JPS6119916B2 - - Google Patents

Info

Publication number
JPS6119916B2
JPS6119916B2 JP8046784A JP8046784A JPS6119916B2 JP S6119916 B2 JPS6119916 B2 JP S6119916B2 JP 8046784 A JP8046784 A JP 8046784A JP 8046784 A JP8046784 A JP 8046784A JP S6119916 B2 JPS6119916 B2 JP S6119916B2
Authority
JP
Japan
Prior art keywords
heat exchanger
fins
heat transfer
group
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8046784A
Other languages
Japanese (ja)
Other versions
JPS59210296A (en
Inventor
Makoto Obata
Kosuke Komatsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8046784A priority Critical patent/JPS59210296A/en
Publication of JPS59210296A publication Critical patent/JPS59210296A/en
Publication of JPS6119916B2 publication Critical patent/JPS6119916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 近年、空調機器の低騒音化に伴なつて熱交換器
の前面風速を1m/S以下にする設計傾向が強ま
つておりこのような低風速域における熱交換器の
性能向上が課題となつている。
[Detailed Description of the Invention] In recent years, with the reduction in noise from air conditioners, there has been a growing tendency to design heat exchangers with front wind speeds of 1 m/s or less. Improving performance is an issue.

本発明は上記のような要望にかなう熱交換器の
構成を提示するものであり特に伝熱管後続の死水
域及び冷却時の凝縮水による通風抵抗をフイン形
状によつて減少させ、空気側伝熱面における熱伝
達率の著しい向上を図るものである。
The present invention proposes a structure of a heat exchanger that meets the above-mentioned demands, and in particular reduces the ventilation resistance due to the dead zone following the heat transfer tube and condensed water during cooling by using the fin shape, and improves the heat transfer on the air side. This aims to significantly improve the heat transfer coefficient on the surface.

従来、この種の熱交換器は第1図aに示すよう
に一定間隔で垂直に並べられた平板フイン群1と
このフイン群1に直角に挿入された管群2から構
成され、空気はフイン間を白ぬき矢印方向に流動
して管内流体と熱交換を行なう。そしてフイン1
間の管2まわりの熱流体特性は第1図bに示す様
に管2に白ぬき矢印方向の低風速気流が流動する
場合、管表面のよどみ点からの角度θが±70〜80
゜で流れが剥離し、管後流部に斜視で示す死水域
3が生じ、そのためにこの死水域3での空気側熱
伝達率が著しく低下するので熱交換器としての伝
熱性能が低いといつた欠点を有していた。
Conventionally, this type of heat exchanger is composed of a group of flat plate fins 1 arranged vertically at regular intervals and a group of tubes 2 inserted at right angles to the fin group 1, as shown in Fig. 1a, and air flows through the fins. The fluid flows in the direction of the white arrow between the tubes and exchanges heat with the fluid inside the tube. And Finn 1
As shown in Figure 1b, the thermo-fluid characteristics around the tube 2 in between are as follows: When a low wind speed airflow flows through the tube 2 in the direction of the white arrow, the angle θ from the stagnation point on the tube surface is ±70 to 80.
The flow separates at 30°, creating a dead zone 3 shown in perspective at the trailing end of the pipe.As a result, the air-side heat transfer coefficient in this dead zone 3 decreases significantly, resulting in poor heat transfer performance as a heat exchanger. It had some flaws.

本発明は以上のような問題点を解決したもので
ある。
The present invention solves the above problems.

以下、第2図a,bにより、詳細な説明を行な
う。第2図aは本発明の一実施例を示すフイン付
熱交換器の断面図であり、フイン1に一定間隔で
バアーリングされたフインカラー部1aに伝熱管
2が挿入されており、伝熱管2の周囲のフイン1
には低風速域において、伝熱管2まわりに理想的
な流線の形状を実現すると共に気流の剥離を防止
する波形状整流部4を設け、相隣る段方向の伝熱
管2のそれぞれの中心部を結ぶ線と交差する前記
波形状整流部4に水流出溝5を設けている。第2
図bは第2図aのA−A′線における断面図であ
り、波形状整流部4の形状を示している。
A detailed explanation will be given below with reference to FIGS. 2a and 2b. FIG. 2a is a sectional view of a heat exchanger with fins showing an embodiment of the present invention, in which heat exchanger tubes 2 are inserted into fin collar portions 1a which are barred at regular intervals on the fins 1. Fin 1 around
is provided with a wave-shaped rectifying section 4 that achieves an ideal streamline shape around the heat exchanger tubes 2 and prevents separation of airflow in the low wind speed region, and the center of each heat exchanger tube 2 in the direction of adjacent stages is A water outflow groove 5 is provided in the wave-shaped rectifying section 4 that intersects the line connecting the sections. Second
FIG. 2B is a sectional view taken along the line A-A' in FIG.

そして、フイン1と伝熱管2から構成されるフ
イン付熱交換器に白ぬき矢印方向に気流が流動す
ると、伝熱管2まわりの熱流体特性はつぎの様に
なる。すなわち、伝熱管表面のよどみ点からの角
度θが±70〜80゜で剥離されようとした気流は伝
熱管2の周囲のフイン1にわたつて設けた波形状
整流部4により剥離を防止され伝熱管2表面に沿
つて流動するために伝熱管2後流の死水域3は著
しく減少する。従つて、伝熱管2後流域において
も、伝熱管2と気流の熱交換が十分行えるため
に、熱交換器の伝熱性能が大幅に向上する。
When airflow flows in the direction of the white arrow in the finned heat exchanger composed of the fins 1 and the heat transfer tubes 2, the thermal fluid characteristics around the heat transfer tubes 2 are as follows. In other words, the airflow that attempts to separate when the angle θ from the stagnation point on the heat transfer tube surface is ±70 to 80 degrees is prevented from separation by the wave-shaped rectifying section 4 provided over the fins 1 around the heat transfer tube 2, and the air flow is prevented from being separated. Since the fluid flows along the surface of the heat transfer tube 2, the dead area 3 downstream of the heat transfer tube 2 is significantly reduced. Therefore, even in the downstream region of the heat exchanger tubes 2, sufficient heat exchange between the heat exchanger tubes 2 and the airflow can be performed, so that the heat transfer performance of the heat exchanger is significantly improved.

又、波形状整流部4によつて、伝熱管2表面ま
わりに理想的な流線の形状を実現すると共に、気
流の剥離を防止しているために、気流を乱さずフ
イン1間を通過する気流の圧力損失は小さくでき
る。
In addition, the wave-shaped rectifying section 4 realizes an ideal streamline shape around the surface of the heat transfer tube 2 and prevents separation of the airflow, so that the airflow passes between the fins 1 without disturbing the airflow. Airflow pressure loss can be reduced.

さらに、熱交換器が冷却器として使用された場
合、平面フイン1面上の伝熱管2近傍に生じた凝
縮水は落下し、波形状整流部4の重力方向で、伝
熱管2下側の波形状整流部4に沿つて流れるが、
波形状整流部4は伝熱管2とほぼ同心の略円弧状
であるため、凝縮水は伝熱管2表面のよどみ点か
らの角度θがほゞ90゜の所に向つて流動し、水流
出溝5より流出する。したがつて、冷却器として
使用した場合も、波形状整流部4によつて形成さ
れた気流の流通路は凝縮水によつて閉塞されず、
気流が通過するために、放熱特性と同様に通風抵
抗を増大することなく伝熱性能を大幅に向上でき
る。
Furthermore, when the heat exchanger is used as a cooler, the condensed water generated near the heat exchanger tubes 2 on the surface of the flat fin 1 falls, and the waveforms on the lower side of the heat exchanger tubes 2 fall in the direction of gravity of the wave-shaped rectifier 4. It flows along the shape rectifying section 4,
Since the wave-shaped rectifier 4 has a substantially arc shape that is almost concentric with the heat exchanger tube 2, the condensed water flows toward a place where the angle θ from the stagnation point on the surface of the heat exchanger tube 2 is approximately 90 degrees, and the water flows into the water outflow groove. It flows out from 5. Therefore, even when used as a cooler, the air flow path formed by the wave-shaped rectifier 4 is not blocked by condensed water.
Because airflow passes through it, heat transfer performance can be greatly improved without increasing ventilation resistance, as well as heat dissipation properties.

なお、本実施例では整流部4の断面形状は据歯
形状であるがその他の形状例えば溝形状であつて
も、同等の効果を有することは明らかである。
In this embodiment, the cross-sectional shape of the rectifier 4 is a fixed tooth shape, but it is clear that other shapes, such as a groove shape, will have the same effect.

以上のように本発明は一定間隔で平行に並べら
れたフイン群と、このフイン群に直角に挿入され
た伝熱管2群とから構成され、前記伝熱管2群周
囲の前記フイン1群に気流の剥離を防止する波形
状整流部4を設け、相隣る段方向伝熱管2のそれ
ぞれの中心部を結ぶ線と交差する前記波形状整流
部4に水流出溝5を設けたフイン付熱交換器であ
るから、伝熱管2後流の死水域3を減少させると
共に、伝熱管2表面における気流の剥離を防止
し、気流を乱さず、フイン1間を通過する気流の
圧力損失を小さくできるので熱交換器の伝熱性能
が大幅に向上する。
As described above, the present invention is composed of a group of fins arranged in parallel at regular intervals and two groups of heat exchanger tubes inserted at right angles to the group of fins, and air flows through the first group of fins around the two groups of heat exchanger tubes. A finned heat exchanger is provided with a wave-shaped rectifier 4 to prevent separation of the heat exchanger tubes 2, and a water outflow groove 5 is provided in the wave-shaped rectifier 4 that intersects with a line connecting the centers of adjacent stage heat transfer tubes 2. Since it is a heat exchanger tube 2, it is possible to reduce the dead zone 3 downstream of the heat exchanger tube 2, prevent separation of the airflow on the surface of the heat exchanger tube 2, and reduce the pressure loss of the airflow passing between the fins 1 without disturbing the airflow. The heat transfer performance of the heat exchanger is greatly improved.

又、冷却器として使用した場合も波形状整流部
4によつて形成された気流の流通路は凝縮水に閉
塞されることなく気流が流動するため放熱特性と
同様に通風抵抗を憎大することなく伝熱性能を大
幅に向上させることができる。
Furthermore, when used as a cooler, the airflow passage formed by the wave-shaped rectifier 4 is not blocked by condensed water and the airflow flows, so that the ventilation resistance as well as the heat dissipation characteristics are increased. It is possible to significantly improve heat transfer performance.

さらに、波形状整流部4及び水流出溝5は段方
向にならぶ伝熱管2のそれぞれの中心をむすぶ線
に対し左右対称であるため気流が順、逆どちらの
方向から流動しても同一伝熱性能を維持でき、取
り付け時の誤まりを消去できる等、多大の特徴を
有するものであります。
Furthermore, since the wave-shaped rectifying section 4 and the water outflow groove 5 are symmetrical with respect to the line connecting the centers of the heat transfer tubes 2 arranged in the step direction, the heat transfer is the same regardless of whether the airflow flows from the forward or reverse direction. It has many features such as maintaining performance and eliminating errors during installation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の熱交換器の斜視図、第1図b
はフイン間の管まわりの熱流体特性図、第2図a
は本発明の一実施例を示すフイン付熱交換器の断
面図、第2図bは第2図aのA−A′線における
断面図である。 1……フイン、1a……フインカラー部、2…
…伝熱管、3……死水域、4……波形状整流部、
5……水流出溝。
Figure 1a is a perspective view of a conventional heat exchanger, Figure 1b
is the thermo-fluid characteristic diagram around the pipe between the fins, Figure 2a
2 is a cross-sectional view of a heat exchanger with fins showing an embodiment of the present invention, and FIG. 2b is a cross-sectional view taken along line A-A' in FIG. 2a. 1...Fin, 1a...Fin collar part, 2...
... Heat exchanger tube, 3 ... Dead area, 4 ... Wave shape rectifier,
5...Water outflow groove.

Claims (1)

【特許請求の範囲】[Claims] 1 一定間隔で平行に並べられたフイン群と、こ
のフイン群に直角に挿入され千鳥状に配列された
伝熱管群とから構成され、前記伝熱管群周囲の前
記フイン群に気流の剥離を防止する波形状整流部
を設け、相隣る段方向の伝熱管のそれぞれの中心
部を結ぶ線と交差する前記波形状整流部に水流出
溝を設けたフイン付熱交換器。
1 Consists of a group of fins arranged in parallel at regular intervals and a group of heat transfer tubes inserted at right angles to the group of fins and arranged in a staggered manner, and prevents separation of airflow to the group of fins around the group of heat transfer tubes. A heat exchanger with fins, wherein a wave-shaped rectifying section is provided, and a water outflow groove is provided in the wave-shaped rectifying section that intersects a line connecting the centers of heat exchanger tubes in the direction of adjacent stages.
JP8046784A 1984-04-20 1984-04-20 Heat exchanger with fin Granted JPS59210296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8046784A JPS59210296A (en) 1984-04-20 1984-04-20 Heat exchanger with fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046784A JPS59210296A (en) 1984-04-20 1984-04-20 Heat exchanger with fin

Publications (2)

Publication Number Publication Date
JPS59210296A JPS59210296A (en) 1984-11-28
JPS6119916B2 true JPS6119916B2 (en) 1986-05-20

Family

ID=13719061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046784A Granted JPS59210296A (en) 1984-04-20 1984-04-20 Heat exchanger with fin

Country Status (1)

Country Link
JP (1) JPS59210296A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834339B2 (en) * 1991-02-21 1998-12-09 松下電器産業株式会社 Finned heat exchanger
DE102008011558B4 (en) * 2007-12-12 2010-04-01 GEA MASCHINENKüHLTECHNIK GMBH heat exchangers
FR2940422B1 (en) 2008-12-19 2010-12-03 Gea Batignolles Technologies T HEAT EXCHANGER COMPRISING GROOVED FINNED TUBES
KR101817553B1 (en) * 2014-08-01 2018-02-21 리앙비 왕 Streamline wavy fin for finned tube heat exchanger

Also Published As

Publication number Publication date
JPS59210296A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
KR100220724B1 (en) Heat exchanger for air conditioner
JP2834339B2 (en) Finned heat exchanger
US5170842A (en) Fin-tube type heat exchanger
KR920007299B1 (en) Heat transfer fin
US5611395A (en) Fin for heat exchanger
JPS60194293A (en) Heat exchanger equipped with fin
JPS6119916B2 (en)
JPS58158497A (en) Finned-tube type heat exchanger
JP2624336B2 (en) Finned heat exchanger
JPS58158496A (en) Finned-tube type heat exchanger
JPS59210297A (en) Heat exchanger with fin
JP2003083690A (en) Corrugated fin heat-exchanger
JPH0684876B2 (en) Heat exchanger with fins
JPS5923982Y2 (en) heat exchanger with fins
JPS62147290A (en) Heat exchanger
JPS5923981Y2 (en) Heat exchanger with fins
JPS6342197B2 (en)
JPS616592A (en) Finned heat exchanger
JPS61235693A (en) Finned tube type heat exchanger
JPS6152589A (en) Air-to-air heat exchanger
JPS5923983Y2 (en) Heat exchanger with fins
CN214333492U (en) Reinforced heat exchange fin and finned tube heat exchanger
JPS59210298A (en) Heat exchanger with fin
JPS616591A (en) Finned heat exchanger
JP2730649B2 (en) Heat exchanger