3.
VI! i! It shows a cross-sectional view.

第3図においC,高電圧側電極11は図のごとく点火高
電圧供給部12に達づる延長部分は直接絶縁リング9に
よって支持され、貫通孔4の外縁811にリング状に形
成される部分は支持部29を介して絶縁リング9によっ
て支持されている。前記接地電極13は高電圧側電極1
1に対向して渦流全7側リング状に設けられており、支
持部14を介して前記貫通孔4の渦流室7側の外縁部に
全周にbたって配設されている金属製支持部材20によ
って支持されている。前記接地電極13は金属製支持部
材20が第4図にて図示qるごとく代面(渦流室7と対
向する面)において全周的に前関金属製支持部月21と
接続しているため、6電0側電極11から点火ギャップ
23を介して受(lk放電電流を支持部材20.21を
介してシリングヘッド19にアースするように構成され
ている。
In FIG. 3C, the extended portion of the high voltage side electrode 11 that reaches the ignition high voltage supply section 12 is directly supported by the insulating ring 9 as shown in the figure, and the ring-shaped portion formed on the outer edge 811 of the through hole 4 is It is supported by the insulating ring 9 via the support part 29. The ground electrode 13 is the high voltage side electrode 1
A metal support member is provided in a ring shape on all 7 sides of the vortex opposite to the vortex 1, and is disposed around the entire circumference at the outer edge of the through hole 4 on the vortex chamber 7 side via the support part 14. Supported by 20. The ground electrode 13 is connected to the front metal support portion 21 on the entire circumference of the metal support member 20 as shown in FIG. 4 (the surface facing the vortex chamber 7). , and is configured to receive (lk discharge current) from the 0-side electrode 11 through the ignition gap 23 and ground it to the shilling head 19 through the support member 20.21.

前記高電圧側電極11と接jlJ電捧13とが形成ケる
点火ギャップ23は、第4図にて図示づるごとき平行な
ギャップを矢印で示1噴霧流の通過空間の軸方向に対し
、全周にねIこっで連続的に形成されている。したがっ
て点火ギャップ23は、前記点火高電圧供給部12に対
して等価的に無数のパラレルギャップが形成されている
ことに41と)!こめ、点火時期に前記点火高電圧供給
部12から与えられる放電電流が上記点火ギ【・ツブ2
3内で最も放電しやすい部分で放電を起こすと他の部分
では放電は起こらないこととなる。
The ignition gap 23 formed by the high-voltage side electrode 11 and the contact point 13 is a parallel gap shown by an arrow in FIG. It is formed continuously with grooves around the circumference. Therefore, the ignition gap 23 is equivalent to innumerable parallel gaps formed with respect to the ignition high voltage supply section 12 (41)! Therefore, the discharge current given from the ignition high voltage supply section 12 at the ignition timing is applied to the ignition gear [・tub 2
If a discharge occurs in the part of 3 where discharge is most likely to occur, no discharge will occur in other parts.

上記構成の作用を以下に説明づる。The operation of the above configuration will be explained below.

燃料噴射弁1の噴出D 3から哨割された噴霧流は適過
孔4に到達する。該噴霧流は順次液滴から蒸発し、噴霧
流の外縁部から巻ぎ込まれた空気と混合して該噴霧流の
外縁部に可燃混合気を形成しながら前記高電圧側型If
i11と接地電極13とが形成する点火ギ11ツブ23
を通過して渦流室7に向って移動を続ける。
The spray flow split from the jet D 3 of the fuel injection valve 1 reaches the through hole 4 . The spray stream sequentially evaporates from the droplets and mixes with air drawn in from the outer edge of the spray stream to form a flammable mixture at the outer edge of the spray stream, while the high voltage side type If
Ignition gear 11 knob 23 formed by i11 and ground electrode 13
and continues moving toward the vortex chamber 7.

一方該l171霧流が点火ギャップ23に接近した時W
]を児t1らって図示しない点火コイル、ハイテンショ
ンコード15を介して点火高電圧供給部12に点火高電
圧が印加される。該供給部12に印加された点火高電圧
は、前述したごとく点火ギャップ23は点火^電圧供給
部12に対して等価的に無数のパラレルギャップが形成
されていることになるために、最も放電しやすい部分に
おいて放電を発生さけ、他の部分においては放電を発生
させることはない。点火ギャップ23の該部分において
放電が発生した後、放電電流は支持部材20゜21を介
してシリンダヘッド19にアースされる。
On the other hand, when the l171 fog stream approaches the ignition gap 23, W
], an ignition high voltage is applied to the ignition high voltage supply section 12 via an ignition coil (not shown) and a high tension cord 15. The ignition high voltage applied to the supply section 12 causes the ignition gap 23 to discharge the most since, as described above, an infinite number of parallel gaps are equivalently formed with respect to the ignition voltage supply section 12. Avoid generating discharge in areas where it is likely to occur, and do not generate discharge in other areas. After a discharge has occurred in that part of the ignition gap 23, the discharge current is grounded to the cylinder head 19 via the support member 20.21.

前記噴霧流は機関の運転状態(例えばi関口転数、機関
にかかる負荷の変動)によって主燃焼室17から噴孔1
6を介して渦流室7へ流入づる空気が惹き起こす旋回流
の影響を交番ノることがあるため、最も着火しやづい最
適噴霧状態にある混合気は上述した点火ギャップ23内
のいずれの部分に向って移動するかは定かでない。しか
しながら最適噴霧状態にある混合気が前記いずれの部分
に移動しても該混合気と最も接触機会の多い部分(・自
然に放電し、該部分で放電が完了づると他のもAずれの
部分にも放電が超きないlこめ、シリーズギャップのも
のよりも低い要求電ハで確実な71火が期待できる。こ
のようにして噴出Ll 3から噴射された噴霧流は、そ
の先端が前記点火ギャップ23に近づくとともに先端部
から4火し、町1次燃焼/〕・拡大していく。上述のご
とく最適wA3状態の鈷1−11が移動しても確実に着
火づるため、例えば噴射ブ「1の劣化によって噴霧流の
位置がズしても該噴霧流と最も接触機会の多い部分で自
然に放電づるために放電開始に際しての要求電圧は低く
て湾むうえ、着火の安定性が損なわれることはない。
The spray stream flows from the main combustion chamber 17 to the nozzle hole 1 depending on the operating condition of the engine (for example, changes in engine speed and load on the engine).
Since the influence of the swirling flow caused by the air flowing into the vortex chamber 7 through the vortex chamber 7 may alternate, the air-fuel mixture in the optimum atomized state where it is most likely to ignite is located at any part within the above-mentioned ignition gap 23. It is unclear whether it will move towards. However, even if the air-fuel mixture in the optimal spray state moves to any of the above-mentioned parts, the part that has the most chance of contact with the air-fuel mixture (a natural discharge occurs, and once the discharge is completed in that part, the other parts will also be shifted to A). Since the discharge does not exceed 1, a reliable 71 fire can be expected with a lower electric power requirement than that of the series gap.In this way, the spray stream injected from the jet L3 has its tip close to the ignition gap. 23, 4 fires start from the tip and expand. As mentioned above, even if the arm 1-11 in the optimum wA3 state moves, it will ignite reliably, so for example, if the injection valve "1" Even if the position of the spray stream shifts due to deterioration of the fuel, the discharge will occur naturally in the areas that have the most contact with the spray stream, so the required voltage to start the discharge is low and unstable, and the stability of ignition is impaired. There isn't.

第1図、第5図、第6図は本発明の第2の実施例に従う
内燃機関(特にディーゼル機関′4)の点火装置を示し
たものである。該実施例と、前記第1の実施例との相違
は、第5図、第6図にて図示づ゛るごとく前記点火ギャ
ップ23の貫通孔4の外縁部、絶縁リング9に接して全
周にわたり点火ギレップ23に発生した沿面放電を案内
するための半<q (4薄膜27が設けた点にある。こ
のように半導体薄膜27を点火ギャップ23に設けて該
点火ギレップ23に発生した沿面放電を所望の箇所まで
案内するので点火ギャップ23に発生した放電電流なに
り有効に活用できる。従って前述した本発明に従う第1
の実施例の構成よりも更に放電開始に際しての要求電圧
を低下せしめることが可能である。
1, 5 and 6 show an ignition system for an internal combustion engine (particularly a diesel engine '4) according to a second embodiment of the present invention. The difference between this embodiment and the first embodiment is that as shown in FIGS. The semiconductor thin film 27 is provided in the ignition gap 23 to guide the creeping discharge generated in the ignition gap 23. Since the discharge current generated in the ignition gap 23 can be effectively utilized, the discharge current generated in the ignition gap 23 can be effectively utilized.
It is possible to further reduce the required voltage at the start of discharge than in the configuration of the embodiment.

以上説明したように本発明に従う上記第1、第2の実施
例によれば、圧縮による空気の温度上背によって燃料噴
射弁から供給された噴霧燃料に着火するものではなく、
点火ギャップが噴霧燃料の外縁部に全周にわたって形成
された放電開始時の要求電圧が低くて済む点火栓による
着火であるため、圧縮比の高いディーげル機関等、^圧
縮比機関でも容易に着火することができる。又、冷間1
1,1の始動性能の向上や圧縮比の低減を図ることがC
き、低セタン価燃料の使用が可能と4rっだ。なJ5上
述した内容はあくまで本発明に従う実施例であって、本
発明に従う点火装置はディーゼル機関に限定されず、例
えば渦流室を幅λたガソリンエンジンや、直接噴射方式
のガソリンエンジンにも適用再設である。
As explained above, according to the first and second embodiments according to the present invention, the atomized fuel supplied from the fuel injection valve is not ignited due to the temperature increase of the air due to compression;
Since the ignition gap is formed all around the outer edge of the atomized fuel and the required voltage at the start of discharge is low, it is ignited by the ignition plug, so it is easy to use even with high compression ratio engines such as Diegel engines. Can be ignited. Also, cold 1
C
According to 4R, it is possible to use low cetane fuel. J5 The above-mentioned contents are merely examples according to the present invention, and the ignition system according to the present invention is not limited to diesel engines, but can also be applied to, for example, gasoline engines with a swirl chamber having a width of λ or direct injection type gasoline engines. It is set up.

[効果コ 以上説明したように本発明によれば、′iUi源側電極
と接地側電極とが対向する点火用電極を噴霧流の軸方向
に対して周方向に配設し、前記対向りる電極部が形成す
る点火ギャップは平行に且つ連続的に連続的に開成して
なることとしたので、点火ギャップの構造が簡単で点火
プラグにかかる要求電圧が低電圧で済み、機関の運転条
件の変化や燃料噴射弁の劣化等により燃料の@射位置が
ズしても前記点火ギVツブにおけるlJ!霧燃料との接
融機会の最も多い箇所で火花放電を発生させることがて
・きるので安定した着火が可能な内燃機関の点火装置を
提供することができる。
[Effects] As explained above, according to the present invention, the ignition electrodes in which the source-side electrode and the ground-side electrode face each other are disposed in the circumferential direction with respect to the axial direction of the spray flow, and the Since the ignition gap formed by the electrode part is opened in parallel and continuously, the structure of the ignition gap is simple, the required voltage applied to the spark plug is low, and it can be adjusted to the operating conditions of the engine. Even if the fuel injection position shifts due to changes or deterioration of the fuel injection valve, lJ! at the ignition gear V knob! Since spark discharge can be generated at a location where there is the greatest chance of fusion with fog fuel, it is possible to provide an ignition device for an internal combustion engine that is capable of stable ignition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1、第2の実施例に従う内燃機関の
点火装置の部分断面−図、第2図は従来技術に従う内燃
機関の点火!4置の一例を示した図、第3図は本発明の
第1の実施例に従う内燃機関の点火装置の要部切断面図
、第4図は第3図のIV −1v線断面図、第5図は本
発明の第2の実施例に従う内燃機関の点火装置の要部切
断面図、第6図は第5図のvi −Vl線断面図である
。 1・・・燃料噴射弁  3・・・噴出口4・・・貫通孔
    5・・・放電電極部9・・・絶縁リング 11・・・高電圧側型Iセ 12・・・点大高置L[供給部 13・・・接地電極 14・・・支持部 1つ・・・シリンダヘッド 20・・・金属製支枯部)A 21・・・金属製支持部材 23・・・点火ギャップ 27・・・半導体薄膜 29・・・支持部 1111図 第2図 11プ     107 第3図 第4因 +I  9  ZU     Ij  ?U第5図
FIG. 1 is a partial sectional view of an ignition system for an internal combustion engine according to the first and second embodiments of the present invention, and FIG. 2 is a partial sectional view of an ignition system for an internal combustion engine according to the prior art! FIG. 3 is a cross-sectional view of essential parts of an ignition system for an internal combustion engine according to the first embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line IV-1v in FIG. 5 is a sectional view of a main part of an ignition system for an internal combustion engine according to a second embodiment of the present invention, and FIG. 6 is a sectional view taken along the line vi-Vl in FIG. 1...Fuel injection valve 3...Ejection port 4...Through hole 5...Discharge electrode part 9...Insulation ring 11...High voltage side type I cell 12...Point large elevation L [Supply part 13...Ground electrode 14...One support part...Cylinder head 20...Metal support part) A 21...Metal support member 23...Ignition gap 27. ... Semiconductor thin film 29... Support part 1111 Figure 2 Figure 11 107 Figure 3 Fourth factor +I 9 ZU Ij ? UFigure 5

Claims (1)

【特許請求の範囲】[Claims] 燃料噴射装置を備えた内燃機関において、該燃料噴射装
置から噴射された噴霧流の通過空間の周辺部に、電源側
電極と接地側電極とが対向する点火用電極を噴霧流の軸
方向に対して周方向に配設し、前記対向する電極部が形
成する点火ギャップは平行に且つ連続的に構成してなる
ことを特徴とする内燃機関の点火装置。
In an internal combustion engine equipped with a fuel injection device, an ignition electrode, in which a power supply side electrode and a ground side electrode face each other, is arranged in the periphery of a space through which a spray stream injected from the fuel injection device passes, with respect to the axial direction of the spray stream. An ignition device for an internal combustion engine, characterized in that the ignition gaps formed by the opposing electrode portions are parallel and continuous.
JP14048984A 1984-07-09 1984-07-09 Ignition device in internal-combustion engine Pending JPS6119923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14048984A JPS6119923A (en) 1984-07-09 1984-07-09 Ignition device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14048984A JPS6119923A (en) 1984-07-09 1984-07-09 Ignition device in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6119923A true JPS6119923A (en) 1986-01-28

Family

ID=15269801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14048984A Pending JPS6119923A (en) 1984-07-09 1984-07-09 Ignition device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6119923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895121A2 (en) * 2006-06-29 2008-03-05 Byoung Pyo Jun Combustion promoting device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895121A2 (en) * 2006-06-29 2008-03-05 Byoung Pyo Jun Combustion promoting device for internal combustion engine
EP1895121A3 (en) * 2006-06-29 2008-05-28 Byoung Pyo Jun Combustion promoting device for internal combustion engine

Similar Documents

Publication Publication Date Title
US7228840B2 (en) Spark ignition device and internal combustion engine with the same
US5522357A (en) Apparatus and method of fuel injection and ignition of internal combustion engine
US6013973A (en) Spark plug having a sub-combustion chamber for use in fuel ignition systems
JPH07174059A (en) High-pressure fuel injector aggregate
US4546740A (en) Ignition source for internal combustion engine
US5170758A (en) Valve-controlled internal combustion engine with air compression
JPH11132135A (en) Operation method of direct injection type gasoline internal combustion engine
WO2018196175A1 (en) Flame-ejecting spark plug, and internal combustion engine and automobile having same
US5915349A (en) Gasoline internal combustion engine
US7021275B2 (en) Igniter for internal combustion engines operating over a wide range of air fuel ratios
EP0224879B1 (en) Combustion chamber of internal combustion engine
US4436068A (en) Ignition system of an internal combustion engine
JP5321431B2 (en) In-cylinder internal combustion engine
US20050241612A1 (en) Two-valve high squish flow i.c. engine
JPH0712037A (en) Method and device for combustion of fuel in internal combustion engine
JP4548363B2 (en) Combustion engine
JPS6119923A (en) Ignition device in internal-combustion engine
JPH02153221A (en) Spark-ignition gas engine
JP2641551B2 (en) Combustion system for internal combustion engine and combustion device
JPS60128975A (en) Igniter for internal-combustion engine
JPH0148377B2 (en)
JPS6119922A (en) Ignition device in internal-combustion engine
CN210326485U (en) Spark plug for internal combustion engine
JPH0614034Y2 (en) Internal combustion engine ignition device
JPS60135662A (en) Ignition device for internal-combustion engine