JPS61198456A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPS61198456A
JPS61198456A JP60039050A JP3905085A JPS61198456A JP S61198456 A JPS61198456 A JP S61198456A JP 60039050 A JP60039050 A JP 60039050A JP 3905085 A JP3905085 A JP 3905085A JP S61198456 A JPS61198456 A JP S61198456A
Authority
JP
Japan
Prior art keywords
beam splitter
light
luminous flux
optical
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60039050A
Other languages
Japanese (ja)
Other versions
JPH0690817B2 (en
Inventor
Kiyonobu Endo
遠藤 清伸
Kazuya Matsumoto
和也 松本
Tetsuo Kuwayama
桑山 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60039050A priority Critical patent/JPH0690817B2/en
Publication of JPS61198456A publication Critical patent/JPS61198456A/en
Priority to US08/195,881 priority patent/US5661701A/en
Priority to US08/195,882 priority patent/US5416755A/en
Priority to US08/275,328 priority patent/US5488598A/en
Publication of JPH0690817B2 publication Critical patent/JPH0690817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To attain compact constitution and to simplify optical adjustment by constituting an optical pickup of a means for dividing a luminous flux into two and leading them to difference components of a photodetector and a means for detecting differentially an information signal from output of each component of the photodetector. CONSTITUTION:The luminous flux irradiated from an LD 15 is collimated by a collimator lens 16, reflected in the 1st beam splitter 17 and focused on a recording medium 19 as a minute spot by an objective lens 18. The reflected luminous flux from the recording medium 19 passes again through the objective lens 18, the direction of polarized plane is rotated by 45 deg. through the 1st beam splitter 17 and a 1/4 wavelength plate 23 and the result is made incident on the 2nd beam splitter 20 and separated into two optical fluxes. The 1st split luminous flux 21 is condensed toward a light sensor 24 by a condenser lens 25. The 2nd split luminous flux 26 is reflected in the reflecting section 27 at the bottom of the beam splitter 20 and condensed on the light sensor 24 by the condenser lens 25. Thus, the optical pickup is constituted compactly and the S/N of the signal detection is improved by differential detection.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、磁気的に情報が記録された記録媒〔従来技術
〕 近年、光学的に情報が記録、再生され、しかも書き換え
が可能な所謂光磁気記録媒体や、このような媒体から情
報を再生する光ピツクアップの研究、開発が盛んに行な
われている。上記光磁気記録媒体からの信号再生は、通
常カー効果やファラデイー効果と呼ばれる磁気光学効果
を利用して行なわれる。即ち、媒体に照射された光は、
記録情報に従って偏光面が回転されて反射或いは透過さ
れるが、その回転成分を偏光板等の素子で強度変調に変
換して信号検出を行なうものである。また、この偏光面
の回転角は大略1°前後で、その為、偏光素子を通して
得られる信号成分は微小であり、信号検出の為の光ピツ
クアップには幾つかの工夫がなされている。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a recording medium on which information is recorded magnetically [Prior art] In recent years, so-called magneto-optical recording, in which information is recorded and reproduced optically and is rewritable, has been developed. Research and development of media and optical pickups for reproducing information from such media are actively being conducted. Signal reproduction from the above-mentioned magneto-optical recording medium is usually performed using magneto-optic effects called the Kerr effect or the Faraday effect. In other words, the light irradiated onto the medium is
The plane of polarization is rotated according to the recorded information and reflected or transmitted, and the rotational component is converted into intensity modulation using an element such as a polarizing plate for signal detection. Furthermore, the rotation angle of this plane of polarization is approximately 1°, and therefore the signal component obtained through the polarizing element is minute, and several improvements have been made to light pickup for signal detection.

第8図は、従来の光ピツクアップの構成例を示す概略図
である0図において、半導体レーザ(以下LDと記す)
1から発せられた光束は。
FIG. 8 is a schematic diagram showing an example of the configuration of a conventional optical pickup.
The luminous flux emitted from 1 is.

コリメータレンズ2で平行光束に変換される。The collimator lens 2 converts the light into a parallel beam.

平行光束は、その後ビームスプリッタ−3を通過し対物
レンズ4により、記録媒体5上に大略φ14mの微小ス
ポットに集光される。記録媒体5から反射された光束は
、カー効果及びファラデイー効果により偏光面変調を受
け、再び対物レンズ4を通過し、ビームスプリッタ−3
により入射光束と分離される0分離された光束は、第2
のビームスプリッタ6により一部反射され、レンズ系7
を通し光センサ8に入射する。レンズ系7は周知の方式
、例えば非点収差系、ナイフェツジ系、ツー二−プリズ
ム系で構成されており、記録媒体5と対物レンズ4との
間隔の情報即ちオートフォーカス(以下AFと記す)誤
差信号が光センサーより得られる。
The parallel light flux then passes through the beam splitter 3 and is focused by the objective lens 4 onto a minute spot of approximately φ14 m on the recording medium 5. The light beam reflected from the recording medium 5 undergoes polarization plane modulation due to the Kerr effect and Faraday effect, passes through the objective lens 4 again, and is sent to the beam splitter 3.
The 0-separated luminous flux separated from the incident luminous flux by the second
It is partially reflected by the beam splitter 6 of the lens system 7.
The light enters the optical sensor 8 through the. The lens system 7 is composed of a well-known system, such as an astigmatism system, a Naifetsu system, or a Two-two prism system, and collects information on the distance between the recording medium 5 and the objective lens 4, that is, autofocus (hereinafter referred to as AF) error. A signal is obtained from an optical sensor.

又、これも周知もブツシュ・プル法等で情報トラックと
のズレ、即ち、オートトラッキング(以下ATと記す)
誤差信号が得られる。これらの誤差信号を図示していな
い対物レンズの駆動系(アクチュエータ)にフィードバ
ックして、正確な焦点位置で正確なトラックトレースを
行ない信号の録再を行なう。
Also, this and the well-known method such as push-pull method cause a discrepancy with the information track, that is, auto tracking (hereinafter referred to as AT).
An error signal is obtained. These error signals are fed back to a drive system (actuator) of the objective lens (not shown) to perform accurate track tracing at an accurate focus position and record/reproduce the signals.

第2のビームスプリッタ−6を通過する残りの光束は1
72波長板9を通り、偏光ビームスプリッタ−10にて
2方向2分割される。
The remaining light flux passing through the second beam splitter 6 is 1
The light passes through a 72 wavelength plate 9 and is split into two in two directions by a polarizing beam splitter 10.

1/2波長板9の光学的結晶軸を入射光束の偏光軸に対
し22.5°傾むけて配置すると、偏光ビームスプリッ
タ−10により2分割される光量は等しく、且つ偏光板
をそれぞれの光束に45°、−45°の透過軸を持たせ
て配置したものと等価になる。2分割された光束はそれ
ぞれセンサー集光レンズ11.12にて信号検出用セン
サー13.14に集光する。そして、信号検出用センサ
ー13.14からの電気信号を差分する(差動検出)事
により、記録媒体上の情報の検出が行なえる。
When the optical crystal axis of the 1/2 wavelength plate 9 is inclined by 22.5 degrees with respect to the polarization axis of the incident light beam, the amount of light split into two by the polarizing beam splitter 10 is equal, and the polarizing plate is used to separate each light beam. This is equivalent to having transmission axes of 45° and -45°. The two divided luminous fluxes are each focused on a signal detection sensor 13.14 by a sensor condenser lens 11.12. Information on the recording medium can be detected by subtracting the electrical signals from the signal detection sensors 13 and 14 (differential detection).

この差動検出法の利点を以下に説明する。第9図(A)
、(B)は夫々172波長板9と偏光ビームスプリッタ
−10により分割され、センサー14.13に到達する
信号振幅成分を示す。縦軸を入射光束の偏光方向とする
記録媒体5より反射された光束は、光磁気パターンの軸
の向き(上向き又は下向き)により、その偏光面がθK
又は=θに回転する。1/2波長板9と偏光ビームスプ
リッタ−10の組合せは、透過軸が45°傾けて偏光板
を配置した系と等価であるから、仮想の透過軸(45°
傾いた破線の軸)への投影成分の差S1とS’lが信号
振幅成分となる。θにと一部には、光磁気パターンによ
って時間的に変化する為、信号強度変化は第1O図(A
)、(B)に示すように分割された光束で、それぞれ位
相が180°ずれる。
The advantages of this differential detection method will be explained below. Figure 9 (A)
, (B) show the signal amplitude components that are split by the 172-wave plate 9 and the polarizing beam splitter 10 and reach the sensor 14, 13, respectively. The light beam reflected from the recording medium 5 whose vertical axis is the polarization direction of the incident light beam has a polarization plane of θK depending on the direction of the axis of the magneto-optical pattern (upward or downward).
Or rotate to =θ. The combination of the 1/2 wavelength plate 9 and the polarizing beam splitter 10 is equivalent to a system in which polarizing plates are arranged with the transmission axis tilted at 45°.
The difference between the projection components S1 and S'l on the axis of the tilted broken line becomes the signal amplitude component. θ changes over time due to the magneto-optical pattern, so the signal strength changes are shown in Figure 1O (A
) and (B), the phases of the divided light beams are shifted by 180°.

これらの光信号センサー13.14で受光する。光磁気
信号は、以上の如く位相が反転するが、通常ノイズ成分
(記録媒体からノイズ、LD光のゆらぎノイズ)がこれ
らの信号に乗り、このノイズ成分は同相となる。
The light is received by these optical signal sensors 13 and 14. Although the phases of the magneto-optical signals are reversed as described above, noise components (noise from the recording medium, fluctuation noise of the LD light) are usually superimposed on these signals, and these noise components become in phase.

従って、センサー13.14から得られる信号の差動を
とると信号成分は強め合い、ノイズ成分は減小する。光
学系の配置が正確に行なわれていれば、それぞれのセン
サーから得られる信号成分S1とS’1は等しく、又ノ
イズ振幅も等しいので、信号は2倍となりノイズは零と
なる。このように、第8図に示したような差動検出法は
S/Nの良い信号が検出出来る利点がある。
Therefore, when the signals obtained from the sensors 13 and 14 are differentiated, the signal components strengthen each other and the noise components are reduced. If the optical system is arranged correctly, the signal components S1 and S'1 obtained from each sensor are equal and the noise amplitudes are also equal, so the signal is doubled and the noise is zero. In this way, the differential detection method shown in FIG. 8 has the advantage of being able to detect signals with a good S/N ratio.

しかしながら、上述したような従来の光ピツクアップは
部品が多く、小型化、低コスト化を図る上で不利である
。また、複数の光検出器等を正確に位置決めせねばなら
ず、調整も煩雑であった。
However, the conventional optical pickup as described above has many parts, which is disadvantageous in terms of miniaturization and cost reduction. Furthermore, it is necessary to accurately position a plurality of photodetectors, and adjustment is also complicated.

〔発明の概要〕[Summary of the invention]

本発明の目的は、上述の従来例の欠点を解消し、コンパ
クトに構成出来、また光学調整も簡単な光ピツクアップ
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical pickup which eliminates the above-mentioned drawbacks of the conventional example, can be constructed compactly, and allows easy optical adjustment.

本発明の上記目的は、受光面が複数の部分に分割された
単一の光検出器と、磁気的に情報が記録された記録媒体
からの光束を前記情報に従って逆位相の強度変調を受け
た2光束に分割し、分割された光束を前記光検出器の各
々異なる部分に導く手段と、前記光検出器の各部分の出
力から情報信号を差動検出する手段とから光ピツクアッ
プを構成するこよによって達成される。
The above-mentioned object of the present invention is to provide a single photodetector having a light-receiving surface divided into a plurality of parts, and a light beam from a recording medium on which information is magnetically recorded, which is subjected to intensity modulation of opposite phase according to the information. An optical pickup may be constructed from means for dividing the light beam into two light beams and guiding the divided light beams to different parts of the photodetector, and means for differentially detecting information signals from the outputs of the respective parts of the photodetector. achieved by.

〔実施例〕〔Example〕

第1図に本発明の光ピツクアップの構成例を示す、LD
 15より発せられた光束は、コリメーターレンズ16
にて平行光束となり、第1のビームスプリッタ−17で
反射され、対物レンズ18により記録媒体19上に微少
スポットで集光する。記録媒体19からの反射光束は再
び対物レンズ18を通り、第1のビームスプリッタ−1
7を通過し、l/2波長板23を通過し、その偏光面方
向を45°回転して第2ビームスプリッタ−20に入射
し、2光束に分離される。第2のビームスプリッタ−2
0で反射された第1の分割光束21は、集束レンズ25
にて光センサ−24にむかって集光する。他方の第2の
分割光束26は、ビームスプリッタ−20の底面の反射
部27で反射され集光レンズ25で光センサ−24にむ
かい集光される。
FIG. 1 shows an example of the configuration of the optical pickup of the present invention.
The luminous flux emitted from the collimator lens 16
The light becomes a parallel beam of light, is reflected by the first beam splitter 17, and is focused by the objective lens 18 onto a recording medium 19 as a minute spot. The reflected light flux from the recording medium 19 passes through the objective lens 18 again and passes through the first beam splitter 1.
7, passes through the 1/2 wavelength plate 23, rotates its polarization plane direction by 45 degrees, enters the second beam splitter 20, and is separated into two beams. Second beam splitter-2
The first divided light beam 21 reflected at 0 passes through the focusing lens 25
The light is focused toward the optical sensor 24. The other second divided light beam 26 is reflected by a reflecting portion 27 on the bottom surface of the beam splitter 20 and is focused by a condensing lens 25 toward the optical sensor 24 .

光センサ−24は分割光束21.26が集束レンズ25
にて集光される焦点面より離れた位置に配置される。光
センサ−24は例えば第2図(A)に示すように、その
受光面に12分割された受光部を持っている。
In the optical sensor 24, the divided light beams 21 and 26 are connected to a converging lens 25.
It is placed at a position away from the focal plane where the light is focused. For example, as shown in FIG. 2(A), the optical sensor 24 has a light receiving section divided into 12 on its light receiving surface.

以下第1図の構成でAF、AT誤差信号の検出と情報信
号の差動検出が行なえる原理を説明する。
The principle by which detection of AF and AT error signals and differential detection of information signals can be performed with the configuration shown in FIG. 1 will be explained below.

第3図は、AF倍信号検出原理を示すものである。第1
図におけるAF検出に必要な構成のみを第3図に示した
。記録媒体19が対物レンズ18の焦点面に位置する場
合、光線は実線で黒面から遠ざかった場合、破線で示す
如く光線は集束レンズ25の光軸の手前に集束する0図
示していないが、記録媒体が対物レンズ18の焦点面よ
り近づいた場合、光束は集束レンズ25の光軸を越えて
集束する。従って光センサ−24をF点からずらして配
置した場合、光センサ−24面上では分割されたそれぞ
れの光束の分布が記録媒体の位置によりセンサー面上で
小さくなったり大きくなったりする。
FIG. 3 shows the principle of AF multiplied signal detection. 1st
Only the configuration necessary for AF detection in the figure is shown in FIG. When the recording medium 19 is located at the focal plane of the objective lens 18, the light ray moves away from the black surface as shown by the solid line, and the light ray converges in front of the optical axis of the focusing lens 25 as shown by the broken line. When the recording medium approaches the focal plane of the objective lens 18, the light beam is focused beyond the optical axis of the focusing lens 25. Therefore, when the optical sensor 24 is placed offset from point F, the distribution of each divided light beam on the optical sensor 24 surface becomes smaller or larger depending on the position of the recording medium.

光センサ−24の受光部が第2図(A)の如き12分割
の構成されている場合につき先ず説明する。対物レンズ
18と記録媒体19が合焦の関係にある時の光センサ一
部の光束の部分を図中の斜線部で示す、今、各受光部か
らの出力をそれぞれIA、IB、IC,ID、IE、I
F、IG、IH。
First, a case where the light receiving section of the optical sensor 24 is configured into 12 sections as shown in FIG. 2(A) will be explained. The shaded area in the figure shows the part of the light beam from the optical sensor when the objective lens 18 and the recording medium 19 are in focus.The outputs from each light receiving section are now labeled IA, IB, IC, and ID, respectively. , I.E., I.
F, IG, IH.

II、IJ、IK、IL  とするとAF誤差信号IA
F はIAF= (IA+IB+IE+IF+IG+I
H+IK+IL)−(IC+ID+II+IJ) で得られる。
If II, IJ, IK, IL, then AF error signal IA
F is IAF= (IA+IB+IE+IF+IG+I
H+IK+IL)-(IC+ID+II+IJ).

又、第2図(B)に示す如く同心状の受光部に分割され
た光センサーの場合はそれぞれの出力をIA、IB、I
C,ID、IE、IF、IG、IHとする。
In addition, in the case of an optical sensor divided into concentric light receiving sections as shown in Fig. 2 (B), the respective outputs are IA, IB, and IA.
Let them be C, ID, IE, IF, IG, and IH.

AF誤差信号IAFは IAF = (IA+IB+IE+IF)  (IC+
ID+IG+IH)で得られる。
The AF error signal IAF is IAF = (IA+IB+IE+IF) (IC+
ID+IG+IH).

なお片側の光束に関してのみの演算によってAF誤差信
号は得られる。第2図(A)の例で云えば、IAF=(
IA+IB+IE+IF)−(IC+ID)でも得られ
る。
Note that the AF error signal can be obtained by calculating only the light beam on one side. In the example of Figure 2 (A), IAF=(
It can also be obtained as IA+IB+IE+IF)-(IC+ID).

次にAT倍信号検出原理を説明する。Next, the AT double signal detection principle will be explained.

記録媒体19の記録媒体面近傍は、通常大略1/8波長
の深さの溝が設けられており、この溝をガイドとして信
号の録再を行なう、この溝から反射される光束が再び対
物レンズ18を通って形成するファーフィールドパター
ンは衆知の如く、光スポットと溝との位置関係で変る。
A groove with a depth of approximately 1/8 wavelength is usually provided near the recording medium surface of the recording medium 19. Signals are recorded and reproduced using this groove as a guide, and the light beam reflected from this groove is returned to the objective lens. As is well known, the far field pattern formed through the light beam 18 changes depending on the positional relationship between the light spot and the groove.

第4図にその様子を示す、第4図上部の図は溝と光スポ
ットとの位置関係、下部の図はファーフィールドパター
ンの強度分布を示す。
The situation is shown in FIG. 4. The upper part of FIG. 4 shows the positional relationship between the groove and the light spot, and the lower part shows the intensity distribution of the far field pattern.

従って、第2図(A)の分割センサーの場合T −T’
の方向を溝の走る方向(信号トラック方向)に合わせる
とAT誤差信号IATは、で得られる。
Therefore, in the case of the split sensor shown in FIG. 2(A), T −T'
By matching the direction of the groove to the direction in which the groove runs (signal track direction), the AT error signal IAT is obtained as follows.

又、第2図(B)の分割センサーの場合。Also, in the case of the split sensor shown in Fig. 2 (B).

IAT= (IA+IC+IE+IG) −(IB+I
D+IF+IH)で得られる。
IAT= (IA+IC+IE+IG) -(IB+I
D+IF+IH).

AT倍信号おいても1方のビームのみ受光する受光部の
出力の演算でも誤差信号を得ることが出来る。
Even in the AT multiplied signal, an error signal can be obtained by calculating the output of a light receiving section that receives only one beam.

次に光磁気による情報信号が差動検出出来る理由を示す
Next, the reason why magneto-optical information signals can be differentially detected will be explained.

第1図において、記録媒体19からの反射光は磁気−光
学効果でその偏光面が磁気パターン(磁区の上向き又は
下向き)により θK又は−θに回転して1/2波長板
23に入射する。1/2波長板はその結晶軸をビームス
プリッタ−20の入射面に対し22.5°の角度を持た
せて配置する。ビームスプリッタ−20の透過2反射時
第5図に示す如く透過1反射光束はそれぞれ位相が反転
した信号として光センサーにて検出出来る。
In FIG. 1, the reflected light from the recording medium 19 enters the half-wave plate 23 with its polarization plane rotated by θK or −θ due to the magnetic pattern (upward or downward direction of the magnetic domain) due to the magneto-optic effect. The half-wave plate is arranged with its crystal axis at an angle of 22.5° with respect to the incident plane of the beam splitter 20. When the beam splitter 20 transmits and reflects two beams, each of the transmitted and reflected beams can be detected by an optical sensor as a signal whose phase is reversed, as shown in FIG.

第5図において、X軸は偏光ビームスプリッタ−の反射
、Y軸は透過成分を示す軸である。
In FIG. 5, the X axis is the reflection of the polarizing beam splitter, and the Y axis is the axis showing the transmitted component.

媒体への入射光の偏光面からθK又は−〇に回転を受け
た光束は(第5図の破線が偏光面を示す)1/2波長板
で45°の偏光面回転を受ける。
A light flux that has been rotated by θK or −0 from the polarization plane of the light incident on the medium is rotated by 45° in the polarization plane by a half-wave plate (the dashed line in FIG. 5 indicates the polarization plane).

この後、偏光ビームスプリッタ−20にて反射。After that, it is reflected by the polarizing beam splitter 20.

透過で2分割される為、その変動振幅(S2’、S2)
は等しく、位相は反転した2光束となる。従って、これ
らの2光束を光センサ−24で検出すれば記録媒体に記
録された情報を読出すことが出来る。即ち、第2図(A
)の光センサーでは光磁気情報信号ISは I s= (IA+IB+4C+ID+IE+I F)
 −十 (I G+ I H+ I工+I實に+IL)第2図(
B)の光センサーでは Is= (IA+IB+IC+ID)−(IE+IF+
IG+IH)で得る事が出来る。
Since it is divided into two by transmission, its fluctuation amplitude (S2', S2)
are equal, resulting in two beams with opposite phases. Therefore, by detecting these two beams with the optical sensor 24, the information recorded on the recording medium can be read out. That is, Fig. 2 (A
), the magneto-optical information signal IS is I s= (IA+IB+4C+ID+IE+IF)
-10 (I G+ I H+ I engineering + I actually + IL) Figure 2 (
For the optical sensor in B), Is= (IA+IB+IC+ID)-(IE+IF+
You can get it with IG+IH).

更に、第1図における各光学素子を1体化する事により
組立て時の光学調整が容易となり、且つ使用時の軸ズレ
も防げ、信頼性の高い光ピツクアップを実現出来る0例
えば、第6図はビームスプリッタ17、l/2波長板2
3、ビームスプリッタ−20を接着等で1体化した例で
ある。
Furthermore, by integrating each optical element in Fig. 1, optical adjustment during assembly becomes easier, axis misalignment during use is also prevented, and highly reliable optical pickup can be achieved.For example, Fig. 6 shows Beam splitter 17, l/2 wavelength plate 2
3. This is an example in which the beam splitter 20 is integrated with adhesive or the like.

又、第7図は1/2波長板23をビームスプリッタ−1
7の反射面の直後に配置したもので。
In addition, in FIG. 7, the 1/2 wavelength plate 23 is connected to the beam splitter 1.
It is placed immediately after the reflective surface of 7.

同一の平行四辺形ブロック30.31が使え、素子加工
が簡略化できる。
The same parallelogram blocks 30 and 31 can be used, and element processing can be simplified.

又、AF、AT誤差信号、情報信号を検出する為、それ
ぞれの受光部から得られる信号を演算する必要があるが
、光センサー内に受光部の他、演算用の差動AMPを内
蔵すると外乱ノイズの飛び込みに強い信号検出が可能で
ある。
In addition, in order to detect AF, AT error signals, and information signals, it is necessary to calculate the signals obtained from each light receiving section, but if the optical sensor includes a differential AMP for calculation in addition to the light receiving section, disturbances may occur. Signal detection that is resistant to noise interference is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は記録媒体からの光束を分
割し、受光面が分割された単一の光検出器で差動検出す
るようにしたので、1、 光ピツクアップがコンパクト
に構成できる。
As explained above, in the present invention, the light beam from the recording medium is divided and differential detection is performed using a single photodetector with a divided light receiving surface.1. The optical pickup can be configured compactly.

2、差動検出により信号検出のS/N比を向上させる。2. Improve the S/N ratio of signal detection by differential detection.

3、 部品数を減らし、低コスト化できる。3. The number of parts can be reduced and costs can be lowered.

4、部品の一体化により、更に高信頼性のピックアップ
が実現出来る。
4. By integrating parts, a more reliable pickup can be realized.

5、 光検出器が一つなので、検出器間の特性のバラツ
キに対する配慮が少なくてすみ1位置調整なども簡単で
ある。
5. Since there is only one photodetector, there is less need to consider variations in characteristics between detectors, and position adjustment is easy.

6、 光検出器と同一チップ上に各信号の演算回路を作
成することによって外乱ノイズに強い信号検出が可能で
ある。
6. By creating arithmetic circuits for each signal on the same chip as the photodetector, signal detection that is resistant to disturbance noise is possible.

等の効果が得られる。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ピツクアップの構成例を示す概略図
、第2図は本発明に用いる光検出器の受光面を示す図、
第3図は本発明におけるAF倍信号検出原理を説明する
図、第4図は本る 発明におけAAT信号の検出原理を説明する図、第5図
は本発明における情報信号の検出原理を説明する図、第
6図及び第7図は夫々第1図の光ピツクアップの変形例
を示す概略図、第8図は従来の光ピツクアップの構成例
を示す概略図、第9図及び第1O図は夫々差動検出の原
理を説明する図である。 15−−−−−−−−−一半導体レーザー16−一−−
−−−−−−コリメーターレンズ17.20−−−−ビ
ームスプリッタ−18−−−−−−−−−一対物レンズ 19−−−−−一−−−−記録媒体 23−−−−−−−−−−1 / 2波長板24−−−
−−−−−−一光センサー 25−−−−−−−−−一集束レンズ 27−−−−−−−−−一反射部 第2図゛ (A>       (B) /              7’ (A)            (B)       
     (C)第7図 第70図  ゛
FIG. 1 is a schematic diagram showing a configuration example of an optical pickup according to the present invention, FIG. 2 is a diagram showing a light receiving surface of a photodetector used in the present invention,
Fig. 3 is a diagram explaining the principle of detecting the AF multiplied signal in the present invention, Fig. 4 is a diagram explaining the principle of detecting the AAT signal in the present invention, and Fig. 5 is a diagram explaining the principle of detecting the information signal in the present invention. FIGS. 6 and 7 are schematic diagrams showing modified examples of the optical pickup shown in FIG. 1, FIG. 8 is a schematic diagram showing an example of the configuration of a conventional optical pickup, and FIGS. FIG. 3 is a diagram illustrating the principle of differential detection. 15--------1 semiconductor laser 16-1--
-------- Collimator lens 17.20 ----- Beam splitter 18 -------- One objective lens 19 ----- One -- Recording medium 23 ----- --------1/2 wavelength plate 24---
-----------One light sensor 25------------One focusing lens 27---One reflection part Fig. 2゛(A>(B)/7'(A ) (B)
(C) Figure 7 Figure 70 ゛

Claims (1)

【特許請求の範囲】[Claims] (1)受光面が複数の部分に分割された単一の光検出器
と、磁気的に情報が記録された記録媒体からの光束を前
記情報に従って逆位相の強度変調を受けた2光束に分割
し、分割された光束を前記光検出器の各々異なる部分に
導く手段と、前記光検出器の各部分の出力から情報信号
を差動検出する手段とから成る光ピックアップ。
(1) A single photodetector with a light-receiving surface divided into multiple parts and a light beam from a recording medium on which information is magnetically recorded are divided into two light beams that are intensity-modulated in opposite phases according to the information. an optical pickup comprising means for guiding the divided light beams to different parts of the photodetector, and means for differentially detecting information signals from the outputs of the respective parts of the photodetector.
JP60039050A 1985-02-28 1985-02-28 Light pickup Expired - Lifetime JPH0690817B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60039050A JPH0690817B2 (en) 1985-02-28 1985-02-28 Light pickup
US08/195,881 US5661701A (en) 1985-02-28 1994-02-04 Optical pickup using split beams impinging on different photodetector areas
US08/195,882 US5416755A (en) 1985-02-28 1994-02-04 Optical pickup using split beams impinging on different photo-detector areas
US08/275,328 US5488598A (en) 1985-02-28 1994-07-14 Optical pickup using split beams impinging on different photodetector areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039050A JPH0690817B2 (en) 1985-02-28 1985-02-28 Light pickup

Publications (2)

Publication Number Publication Date
JPS61198456A true JPS61198456A (en) 1986-09-02
JPH0690817B2 JPH0690817B2 (en) 1994-11-14

Family

ID=12542298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039050A Expired - Lifetime JPH0690817B2 (en) 1985-02-28 1985-02-28 Light pickup

Country Status (1)

Country Link
JP (1) JPH0690817B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258339A (en) * 1985-05-13 1986-11-15 Matsushita Electric Ind Co Ltd Optical recording and reproducing device
JPS62293543A (en) * 1986-06-13 1987-12-21 Hitachi Ltd Optical system for reproducing magneto-optical recording information
JPS63100645A (en) * 1986-10-17 1988-05-02 Canon Inc Magneto-optical information reproducing device
JPS63266655A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Magneto-optical head
JPS63302452A (en) * 1987-01-28 1988-12-09 Olympus Optical Co Ltd Magneto-optical signal detector
US5629911A (en) * 1992-12-01 1997-05-13 Canon Kabushiki Kaisha Optical information recording/reproduction apparatus including an integrated photodetector used in the detection of focusing and/or tracking error signals
WO2000003390A1 (en) * 1998-07-09 2000-01-20 Sony Corporation Integrated optical device, optical pickup, and optical disk device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010131A (en) * 1973-05-24 1975-02-01
JPS5767904A (en) * 1980-10-16 1982-04-24 Canon Inc Deciding system for adjusting state of focus
JPS5977649A (en) * 1982-10-26 1984-05-04 Sanyo Electric Co Ltd Reproducing device of photomagnetic disc
JPS5977637A (en) * 1982-10-26 1984-05-04 Sony Corp Optical reader

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010131A (en) * 1973-05-24 1975-02-01
JPS5767904A (en) * 1980-10-16 1982-04-24 Canon Inc Deciding system for adjusting state of focus
JPS5977649A (en) * 1982-10-26 1984-05-04 Sanyo Electric Co Ltd Reproducing device of photomagnetic disc
JPS5977637A (en) * 1982-10-26 1984-05-04 Sony Corp Optical reader

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258339A (en) * 1985-05-13 1986-11-15 Matsushita Electric Ind Co Ltd Optical recording and reproducing device
JPH051532B2 (en) * 1985-05-13 1993-01-08 Matsushita Electric Ind Co Ltd
JPS62293543A (en) * 1986-06-13 1987-12-21 Hitachi Ltd Optical system for reproducing magneto-optical recording information
JPS63100645A (en) * 1986-10-17 1988-05-02 Canon Inc Magneto-optical information reproducing device
JPS63302452A (en) * 1987-01-28 1988-12-09 Olympus Optical Co Ltd Magneto-optical signal detector
JPS63266655A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Magneto-optical head
US5629911A (en) * 1992-12-01 1997-05-13 Canon Kabushiki Kaisha Optical information recording/reproduction apparatus including an integrated photodetector used in the detection of focusing and/or tracking error signals
WO2000003390A1 (en) * 1998-07-09 2000-01-20 Sony Corporation Integrated optical device, optical pickup, and optical disk device
US6529454B1 (en) 1998-07-09 2003-03-04 Sony Corporation Integrated optical component, optical pickup, and optical disc device

Also Published As

Publication number Publication date
JPH0690817B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5488598A (en) Optical pickup using split beams impinging on different photodetector areas
US5365504A (en) Optical disk apparatus, and construction of optical disk
JPH0327972B2 (en)
JPH0731837B2 (en) Optical pickup device
JPS61198456A (en) Optical pickup
KR100219666B1 (en) Optical magneto recording/reproducing apparatus
JPH08306091A (en) Optical head
JPS61198457A (en) Optical pickup
US4954702A (en) Process for detecting a focal point in an optical head
JP2626334B2 (en) Optical integrated pickup
US6396638B1 (en) Optical pickup device capable of stable tracking
US5661701A (en) Optical pickup using split beams impinging on different photodetector areas
JP3499918B2 (en) Magneto-optical information recording / reproducing device
KR960000270B1 (en) Optical pick-up apparatus
JPS63157341A (en) Magneto-optical recording/reproducing head
JP2859456B2 (en) Signal detection system of magneto-optical disk drive
JP2576540B2 (en) Optical head
JPH0836781A (en) Optical head
JPH08194980A (en) Magnetooptic information recorder/reproducer
JPH02105357A (en) Magneto-optical disk device
JPS6223373B2 (en)
JPH05274684A (en) Optical information recording and reproducing device
JPH0413229A (en) Optical information recording and reproducing device
JPS63225947A (en) Optical system for information recording and reproducing device for magneto-optical disk
JPH06274929A (en) Optical head device