JPS61198104A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS61198104A
JPS61198104A JP60040076A JP4007685A JPS61198104A JP S61198104 A JPS61198104 A JP S61198104A JP 60040076 A JP60040076 A JP 60040076A JP 4007685 A JP4007685 A JP 4007685A JP S61198104 A JPS61198104 A JP S61198104A
Authority
JP
Japan
Prior art keywords
composition
coating
electron ray
electron beam
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60040076A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kita
英敏 喜多
Yasuhisa Hoshi
康久 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHIN HAIBORUTEEJI KK
Nissin Electric Co Ltd
Original Assignee
NISSHIN HAIBORUTEEJI KK
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHIN HAIBORUTEEJI KK, Nissin Electric Co Ltd filed Critical NISSHIN HAIBORUTEEJI KK
Priority to JP60040076A priority Critical patent/JPS61198104A/en
Publication of JPS61198104A publication Critical patent/JPS61198104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate a rate of a curing treatment by coating a core of the fiber with the composition capable of curing with an irradiation of an electron ray, and then by curing said coated composition with the irradiation of the electron ray. CONSTITUTION:The coating composition is coated on the core of the fiber 1 by means of a coating apparatus 2. The electron ray is irradiated to the coated composition by the electron ray irradiating apparatus 3, after coating the core of the fiber with said composition. The composition which is curable with the electron ray and is used as the coating composition, comprises the composition contg. an oligomer having a functional group reactive to the electron ray such as polyurethane acrylate, epoxyacrylate and polybutadiene acrylate as a main component and an unsatd. monomer reactive to the electron ray as the second component. The coating composition is cured by irradiating the electron ray.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光ファイバーの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing optical fibers.

(従来の技術) 周知のように光を伝送するのに使用するファイバーは1
石英ガラス、プラスチックなどをコアとし、その表面に
これを保護し、強度を保持するために被覆が施される。
(Prior art) As is well known, the number of fibers used to transmit light is one
The core is made of quartz glass, plastic, etc., and a coating is applied to the surface to protect it and maintain its strength.

この被覆のため従来では熱硬化型のシリコン樹脂が使用
されている。
Conventionally, a thermosetting silicone resin has been used for this coating.

しかしシリコン樹脂はその硬化速度が遅いため、生産性
を上げることは極めて困難である。またシリコン樹脂の
みの被覆によるときは、柔軟性は具備されるにしても強
靭性に欠けるため、更にその外面にナイロンなどの保護
層を設ける必要がある。
However, since silicone resin has a slow curing speed, it is extremely difficult to increase productivity. Furthermore, when coating only with silicone resin, it lacks toughness even though it has flexibility, so it is necessary to further provide a protective layer such as nylon on the outer surface.

これらの問題点を解決するために、紫外線硬化型の被覆
材の研究が行われている。しかし紫外線は被覆層に深く
到達しにくいことにより硬化膜厚に制限があるし、また
反応開始剤を必要とするなどの不便がある。
In order to solve these problems, research is being carried out on UV-curable coating materials. However, since ultraviolet rays are difficult to reach deep into the coating layer, there are limitations on the thickness of the cured film, and there are also inconveniences such as the need for a reaction initiator.

(発明が解決しようとする問題点) この発明は被覆層に柔軟性および強靭性を附与せしめる
とともに、その硬化処理の高速化を図ることによって生
産性を高めることを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to impart flexibility and toughness to the coating layer, and to increase productivity by speeding up the curing process.

(問題点を解決するための手段) この発明はファイバーのコアに、電子線硬化型組成物を
被覆した後、電子線を照射して前記組成物を硬化するよ
うにしたことを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that the core of the fiber is coated with an electron beam curable composition, and then the composition is cured by irradiation with an electron beam.

被覆材として電子線硬化型組成物を使用したので、これ
に電子線を照射することによって速やかに硬化する。こ
の種組成物はシリコン樹脂とは異なり、適度の柔軟性お
よび強靭性を具備しているので、その表面に更に保護層
を被覆する必要はない。また電子線の被覆層内での到達
距離は電子線の加速電圧によって制御できるので、被覆
膜の厚さが制限されることもない。
Since an electron beam curable composition was used as the coating material, it was rapidly cured by irradiating it with an electron beam. Unlike silicone resins, this type of composition has appropriate flexibility and toughness, so there is no need to further coat the surface with a protective layer. Furthermore, since the distance that the electron beam travels within the coating layer can be controlled by the accelerating voltage of the electron beam, the thickness of the coating film is not limited.

しかし電子線がコアにまで到達すると、この種コアが石
英ガラスなどによって製作されているため、これが着色
したり、劣化分解したりすることがある。このような現
象が生ずると光伝送効率が低下するなどの悪影響がある
However, when the electron beam reaches the core, this type of core is made of quartz glass or the like, so it may become colored or deteriorate and decompose. When such a phenomenon occurs, there are adverse effects such as a decrease in optical transmission efficiency.

これを回避するためには電子線の加速電圧を、150〜
200にν程度とすることが望ましい。
In order to avoid this, the acceleration voltage of the electron beam should be set to 150~
It is desirable to set it to approximately 200 to ν.

150 Kv未満であると、低すぎるために照射窓での
電子線のエネルギー損失が大きくなり、照射窓が発熱し
たりすることがある。200 kvを越えると、電子線
が被覆層を貫通してコアにまで到達してしまうことがあ
る。通常この種被覆層の厚さは20〜30μm程度であ
るが、コアにまで到達してしまうと前記したようにコア
が着色してしまう。
If it is less than 150 Kv, the energy loss of the electron beam at the irradiation window becomes large because it is too low, and the irradiation window may generate heat. If it exceeds 200 kV, the electron beam may penetrate the coating layer and reach the core. Usually, the thickness of this kind of coating layer is about 20 to 30 μm, but if it reaches the core, the core will be colored as described above.

なお200 Kvより低い電圧であっても、コアに電子
線が到達する恐れがあるときは、電子線照射窓とコアと
の間に電子線を吸収できる吸収材を設置するとよい。
Note that even if the voltage is lower than 200 Kv, if there is a possibility that the electron beam will reach the core, it is preferable to install an absorbing material that can absorb the electron beam between the electron beam irradiation window and the core.

この発明において被覆材として使用できる電子線硬化型
の組成物としては、ポリウレタンアクリレート、エポキ
シアクリレート、ポリブタジェンアクリレートなどの電
子線反応性の官能基を有するオリゴマーを主成分とし、
第2成分として電子線反応性の不飽和モノマーを含む組
成物を挙げることができる。この不飽和モノマーとして
は、2−エチルへキシルアクリレート、ブチルアクリレ
ート、ドデシルアクリレート、フェノキシエチルアクリ
レート、ビニルピロリドンなどがある。
The electron beam-curable composition that can be used as a coating material in the present invention is mainly composed of oligomers having electron beam-reactive functional groups such as polyurethane acrylate, epoxy acrylate, and polybutadiene acrylate.
A composition containing an electron beam-reactive unsaturated monomer as the second component can be mentioned. Examples of the unsaturated monomer include 2-ethylhexyl acrylate, butyl acrylate, dodecyl acrylate, phenoxyethyl acrylate, and vinylpyrrolidone.

なおコアの紡糸は公知の溶融紡糸法を用いることができ
る。たとえばスクリュー押出機を用いるなり、ガス圧を
用いて押し出すなり、ロッド状の材料を用いてラム押出
しを□゛行うなどの方法が採用できる。コアへの被覆に
は、溶液法、溶融法の何れをも用いることができる。さ
らに電子線照射装置としては、スキャンニング方式、エ
リヤビーム方式、カーテンビーム方式あるいはブロード
ビーム方式などの加速器が使用できる。
Note that a known melt spinning method can be used for spinning the core. For example, methods such as using a screw extruder, extruding using gas pressure, or performing ram extrusion using a rod-shaped material can be adopted. Either a solution method or a melting method can be used to coat the core. Further, as the electron beam irradiation device, a scanning type, area beam type, curtain beam type, or broad beam type accelerator can be used.

図はこの発明の製造工程を説明するための構成を示し、
1はファイバーで、これはそのコアに被覆装置2により
被覆材が被覆される。その被覆のあと電子線照射装置3
によって電子線が照射される。電子線照射装置3はX線
遮蔽具4によって遮蔽されである。そして照射窓3Aに
相対する箇所をファイバー1が通過し、その過程で電子
線が照射される。
The figure shows a configuration for explaining the manufacturing process of this invention,
1 is a fiber whose core is coated with a coating material by a coating device 2; After the coating, electron beam irradiation device 3
The electron beam is irradiated by the The electron beam irradiation device 3 is shielded by an X-ray shielding device 4. The fiber 1 then passes through a location facing the irradiation window 3A, and is irradiated with an electron beam in the process.

(実施例) 直径50μmのコア(石英ガラス製)に、被覆材として
、ウレタンアクリレート、N−ビニルピロリドンおよび
フェノキシアクリレートの混合物を、厚さ20μmに被
覆し、ついでこれを150Kvの加速電圧で、0.1M
rad電子線を照射した。
(Example) A core (made of quartz glass) with a diameter of 50 μm was coated with a mixture of urethane acrylate, N-vinylpyrrolidone, and phenoxy acrylate to a thickness of 20 μm as a coating material, and then this was heated at an accelerating voltage of 150 Kv to 0. .1M
It was irradiated with a rad electron beam.

これによって得られたファイバーは、+60’C〜−6
0℃の範囲にわたって、光損失がOdB/Kmの良好な
特性を示した。
The fiber obtained by this is +60'C~-6
It exhibited good characteristics with optical loss of OdB/Km over the 0°C range.

同じ組成の被覆材を同じコアに同じ厚さだけ被覆し、こ
れを200 K vの加速電圧で0.1Mrad電子線
を遮蔽材を介して照射したところ、前記とほぼ同程度の
光損失を示した。
When a coating material of the same composition was coated on the same core with the same thickness and irradiated with a 0.1 Mrad electron beam through the shielding material at an accelerating voltage of 200 Kv, it showed almost the same optical loss as above. Ta.

(発明の効果) 以上詳述したようにこの発明によれば、ファイバーの被
覆層の硬化に際しその被覆材として、電子線硬化型組成
物を使用し、これに電子線を照射して硬化するようにし
たので、従来のような熱硬化による場合に比較して生産
性は向上するし、またこの種被覆材は適度の柔軟性と強
靭性とを兼ね備えているため、保護層などは特に必要で
ないし、更に硬化膜厚が制限されるといったこともない
などの各種の効果を奏する。
(Effects of the Invention) As detailed above, according to the present invention, an electron beam curable composition is used as the coating material when curing the coating layer of the fiber, and the composition is cured by irradiating it with an electron beam. This improves productivity compared to conventional heat curing methods, and since this type of coating material has appropriate flexibility and toughness, a protective layer is not particularly necessary. Furthermore, various effects such as the fact that the thickness of the cured film is not limited are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の詳細な説明するための構成図である。 1・・・コア、2・・・被覆装置、3・・・電子線照射
装置。
The figure is a configuration diagram for explaining the invention in detail. 1... Core, 2... Coating device, 3... Electron beam irradiation device.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバーのコアに電子線硬化型組成物を被覆して被
覆層とし、そのあと前記被覆層に電子線を照射してこれ
を硬化せしめてなる光ファイバーの製造方法。
A method for manufacturing an optical fiber, which comprises coating the core of an optical fiber with an electron beam curable composition to form a coating layer, and then irradiating the coating layer with an electron beam to cure it.
JP60040076A 1985-02-27 1985-02-27 Production of optical fiber Pending JPS61198104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040076A JPS61198104A (en) 1985-02-27 1985-02-27 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040076A JPS61198104A (en) 1985-02-27 1985-02-27 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS61198104A true JPS61198104A (en) 1986-09-02

Family

ID=12570829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040076A Pending JPS61198104A (en) 1985-02-27 1985-02-27 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS61198104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075599A (en) * 2001-09-03 2003-03-12 Shin Etsu Chem Co Ltd Electron irradiation device for optical fiber and hardening method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945944A (en) * 1982-08-31 1984-03-15 Kansai Paint Co Ltd Manufacture of light-transmission glass fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945944A (en) * 1982-08-31 1984-03-15 Kansai Paint Co Ltd Manufacture of light-transmission glass fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075599A (en) * 2001-09-03 2003-03-12 Shin Etsu Chem Co Ltd Electron irradiation device for optical fiber and hardening method

Similar Documents

Publication Publication Date Title
US6018605A (en) Photoinitiator--tuned optical fiber and optical fiber ribbon and method of making the same
US4168194A (en) Method for production of fiber reinforced resin structures
US4572840A (en) Method of manufacturing an optical fiber with chiralic structure and a device for putting this method into practice
FI935122A0 (en) Process and apparatus For the production of composite materials
KR20000070290A (en) Coated optical fiber and its manufacturing method
GB2050238A (en) Fiber reinforced resin structures
US20020028287A1 (en) Manufacture of optical fiber and optical fiber tape
JPH09509458A (en) Glass fiber sizing composition, method of using the composition and resulting product
JPH0533262B2 (en)
JPS61198104A (en) Production of optical fiber
US4986630A (en) Optical waveguides
US6181859B1 (en) Coated optical fiber and method of making the same
US4854668A (en) Light waveguide having three protective layers of plastic material and a method of manufacture
CA2036743A1 (en) Methods of and apparatus for making coated optical fiber
JPS63151648A (en) Production of coated optical fiber
JPS6487536A (en) Method for curing resin coating optical fiber
DE4226343A1 (en) Optical fibre mfr. for glass optic fibres for coatings from liq. polymer supply - by retaining fibre in protective gas atmos. round fibre and coating(s) to harden or crosslink coating for protection from micro bending
JP2004170982A (en) Method of manufacturing coated optical fiber ribbon and coated optical fiber ribbon
JP2001066475A (en) Mode coupled buffered optical fiber device and its production method
EP1088797A1 (en) Electron irradiating apparatus and curing method
GB1593319A (en) Production of fibre reinforced resin structures
CH658336A5 (en) METHOD FOR PRODUCING AN ELECTRICAL DEVICE AND ELECTRICAL DEVICE PRODUCED BY THE METHOD.
JPS5945944A (en) Manufacture of light-transmission glass fiber
JP2000211037A (en) Energy ray irradiating-type continuous molding device and fiber reinforced plastic tubular molded body
JP4160966B2 (en) Method for producing fiber-reinforced plastic tubular molded body