JPS61197970A - Protective device for compressor of refrigerator - Google Patents

Protective device for compressor of refrigerator

Info

Publication number
JPS61197970A
JPS61197970A JP4020185A JP4020185A JPS61197970A JP S61197970 A JPS61197970 A JP S61197970A JP 4020185 A JP4020185 A JP 4020185A JP 4020185 A JP4020185 A JP 4020185A JP S61197970 A JPS61197970 A JP S61197970A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
warning
stop
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4020185A
Other languages
Japanese (ja)
Inventor
隆 松崎
近藤 誠二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4020185A priority Critical patent/JPS61197970A/en
Publication of JPS61197970A publication Critical patent/JPS61197970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍機の冷媒不足時において圧縮機の焼損を
防止すべくこれを強制的に停止させるようにした圧縮機
保護装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a compressor protection device that forcibly stops the compressor in order to prevent the compressor from burning out when there is a shortage of refrigerant in the refrigerator. .

(従来の技術) 一般に、冷2I1機の冷媒回路において冷媒漏れ等によ
り冷媒不足が生じた場合には、蒸発圧力の低下やこれに
伴う吐出ガス温度の上昇を来たして冷凍効果が低下する
とともに、冷媒不足が進行すると、吐出ガス温度の異常
上昇に伴って圧縮機が過熱されたり潤滑油が炭化したり
して、圧縮機の焼損を招き易くなる。このため、冷媒不
足時には圧縮機を強制停止させてこれを保護することが
必要である。
(Prior Art) Generally, when a refrigerant shortage occurs due to a refrigerant leak or the like in the refrigerant circuit of a cold 2I1 machine, the evaporation pressure decreases and the discharge gas temperature increases accordingly, reducing the refrigerating effect. As the refrigerant shortage progresses, the compressor is overheated and the lubricating oil is carbonized due to an abnormal rise in the discharge gas temperature, making it easy to burn out the compressor. Therefore, when there is a shortage of refrigerant, it is necessary to forcibly stop the compressor to protect it.

このため、従来、例えば特公昭59−32675号公報
に開示されるものでは、蒸発圧力に応動する低圧圧力開
閉器を設け、蒸発圧力が予め定めた設定値以下に低下し
た時点ぐ該低圧圧力開閉器の開作動に基づき圧縮機を強
制停止させるようになされている。また、特開昭591
91858号公報に開示されるものでは、吐出ガス温度
を検出する温度検出手段を設け、吐出ガス湿度が設定値
以上になると圧縮機を強制停止させるようになされてい
る。
For this reason, conventionally, for example, in the device disclosed in Japanese Patent Publication No. 59-32675, a low pressure switch that responds to the evaporation pressure is provided, and the low pressure switch is opened and closed as soon as the evaporation pressure drops below a predetermined set value. The compressor is forcibly stopped based on the opening operation of the compressor. Also, Unexamined Japanese Patent Publication No. 591
The device disclosed in Japanese Patent No. 91858 is provided with a temperature detection means for detecting the temperature of the discharged gas, and the compressor is forcibly stopped when the humidity of the discharged gas exceeds a set value.

(発明が解決しようとする問題点) しかしながら、上記各従来例のものでは、圧縮機の強制
停止の基準となる蒸発圧力や吐出ガス温度の各設定値が
、誤動作防止のために圧縮機の焼損直前に相当する値に
設定される関係上、圧縮機が強制停止するまでの過程で
圧縮機の過熱および潤滑油の炭化がかなり進行している
という問題がある。
(Problem to be Solved by the Invention) However, in each of the above conventional examples, the set values of the evaporation pressure and discharge gas temperature, which are the criteria for forced stop of the compressor, are set to prevent burnout of the compressor in order to prevent malfunction. Since the value is set to a value corresponding to the previous value, there is a problem that overheating of the compressor and carbonization of the lubricating oil have progressed considerably in the process until the compressor is forcibly stopped.

そこで、上記問題を軽減すべく、圧縮機の強制停止に先
立って、冷媒不足が初期の段階において警告を発し得る
よう圧縮機保護を2段階に構成して、冷媒不足に対する
メンテナンスを早期に行い得るようにすることが考えら
れる。
Therefore, in order to alleviate the above problem, the compressor protection is configured in two stages so that a warning can be issued at an early stage of refrigerant shortage before the compressor is forced to stop, so that maintenance can be performed early on in response to refrigerant shortage. It is possible to do so.

しかるに、その場合、上記2段階の圧縮機保護を2個の
低圧圧力H閉器を用いて構成するときには、 ■コスト高を招く ■蒸発圧力の変動が通常運転時でも比較的大きい関係上
、誤って警告を発し易い ■負荷変動によっても蒸発圧力の変動を招き、警告が過
負荷、冷媒不足の何れに起因するか判別し難い ■低圧圧力開閉器のデファレンシャルを考慮する必要か
ら、両段定値の設定に制限が加わる等の不都合がある。
However, in that case, when configuring the above two-stage compressor protection using two low-pressure H-closers, ■ it will lead to higher costs, and ■ it will cause errors because the fluctuations in evaporation pressure are relatively large even during normal operation. ■ Load fluctuations also cause fluctuations in evaporation pressure, making it difficult to determine whether the warning is due to overload or lack of refrigerant ■ Because it is necessary to consider the differential of the low-pressure pressure switch, two-stage fixed value There are inconveniences such as restrictions on settings.

一方、2個の吐出ガス温度検出手段を用いて構成すると
きには、上記■と同様に負荷変動によっても吐出ガスi
tの変動を招くため、警告の意味内容が判別し難いとい
う不都合がある。
On the other hand, when configured using two discharged gas temperature detection means, the discharged gas
Since this causes a fluctuation in t, there is an inconvenience that it is difficult to determine the meaning of the warning.

本発明は斯かる点に鑑みてなされたものであり、冷媒不
足に応じて変動する因子として上記蒸発温度や吐出ガス
温度の他に冷媒の過熱度があり、この過熱度の特性が負
荷変動に対して比較的変動の少ない特性であることに着
目し、その目的は、上記2段階の圧縮機保護を、過熱度
に基づく警告と、蒸発温度、吐出ガス温度および過熱度
の少なくとも1つに基づく圧縮機の強制停止とで構成す
るようにすることにより、圧縮機の強制停止に至る前の
段階で且つ冷媒不足時においてのみ警告を発して、その
早期メンテナンスを低コストで可能とし、このことによ
り圧縮機の焼損原因となる圧縮機の過熱や潤滑油の炭化
の進行を早期に解消して、圧縮機の信頼性の向上を図る
ことにある。
The present invention has been made in view of this point, and in addition to the above-mentioned evaporation temperature and discharge gas temperature, the degree of superheating of the refrigerant is a factor that changes depending on the refrigerant shortage, and the characteristics of this degree of superheating are affected by load fluctuations. The aim is to provide the above two-stage compressor protection with a warning based on the degree of superheat, and a warning based on at least one of the evaporation temperature, discharge gas temperature, and degree of superheat. By configuring this system with a forced stop of the compressor, a warning is issued before the compressor is forced to stop and only when there is a shortage of refrigerant, making early maintenance possible at low cost. The purpose is to improve the reliability of the compressor by quickly eliminating the overheating of the compressor and the progress of carbonization of lubricating oil, which cause burnout of the compressor.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、第1図
に示すように、冷媒不足時に圧縮機(1)を強制停止さ
せるようにした冷凍機の圧縮機保護装置において、冷媒
の過熱度を検出する第1検出手段(12)と、該第1検
出手段(12)の出力を受け、過熱度が初期冷媒不足時
に相当する警告側設定値以上のとき冷媒の補充を喚起す
る警告信号を出力する警告信号出力手段(15)とを備
える。また、冷媒の蒸発温度、吐出ガス温度および過熱
度の少なくとも1つを検出する第2検出手段(13)と
、該第2検出手段(13)の出力を受け、該出力値が圧
縮機(1)の焼損直前に相当する強制停止側設定値上の
とき圧wJIIl<1)を強制停止させる停止信号を出
力する停止信号出力手段(16)とを備える構成とした
ものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. The compressor protection device includes a first detection means (12) that detects the degree of superheat of the refrigerant, and receives the output of the first detection means (12) and detects when the degree of superheat is equal to or higher than a warning side setting value corresponding to an initial refrigerant shortage. and a warning signal output means (15) for outputting a warning signal to remind replenishment of the refrigerant. Further, the second detection means (13) detects at least one of the evaporation temperature of the refrigerant, the discharge gas temperature, and the degree of superheat, and the output value of the second detection means (13) is received and the output value is determined by the compressor (1). ), the stop signal output means (16) outputs a stop signal for forcibly stopping the pressure wJIIl<1) when the pressure wJIIl<1 is above the set value on the forced stop side corresponding to immediately before burnout.

(作用) 以上により、本発明では、過熱度が警告側設定値以上に
達する初期冷媒不足時には、警告信号出力手段(15)
から警告信号が出力されて冷媒の補充が喚起されるので
、冷媒不足に対する早期メンテナンスが低コストで可能
になって、圧縮機(1)の過熱や1llIl滑油の炭化
の進行を早期に解消することができる。しかも、上記初
期冷媒不足時の検出は、負荷変動に対して比較的変動の
少ない過熱度に基づいて行われるので、負荷変動にょる
WAvJ作が少なく、その検出精度が向上するのである
(Function) As described above, in the present invention, when there is an initial refrigerant shortage when the degree of superheat reaches the warning side setting value or more, the warning signal output means (15)
Since a warning signal is output from the refrigerant to remind replenishment of refrigerant, early maintenance in case of refrigerant shortage becomes possible at a low cost, and overheating of the compressor (1) and progress of carbonization of lubricating oil can be quickly resolved. be able to. Moreover, since the detection of the initial refrigerant shortage is performed based on the degree of superheat, which has relatively little fluctuation with respect to load fluctuations, WAvJ fluctuations due to load fluctuations are reduced, and the detection accuracy is improved.

また、圧縮1jJ(1)の焼損直前となる冷媒不足進行
時には、冷媒の蒸発温度、吐出ガス温陵および過熱度の
少なくとも1つが強制停止l1ll股定値に達して、停
止信号出力手段(16)から圧縮機(1)の停止信号が
出力されるので、圧縮機(1)が強制停止して、その焼
損が確実に防止されるのぐある。
Further, when refrigerant shortage progresses immediately before compression 1jJ (1) burns out, at least one of the evaporation temperature of the refrigerant, the discharge gas temperature, and the degree of superheat reaches a predetermined value for forced stop, and the stop signal output means (16) Since a stop signal for the compressor (1) is output, the compressor (1) is forcibly stopped and its burnout can be reliably prevented.

(実施例) 以下、本発明の実施例を第2図以下の図面に暴づいて説
明する。
(Example) Hereinafter, an example of the present invention will be explained with reference to the drawings from FIG. 2 onwards.

(第1実施例) 第2図は冷凍機の全体構成を示し、(1)は圧縮機、(
2)は屋外に配設される凝縮器、(3)は膨張機構、く
4)は蒸発器であって、該各機器(1)〜(4)はそれ
ぞれ冷媒配管(5)・・・により冷媒循環可能に接続さ
れて閉回路(6)が形成されており、圧縮Ia(1)か
ら吐出された冷媒を図中矢印の如く循環させることによ
り、冷媒が有する熱量を凝縮器(2)で屋外に放出した
のち、蒸発器(4)で室内あるいは庫内空気から熱量を
吸収することを繰返して、室内冷房あるいは庫内貯蔵物
の冷凍、冷蔵をするようになされている。
(First embodiment) Figure 2 shows the overall configuration of a refrigerator, where (1) is a compressor, (1) is a compressor, (
2) is a condenser installed outdoors, (3) is an expansion mechanism, and 4) is an evaporator, and each of the devices (1) to (4) is connected to a refrigerant pipe (5). A closed circuit (6) is formed by connecting the refrigerant so that the refrigerant can circulate, and by circulating the refrigerant discharged from the compression Ia (1) as shown by the arrow in the figure, the amount of heat contained in the refrigerant is transferred to the condenser (2). After being released outdoors, the evaporator (4) repeatedly absorbs heat from the air inside the room or in the refrigerator, thereby cooling the room or freezing or refrigerating the stored items in the refrigerator.

尚、図中〈7)はアキュムレータである。In addition, <7) in the figure is an accumulator.

また、(8)は上記圧lllI機(1)を作動制御す 
   □る圧縮機制御回路、くっ)は蒸発器く4)に設
けられ、冷媒の蒸発温度Teを検出するサーミスタ等よ
りなる蒸発温度センサ、(10)はアキュムレータ(7
)上流の冷媒配管(5)に設けられ、圧縮機(1)への
冷媒の吸入ガス湿度T1を検出する吸入ガス温度センサ
、(11)は同様に圧縮機(1)直下流の冷媒配管(5
)に設けられ圧縮機(1)からの吐出ガス温度T2を検
出する吐出ガス温度センサであって、上記蒸発温度セン
サ(9)および吸入ガス温度センサ(1o)により、そ
の温度差(T+ −Te )つまり過熱rI3SHを検
出するための第1検出手段(12)を構成しているとと
もに、蒸発温度センサ(9)および吐出がス温戊センサ
(11)により、冷媒の蒸発温度(Te)と吐出ガス温
度(T2)とを検出するようにした第2検出手段(13
)を構成している。
(8) also controls the operation of the pressure IllI machine (1).
□The compressor control circuit (ku) is installed in the evaporator (ku), and the evaporation temperature sensor (10) is a thermistor or the like that detects the evaporation temperature Te of the refrigerant.
) A suction gas temperature sensor (11) is installed in the upstream refrigerant pipe (5) and detects the humidity T1 of the refrigerant suction gas into the compressor (1); 5
) is installed in the compressor (1) and detects the temperature T2 of the discharge gas from the compressor (1), and the temperature difference (T+ -Te ) In other words, it constitutes the first detection means (12) for detecting overheating rI3SH, and the evaporation temperature sensor (9) and discharge temperature sensor (11) detect the evaporation temperature (Te) and discharge of the refrigerant. a second detection means (13) adapted to detect the gas temperature (T2);
).

そして、上記3個の温度センサ(9)〜(11)はそれ
ぞれ冷媒不足検出回路(14)に信号の授受可能に接続
されており、該冷媒不足検出回路(14)により上記圧
縮機制御回路(8)に対して圧縮機(1)の停止信号を
出力して、冷媒不足時に圧縮機(1)を強制停止させる
ようにしている。
The three temperature sensors (9) to (11) are each connected to a refrigerant shortage detection circuit (14) so as to be able to send and receive signals, and the refrigerant shortage detection circuit (14) causes the compressor control circuit ( A stop signal for the compressor (1) is output to the refrigerant (1) to forcibly stop the compressor (1) when there is a shortage of refrigerant.

上記冷媒不足検出回路(14)の内部には、第3図に示
すように初期冷媒不足時に警告信号を出力する警告信号
出力手段としての警告信号出力回路(15)と、圧縮機
(1)の焼損直前に相当する冷媒不足の進行時に圧縮1
11(1)の強制停止信号を出力する停止信号出力手段
としての停止信号出力回路(16)との2つの回路が備
えられている。
Inside the refrigerant shortage detection circuit (14), as shown in FIG. Compression 1 when the refrigerant shortage progresses, which corresponds to just before burnout.
Two circuits are provided: a stop signal output circuit (16) as a stop signal output means for outputting the forced stop signal of No. 11(1).

先ず、警告信号出力回路(15)について説明するに、
(20)は上記蒸発温度センサ(9)および吸入ガス温
度センサ〈10)の出力を受け、蒸発温度Teと吸入ガ
ス湯位T+ との差(T1−Te)つまり過熱r!IS
HをPI4棹算出する演算回路である。ここに、過熱度
SHは、第5図に示すように、冷媒量の減少つまり冷媒
不足の進行に応じて漸次大きくなる特性を有するととも
に、負荷変動に対して比較的変動の少ない特性(図示せ
ず)をも有するものである。また、同図から判るように
、冷媒の蒸発m a T eは冷媒不足の進行に応じて
漸次低くなる特性を有し、吐出ガス渇泣T zは漸次高
くなる特性を有する。また、(21)は、第5図に示す
ように冷媒量が70%の初期冷媒不足時に相当する過熱
度SHsを警告側設定値として予め設定記憶する第1基
準値設定器、(22)は上記演算回路(20)からの過
熱度SHと第1基準値設定器(21〉の警告側設定値S
Hsとをサンプリングタイマ(23)のサンプリング時
間Tの経過毎に入力し、大小比較して、過熱度SHが警
告側設定値SHs以上のとき冷媒不足検出信号を出力す
る第1比較器である。さらに、(24)は上記第1比較
器(22)からの冷媒不足検出信号を受ける毎に1つイ
ンクリメントし、カウント数が所定回数Nに達したとき
冷媒不足検出信号の通過を許容する第1カウンタ、(2
5)は内部に警告側リレー(RYE)と強制停止側リレ
ー〈RY2 )とを有するリレー回路であって、上記第
1カウンタ(24)からの冷媒不足検出信号を受けたと
き警告側リレー(RY+ )の切換接点(RYl−1)
がOFF側からON側に切換って警告信号を出力する機
能を有するものであり、この警告信号により例えば警告
ブザー(図示せず)を吹鳴させ、あるいは警告ランプを
点灯させて冷媒の補充を喚起するようになされている。
First, the warning signal output circuit (15) will be explained.
(20) receives the outputs of the evaporation temperature sensor (9) and the suction gas temperature sensor <10), and receives the difference (T1-Te) between the evaporation temperature Te and the suction gas hot water level T+, that is, the superheat r! IS
This is an arithmetic circuit that calculates H by PI4. Here, as shown in Fig. 5, the degree of superheating SH has a characteristic that it gradually increases as the amount of refrigerant decreases, that is, as the refrigerant shortage progresses, and also has a characteristic that changes relatively little with respect to load fluctuations (not shown in the figure). ). Further, as can be seen from the figure, the refrigerant evaporation m a T e has a characteristic that it gradually decreases as the refrigerant shortage progresses, and the discharge gas depletion T z has a characteristic that it gradually increases. In addition, (21) is a first reference value setting device that presets and stores the degree of superheating SHs corresponding to the initial refrigerant shortage when the refrigerant amount is 70% as shown in FIG. The degree of superheating SH from the arithmetic circuit (20) and the warning side set value S of the first reference value setter (21>)
This is a first comparator that inputs the signal Hs and Hs to the sampling timer (23) every time the sampling time T elapses, compares the magnitude, and outputs a refrigerant shortage detection signal when the degree of superheating SH is equal to or higher than the warning side setting value SHs. Further, (24) is incremented by one every time the refrigerant shortage detection signal is received from the first comparator (22), and when the count reaches a predetermined number N, the first comparator (24) allows the passage of the refrigerant shortage detection signal. Counter, (2
5) is a relay circuit which internally has a warning side relay (RYE) and a forced stop relay (RY2), and when it receives the refrigerant shortage detection signal from the first counter (24), the warning side relay (RY+) is activated. ) switching contact (RYl-1)
has the function of switching from the OFF side to the ON side and outputting a warning signal, and this warning signal causes, for example, a warning buzzer (not shown) to sound or a warning lamp to light up to remind replenishment of refrigerant. It is made to be.

また、停止信号出力回路(16)において、(26)は
第5図に示すように、冷媒量が50〜60%に至った圧
縮機(1)の焼損直前の蒸発温度TeSを第1強制停止
側設定値として予め設定記憶する第2基準値設定器、(
27)は上記警告信号出力回路(15)の第1比較器(
22)と同様の第2比較器であって、該第2比較器(2
7)は蒸発温度センサ(9)からの蒸発温度Te信号と
上記第2基準値設定器(26)の第1強制停止側設定値
 Tesとをサンプリングタイマ(23)のサンプリン
グ時1fflTの経過毎に入力し、大小比較して、蒸発
温度Teが第1強制停止m設定!11T88以上のとき
冷媒不足検出信号を出力するものである。
In addition, in the stop signal output circuit (16), as shown in FIG. a second reference value setter for storing preset values as side set values;
27) is the first comparator (
22), the second comparator (22) is similar to the second comparator (22);
7) calculates the evaporation temperature Te signal from the evaporation temperature sensor (9) and the first forced stop side set value Tes of the second reference value setter (26) every 1fflT during sampling by the sampling timer (23). Input, compare the sizes, and set the evaporation temperature Te to the first forced stop m! When the temperature is 11T88 or higher, a refrigerant shortage detection signal is output.

さらに、(28)は、上記第2基準値設定器(26)と
同様に冷媒量が50〜60%の圧縮機(1)の焼損直前
の吐出ガス部位TzS(第5図参照)を第2強制停止側
設定値として予め設定記憶する第311準値設定器、(
29)は、吐出ガス温度センサ(11)からの吐出ガス
温度T2信号と上記第3!1準値設定器(28)の第2
強制停止側設定(*T2Sとを上記第2比較器(27)
と同様にサンプリングタイマ(23)のサンプリング時
間Tの経過毎に入力し、大小比較して、吐出ガス温度T
2が第1強制停止側設定値T2S以上のとき冷媒不足検
出信号を出力する第3比較器である。そして、上記第2
.第3比較器(27)、(29)の各冷媒不足検出信号
はそれぞれ上記第1カウンタ(24)と同様の第2カウ
ンタ(30)および第3カウンタ(31)を介してリレ
ー回路(25)に入力されているとともに、該リレー回
路(25)は、上記一方又は双方の冷媒不足検出信号を
受けたとぎ強制停止側リレー(RY2 )の切換接点(
RYz −+ ) がOFF側からONllmに切換ッ
テ圧縮l1N(1)の停止信号を上記圧縮機制御回路〈
8)に出力するように設けられている。
Furthermore, (28), like the second reference value setting device (26), sets the discharge gas region TzS (see FIG. 5) immediately before the burnout of the compressor (1) with a refrigerant amount of 50 to 60% to the second value. a 311th quasi-value setter that stores the forced stop side set value in advance;
29) is the discharge gas temperature T2 signal from the discharge gas temperature sensor (11) and the second value of the third!1 quasi-value setting device (28).
Forced stop side setting (*T2S and the above second comparator (27)
In the same way, input the sampling timer (23) every time the sampling time T elapses, and compare the sizes to determine the discharge gas temperature T.
2 is a third comparator that outputs a refrigerant shortage detection signal when the value T2S is greater than or equal to the first forced stop side set value T2S. And the second above
.. The refrigerant shortage detection signals of the third comparators (27) and (29) are sent to the relay circuit (25) via the second counter (30) and third counter (31), which are similar to the first counter (24), respectively. At the same time, the relay circuit (25) is connected to the switching contact (RY2) of the forced stop relay (RY2) upon receiving one or both of the refrigerant shortage detection signals.
RYz −+ ) is switched from the OFF side to ONllm and the stop signal of the compression l1N (1) is sent to the compressor control circuit.
8).

したがって、上記実施例においては、運転時、冷媒漏れ
等に起因して閉回路〈6)に冷媒不足が生じると、過熱
吹SHが第5図に示す如く漸次大きくなり、冷tiiが
70%の初期冷媒不足時に至ると過熱度SHが警告側設
定値SH8に達して、警告信号出力回路(15)から警
告信号が出力されることになる。このことにより、例え
ば警告ブザー等が吹鳴し、あるいは警告ランプが点灯し
て冷媒の補充が喚起されるので、圧縮1m(1)の焼損
に至るかなり前の段階で冷媒不足に対する早期メンテナ
ンスが、可能になって、圧縮Im(1)の焼損原因とな
る圧縮1!(1)の過熱やraW4油の炭化の進行を早
期に解消することができる。しかも、その際には、負荷
変動に対して比較的変動の少ない過熱度特性から、冷媒
不足時においてのみ警告信号を出力することができるの
で、負荷変動による誤動作が少なく、冷媒不足に対する
検出精度の向上を図ることができる。さらに、過熱度(
SH)の検出は蒸発温度センサ(9)と吸入ガスg度セ
     ・ンサ(10)とで構成されているので、低
コスト化を図ることができる。
Therefore, in the above embodiment, when a refrigerant shortage occurs in the closed circuit (6) due to refrigerant leakage during operation, the superheating blow SH gradually increases as shown in FIG. 5, and the cooling tii reaches 70%. When the initial refrigerant shortage occurs, the degree of superheating SH reaches the warning side set value SH8, and a warning signal is output from the warning signal output circuit (15). As a result, for example, a warning buzzer or the like will sound or a warning lamp will light up to remind you to replenish the refrigerant, making it possible to perform early maintenance to prevent refrigerant shortages well before the compressor burns out. Compression 1 causes burning of compression Im(1)! (1) Overheating and progress of carbonization of raW4 oil can be eliminated at an early stage. Moreover, in this case, since the superheat characteristic has relatively little variation with respect to load fluctuations, a warning signal can be output only when there is a refrigerant shortage, which reduces malfunctions due to load fluctuations and improves the detection accuracy of refrigerant shortages. You can improve your performance. In addition, the degree of superheat (
Since the detection of SH is comprised of an evaporation temperature sensor (9) and an intake gas temperature sensor (10), it is possible to reduce costs.

また、上記警告後における運転続行の際には、冷媒の蒸
発温度Teや吐出ガス濃度T2が負荷変動に伴って変動
しながら冷媒不足の進行に応じて変化し、冷媒量が50
〜60%になる圧縮機(1)の焼損直前に至ると、その
蒸発湿度Te又は吐出ガス温度T2が対応す、る強制停
止側設定値TO3又はTzSk:達して、停止信号出力
回路(16)から圧縮機(1)の停止信号が圧縮機制御
回路(8)に出力される。その結果、圧縮11i(1)
が強11J停止して、その冷媒不足に起因する焼損が確
実に防止されることになる。
In addition, when continuing operation after the above warning, the refrigerant evaporation temperature Te and the discharge gas concentration T2 fluctuate with load fluctuations and change as the refrigerant shortage progresses, and the refrigerant amount decreases to 50%.
When the compressor (1) reaches ~60% and is about to burn out, its evaporation humidity Te or discharge gas temperature T2 reaches the corresponding forced stop side set value TO3 or TzSk, and the stop signal output circuit (16) A stop signal for the compressor (1) is output from the compressor control circuit (8). As a result, compression 11i(1)
is stopped for 11J, and burnout caused by the lack of refrigerant is reliably prevented.

また、上記実施例では電子回路を用いて冷媒不足検出回
路(14)を構成したが、これに代えて、CPUなどを
内蔵するマイクロコンビ1−夕を用いて構成してもよく
、この場合の制御内容を示すフローチャート図を第4図
に示す。すなわち、同図(イ)の初期冷媒不足検出フロ
ーにおいて、ステップS】で吸入ガス温度センサ(10
)からの吸入ガス温度T1信号を読込むとともに、ステ
ップS2で蒸発温度センサ(9)からの蒸発温度Te信
号を読込んで、ステップS3で冷媒の過熱度SH(=T
+ −Te )を演算する。しかる後、ステップS4で
過熱度SHを警告側設定(*SH8と大小比較し、S 
H≧SHsのYESの冷媒不足時にはステップS5で冷
媒不足検出回数に+に°°1゛を加算し、これをステッ
プS6で所定回数Nと大小比較する。そして、未だKI
NのNOの場合には上記ステップS4でSH<SHsの
非冷媒不足時の場合と共にステップS7でサンプリング
時間Tの経過を持ってステップS1に戻り、以上の動作
を繰返す一方、K+ −Nに達したYESの場合にはス
テップS8で警告信号を出力して、冷媒の補充を喚起す
る。
Further, in the above embodiment, the refrigerant shortage detection circuit (14) was configured using an electronic circuit, but instead of this, it may be configured using a microcomputer 1-1 having a built-in CPU, etc. A flowchart showing the control details is shown in FIG. That is, in the initial refrigerant shortage detection flow shown in FIG.
), the evaporation temperature Te signal from the evaporation temperature sensor (9) is read in step S2, and the refrigerant superheat degree SH (=T
+ −Te ) is calculated. After that, in step S4, the superheating degree SH is set to the warning side (* Compare the size with SH8,
If H≧SHs (YES) indicates a refrigerant shortage, in step S5, +°1 is added to the number of refrigerant shortage detections, and this is compared in magnitude with a predetermined number of times N in step S6. And still KI
In the case of NO in N, in the case of non-refrigerant shortage of SH<SHs in step S4, the process returns to step S1 after the sampling time T has elapsed in step S7, and while repeating the above operation, K+ -N is reached. If the answer is YES, a warning signal is output in step S8 to remind replenishment of the refrigerant.

また、同図(ロ)および(ハ)の第1および第2強制停
止フローにおいて、それぞれステップ$1 、3. I
Iで蒸発温度センサ(19)からの蒸発温度Te信号お
よび吐出ガス瀧喰センサ(11)からの吐出ガス温度下
2信号を読込み、ステップ32 ’ + S2“でこれ
らをそれぞれ第1.第2強制停止側設定値7es、 T
z Sと大小比較する。そして、7e≦Tes、Tz≧
T2SのYESの冷媒不足時にはステップS3’、83
″で冷媒不足検出回数に2 、Ksに″“1°゛を加算
し、これをステップ84 ’ + 84″で所定回数N
と大小比較し、未だに2 <N、Ka <NのNOの場
合には上記ステップS2r 、S2//で丁e〉丁as
、 T2 <T2Sの非冷媒不足時の場合と共にステッ
プ85′。
In addition, in the first and second forced stop flows in FIGS. I
At step I, the evaporation temperature Te signal from the evaporation temperature sensor (19) and the discharge gas temperature lower 2 signal from the discharge gas waterfall sensor (11) are read, and at step 32' + S2'', these are set to the first and second forced forces, respectively. Stop side setting value 7es, T
z Compare the size with S. And 7e≦Tes, Tz≧
If T2S is YES, if refrigerant is insufficient, step S3', 83
'' adds 2 to the number of refrigerant shortage detections and ``1°'' to Ks, and these are added to the predetermined number of times N in step 84 ' + 84''.
Compare the size with
, step 85' together with the non-refrigerant shortage case where T2 < T2S.

S5”でサンプリング時間Tの経過を持って以上の動作
を繰返す一方、K2−N、に3 =Nに達したYESの
場合にはステップS、J、S、1′で圧縮機(1)の停
止信号を出力して圧縮111(1)を強制停止し、その
焼損・を防止する。よって、上記実施例と同様に、同図
(イ)の初期冷媒不足検出フローにより圧縮fi(1)
の強制停止のかなり前の段階での早期メンテナンスを可
能にして、圧縮機(1)の焼損原因となる圧縮機(1)
の過熱やWJ滑油の炭化の進行を早期にかつ確実に解消
することができる。
At step S5'', the above operation is repeated after the sampling time T has elapsed, and if YES is reached when 3=N at K2-N, the compressor (1) is changed at steps S, J, S, and 1'. A stop signal is output to forcibly stop the compression 111(1) to prevent its burnout.Therefore, similarly to the above embodiment, the initial refrigerant shortage detection flow shown in FIG.
compressor (1), which would cause burnout of the compressor (1).
It is possible to quickly and reliably eliminate overheating of the oil and carbonization of the WJ oil.

(第2実施例) さらに、第6図は本発明の第2実施例を示し、上記第1
大施例では圧縮機(1)の強制停止を蒸発温度Teおよ
び吐出ガス温度T2に基づいて行うようにしたのに代え
、過熱度SHk:mづいて行うようにしたものである。
(Second Embodiment) Furthermore, FIG. 6 shows a second embodiment of the present invention, and FIG.
In the large embodiment, instead of forcing the compressor (1) to stop based on the evaporation temperature Te and the discharge gas temperature T2, it is done based on the degree of superheat SHk:m.

すなわち、同図において、第2検出手段(13’)を蒸
発温度センサ(9)と吸入ガス潤度センサ(10)(つ
まり第1検出手段(12))で兼用するとともに、冷媒
不足検出回路(14’)の停止信号出力回路(16′)
において第2基準値設定器(26’ )の強制停止側設
定値を、第5図に示すように冷媒量が50〜60%の冷
媒不足時に相当する圧縮機(1)の焼損直前の過熱13
iSH3zに設定するとともに、第2比較器(27’ 
)で演算回路(20)からの過熱度S)!信号を上記基
準値設定器(26’ )の強制停止側設定値5H3zと
大小比較し、SH≧5HS2に至った時、第2比較器(
27’)からの冷媒不足検出信号に基づき第2カウンタ
(30′ )を介してリレー回路(25)の強制停止側
リレー(RY2)の切換接点(RY2−+ )をOFF
側からON側に切換えて圧縮機(1)の停止信号を出力
するようにしたものである。その他の構成は上記第1実
施例と同様である。よって、第1大施例と同様に、初期
冷媒不足時における過熱1立SHに基づく警告と、圧4
1iI機(1)の焼損直前におけるその強制停止との2
段階の圧縮機保護を確実に行うことができる。
That is, in the figure, the second detection means (13') is used as the evaporation temperature sensor (9) and the suction gas humidity sensor (10) (that is, the first detection means (12)), and the refrigerant shortage detection circuit ( 14') stop signal output circuit (16')
The forced stop side set value of the second reference value setter (26') is set to the overheating level 13 immediately before burnout of the compressor (1), which corresponds to a refrigerant shortage of 50 to 60% as shown in FIG.
iSH3z and the second comparator (27'
) and the degree of superheating S) from the arithmetic circuit (20)! The signal is compared in magnitude with the forced stop side set value 5H3z of the reference value setter (26'), and when SH≧5HS2 is reached, the second comparator (26')
Based on the refrigerant shortage detection signal from 27'), the switching contact (RY2-+) of the forced stop side relay (RY2) of the relay circuit (25) is turned OFF via the second counter (30').
The stop signal for the compressor (1) is output by switching from the side to the ON side. The other configurations are the same as those of the first embodiment. Therefore, as in the first major embodiment, a warning based on overheating 1 SH when there is initial refrigerant shortage, and a warning based on pressure 4
1iI machine (1) was forced to stop just before it was burnt out; and 2.
Stage compressor protection can be ensured.

尚、上記第1実施例では圧縮111(1)の強制停止を
蒸発温rliTeおよび吐出ガス温度T2の双方に基づ
いて行い、第2実施例では過熱l5)−1に訪づいて行
うようにしたが、その他、蒸発温度Teや吐出ガス温度
T2の1つの澗吹信号のみに雄づいて行ったり、これら
と過熱度S Hとの組合せに基づいて行ったりしてもよ
く、要は圧縮機(1)の強制停止を蒸発温度7e、吐出
ガス温度T2および過熱度S l−1の少なくとも1つ
に基づいて行えばよい。
In the first embodiment, the compression 111(1) is forcibly stopped based on both the evaporation temperature rliTe and the discharge gas temperature T2, and in the second embodiment, it is carried out when the overheating l5)-1 is reached. However, it may also be performed based on only one blowing signal of the evaporation temperature Te or the discharge gas temperature T2, or based on a combination of these and the degree of superheating SH. The forced stop in 1) may be performed based on at least one of the evaporation temperature 7e, the discharge gas temperature T2, and the degree of superheat S1-1.

また、上記実施例における膨張機構【3)として、電気
式の過熱喰膨張弁を用い、上記蒸発温度センサ(9)お
よび吸入ガス!+1センサ(10)により検出した蒸発
温度Te信号および吸入ガス温度下1信号を弁制御入力
として利用すれば、冷凍機とじての装置コストはさらに
低減され得る利点がある。
Further, as the expansion mechanism [3] in the above embodiment, an electric superheating expansion valve is used, and the evaporation temperature sensor (9) and the intake gas! If the evaporation temperature Te signal and the intake gas temperature lower 1 signal detected by the +1 sensor (10) are used as valve control inputs, the cost of the refrigerator can be further reduced.

さらに、上記実施例においては、冷房、冷凍。Furthermore, in the above embodiments, cooling and freezing are used.

あるいは冷蔵のみを行う冷媒回路例を示したが、本発明
はこれに限られるものではなく、四路切換弁を用いたヒ
ートポンプ式冷凍機などにあっても適用可能である。
Alternatively, although an example of a refrigerant circuit that performs only refrigeration has been shown, the present invention is not limited to this, and can also be applied to a heat pump type refrigerator using a four-way switching valve.

(発明の効果) 以上説明したように、本発明によれば、初期冷媒不足時
には冷媒の過熱度に基づいて警告信号を出力するととも
に、圧縮機の焼損直前の冷媒不足進行時には冷媒の蒸発
温度、吐出ガス温度および過熱度の少なくとも1つに基
づいて圧縮機を強制停止させて、圧縮機保護を2段階に
構成したので、冷媒不足に起因する圧縮機の焼損防止を
確保しつつ、初期冷媒不足時のみを精度良くかつ低コス
トで検出して圧縮機の焼損のかなり前の段階でのその焼
損原因となる圧縮機の過熱や潤滑油の炭化の進行を早期
に解消することができ、信頼性の向上を図ることができ
るものである。
(Effects of the Invention) As explained above, according to the present invention, when there is an initial refrigerant shortage, a warning signal is output based on the degree of superheating of the refrigerant, and when the refrigerant shortage progresses immediately before the compressor burns out, the evaporation temperature of the refrigerant is Compressor protection is configured in two stages by forcibly stopping the compressor based on at least one of the discharge gas temperature and the degree of superheating, so it protects the compressor from burnout due to refrigerant shortage while also preventing initial refrigerant shortage. It is possible to detect the timing with high precision and at low cost, and to quickly eliminate the causes of compressor overheating and carbonization of lubricating oil, which can cause burnout, at a stage well before compressor burnout, thereby increasing reliability. It is possible to improve this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第5図は本発明の第1実施例を示し、第2
図は冷凍機の全体概略構成図、第3図は冷媒不足検出回
路の内部構成を示す電子回路図、第4図は冷媒不足検出
回路の変形例を示すフローチャート図、第5図は冷媒量
に対する過熱度、蒸発温度および吐出ガス温度の各変化
特性を示す図、第6図は本発明の第2実施例を示す冷媒
不足検出回路の電子回路図である。 (1)・・・圧縮機、(6)・・・閉回路、(9)・・
・蒸発温度センサ、(10)・・・吸入ガス温度センサ
、〈11)・・・吐出ガス温度センサ、(12)・・・
第1検出手段、(13)、(13’ )・・・第2検出
手段、(14)、(14′)・・・冷媒不足検出回路、
(15)・・・警告信号出力回路、(16)、<16′
>・・・停止信号出力回路、(21)・・・第1基準値
設定器、(26)、(26’ )・・・第2基準値設定
器、(28)・・・第3基準値設定器。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 5 show a first embodiment of the present invention, and a second embodiment of the present invention is shown in FIG.
Figure 3 is an electronic circuit diagram showing the internal configuration of the refrigerant shortage detection circuit, Figure 4 is a flowchart diagram showing a modification of the refrigerant shortage detection circuit, and Figure 5 is a diagram showing the refrigerant amount. FIG. 6 is an electronic circuit diagram of a refrigerant shortage detection circuit showing a second embodiment of the present invention. (1)...Compressor, (6)...Closed circuit, (9)...
・Evaporation temperature sensor, (10)...Suction gas temperature sensor, <11)...Discharge gas temperature sensor, (12)...
First detection means, (13), (13')...Second detection means, (14), (14')...Refrigerant shortage detection circuit,
(15)...Warning signal output circuit, (16), <16'
>...Stop signal output circuit, (21)...First reference value setter, (26), (26')...Second reference value setter, (28)...Third reference value Setting device.

Claims (1)

【特許請求の範囲】[Claims] (1) 冷媒不足時に圧縮機(1)を強制停止させるよ
うにした冷凍機の圧縮機保護装置であつて、冷媒の過熱
度(SH)を検出する第1検出手段(12)と、該第1
検出手段(12)の出力を受け、過熱度(SH)が初期
冷媒不足時に相当する警告側設定値(SH_s)以上の
とき冷媒の補充を喚起する警告信号を出力する警告信号
出力手段(15)とを備えるとともに、冷媒の蒸発温度
(Te)、吐出ガス温度(T_2)および過熱度(SH
)の少なくとも1つを検出する第2検出手段(13)と
、該第2検出手段(13)の出力を受け、該出力値が圧
縮機(1)の焼損直前に相当する強制停止側設定値(T
es)、(T_2s)、(SHs_2)以上のとき圧縮
機(1)を強制停止させる停止信号を出力する停止信号
出力手段(16)とを備えたことを特徴とする冷凍機の
圧縮機保護装置。
(1) A compressor protection device for a refrigerator configured to forcibly stop a compressor (1) in the event of refrigerant shortage, which comprises a first detection means (12) for detecting the degree of superheat (SH) of the refrigerant; 1
Warning signal output means (15) receives the output of the detection means (12) and outputs a warning signal to remind replenishment of refrigerant when the degree of superheating (SH) is equal to or higher than a warning side set value (SH_s) corresponding to the initial refrigerant shortage. In addition, the refrigerant evaporation temperature (Te), discharge gas temperature (T_2), and superheat degree (SH
); and a forced stop side setting value that receives the output of the second detection means (13) and whose output value corresponds to immediately before burnout of the compressor (1). (T
es), (T_2s), (SHs_2) or more, a stop signal output means (16) for outputting a stop signal for forcibly stopping the compressor (1). .
JP4020185A 1985-02-28 1985-02-28 Protective device for compressor of refrigerator Pending JPS61197970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4020185A JPS61197970A (en) 1985-02-28 1985-02-28 Protective device for compressor of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4020185A JPS61197970A (en) 1985-02-28 1985-02-28 Protective device for compressor of refrigerator

Publications (1)

Publication Number Publication Date
JPS61197970A true JPS61197970A (en) 1986-09-02

Family

ID=12574168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020185A Pending JPS61197970A (en) 1985-02-28 1985-02-28 Protective device for compressor of refrigerator

Country Status (1)

Country Link
JP (1) JPS61197970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373064A (en) * 1986-09-16 1988-04-02 サンデン株式会社 Protective device for compressor for refrigerator
JP2009192090A (en) * 2008-02-12 2009-08-27 Denso Corp Refrigerating cycle device
JP2010048459A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
WO2010038382A1 (en) * 2008-09-30 2010-04-08 ダイキン工業株式会社 Leakage diagnosing device, leakage diagnosing method, and refrigerating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591971A (en) * 1982-06-29 1984-01-07 日産自動車株式会社 Air cooling device for car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591971A (en) * 1982-06-29 1984-01-07 日産自動車株式会社 Air cooling device for car

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373064A (en) * 1986-09-16 1988-04-02 サンデン株式会社 Protective device for compressor for refrigerator
JP2009192090A (en) * 2008-02-12 2009-08-27 Denso Corp Refrigerating cycle device
JP2010048459A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
WO2010038382A1 (en) * 2008-09-30 2010-04-08 ダイキン工業株式会社 Leakage diagnosing device, leakage diagnosing method, and refrigerating device
JP2010107187A (en) * 2008-09-30 2010-05-13 Daikin Ind Ltd Device and method of diagnosing leakage, and refrigerating device
AU2009299329B2 (en) * 2008-09-30 2013-03-21 Daikin Industries, Ltd. Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
US8555703B2 (en) 2008-09-30 2013-10-15 Daikin Industries, Ltd. Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus

Similar Documents

Publication Publication Date Title
US8539786B2 (en) System and method for monitoring overheat of a compressor
EP1706684B1 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
JPH055564A (en) Air conditioner
US6964173B2 (en) Expansion device with low refrigerant charge monitoring
US5088296A (en) Air conditioner system with refrigerant condition detection for refrigerant recovering operation
JPH0455671A (en) Refrigerating cycle device
JPS61197970A (en) Protective device for compressor of refrigerator
JPH0275868A (en) Controlling method for refrigerator
JPH01107070A (en) Method of detecting shortage of refrigerant for air conditioner
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JPH05240570A (en) Device for warning abnormal condition in temperature regulating device
JPH07294073A (en) Refrigeration device
CN115325669B (en) Element temperature control method and device, air conditioner and storage medium
JPS6383556A (en) Refrigeration cycle
JP3363623B2 (en) refrigerator
KR100713823B1 (en) Method for controlling operation of compressor for overheating protection
JP2701634B2 (en) Refrigeration equipment
KR101243228B1 (en) Apparatus for cancellation power-saving mode of air conditioner and method thereof
JP3213456B2 (en) refrigerator
JPS63279071A (en) Protective device for compressor for refrigerator
JPH04208361A (en) Binary refrigerator
CN115789985A (en) Air conditioner
KR100237926B1 (en) Emergency operation method for air conditioner
CN113418326A (en) Pre-protection method for condensing unit and condensing unit