JPS61197889A - Method of connecting branch tube to air tube main tube - Google Patents

Method of connecting branch tube to air tube main tube

Info

Publication number
JPS61197889A
JPS61197889A JP3499285A JP3499285A JPS61197889A JP S61197889 A JPS61197889 A JP S61197889A JP 3499285 A JP3499285 A JP 3499285A JP 3499285 A JP3499285 A JP 3499285A JP S61197889 A JPS61197889 A JP S61197889A
Authority
JP
Japan
Prior art keywords
branch pipe
diameter
tube
air tube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3499285A
Other languages
Japanese (ja)
Inventor
川村 喜紀
石原 勝郎
政一 田中
稲葉 朋生
正彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3499285A priority Critical patent/JPS61197889A/en
Publication of JPS61197889A publication Critical patent/JPS61197889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明はプラスチック製エアチューブ本管にプラスチッ
ク製分岐管を接続する方法に関し、詳細には接続の為の
コストが安価であり、特に圃場自動かんがいシステムに
おけるエフパルプの様に接続箇所が多数ある適用分野に
おいて多大な経済的効果を奏するエアチューブ本管への
分岐管接続方法に関するものである。 [従来の技術] 作物の収穫量は地域の気象条件によって大きな影響を受
け、特に降雨量の多少による作物生育への119は顕著
であり、洪水や干ばつに伴なう収穫の激減は有史以来獣
界各地において無数の悲劇を生み出してきた。 そこで例えば降雨量の少ない地域では圃場内に人工的な
給水設備を設けて作物に給水し、これによって作物の生
育を補助するという所謂かんがいが実施されている。か
んがいの実施に際しては作物の栽培形態によって幾つか
の種類が考えられるが、現在では(イ)越泣かんがい、
(ロ)うね聞かんがい、(ハ)小径スかんがい、(ニ)
散水かんがい等の方法が主流となっており、■場の地形
条件等によって上記(イ)〜(ニ)のいずれかの方法が
利用されている。 ところで一般のうね栽培作物のかんがいには、設備が簡
易で給水量の調節が容易な(ロ)うね間かんがいが汎用
されており、その具体的実施手段としては第2図(a)
、(b)、(c)に示す様な方法が考えられている。第
2図(a)に示すものは、うね6同士の間の溝部(うね
間)へ通水路4から給水を行なう方法であり、水位5の
高い通水路4とうねの間にサイホン7をかけわたすこと
によって水位の低い圃場内に給水を行なう、そして給水
を停止する場合にはサイホン7を通水路4から撤去する
。第2図(b)に示すかんがい設備では、通水路4の通
水路側壁にスライドゲート状の堰を設け、堰を開放した
ときはうね間への給水がなされ、堰を閉鎖したときには
圃場への給水が停止される。第2図(C)に示すかんが
い設備では通水路4内の水流を分岐パイプ及びバルブを
介してうね間に分流し、バルブの開閉操作によって圃場
への給水、断水を行なうものである。このようなかんが
い設備では圃場に沿って設けられた通水路4からうね間
の一方端側へかんがい用水を流し込む方法であるから、
圃場に対するかんがい用水の給水状態は第3図に示す様
に通水路4に近い側で多く、通水路4より遠い側で少な
くなる傾向がある。そこでかんがい給水量を増やして遠
い側の給水量を希望量に近づける様にすれば通水路4に
近い側での給水量が過剰となり1通水路4に近い側で根
腐れ等を起こすこともある。このことから理解される様
に圃場内の土中に含まれる含水量をうね間の全長に亘っ
て常に最適含水状態に維持することは決して容易なこと
ではなく、これを実現する為にはかんがい水の供給制御
についてなんらかの方策を確立する必要がある。この様
な要望からかんがい用水の給水サイクルについての研究
が進められ、その結果、給水と給水停止を一定のサイク
ルで断続的に繰り返せば圃場全域にわたって均一な給水
状態が得られることが分かる様になってきた。そこで通
水路に形成される各給水口毎に或は数本の分岐管に1個
の割合で電磁弁やダイヤフラム式エアバルブ等のコント
ロールバルブを設け、かんがい用水の給杏開始及び給水
停止を特定のサイクルタイムで繰返し実行することによ
り圃場内の含水量を全面に亘って最適状態に調整するこ
とが推奨されるに至った。 [発明が解決しようとする問題点1 特に広大な耕作面積を有する圃場に対するうね間かんが
いを行なう場合において、労力の効率的利用を考慮して
自動化を進めていこうとすれば。 通水路及び/又は通水路端末から圃場へ給水する為の装
置t(前記層やサイホン等)を、集中的に管理並びに調
整を行なうことのできる装置に変換する必要がある。そ
こで上記した如く堰やサイホンの代りに電磁弁やダイヤ
フラム式バルブ等のコントロールバルブを設置し、給水
の開始及び停止操作をバルブの遠隔操作で行なうという
ことが第1番に考えられる□、第4図は従来汎用されて
いるダイヤプラム式バルブの概略図であり、これに基づ
いて説明すると、第4図では弁が閉鎖された状態を示し
おり、エア導入孔22から圧縮空気が供給されるとダイ
ヤプラムlOが下方に押圧変形され、押圧力によって弁
棒21が矢印A方向に押し下げられる。その為弁棒21
の先端に設けられているパツキン23が弁座24から離
れて降下し、矢印Fa力方向流れてくる水は弁座24と
パツキン23の隙間を通って図面右側(矢印Fb)へ流
れていく、そしてエア導入孔22からの圧縮空気の供給
が停止−放圧されるとばねの復元力によって弁棒21が
ダイヤフラム10を押上げる様に上昇しパツキン23が
弁座24に圧接されて水流Faは停止状態とな”る。 ところで第5図に示す様な自動かんがいシステムにおい
て多数のうね間6aに対応させて設けた分岐パイプ19
に上記ダイヤフラム式バルブ20aを介設する場合には
、各バルブ20a毎にエアー(圧縮空気)供給用の分岐
管25を取付け、該分岐管25をエアチューブ本管26
に接続している。尚エアチューブ木管26は、例えばダ
イヤフラム式バルブ20aを1つおきに所定数まとめた
ユニット毎に設けられ、夫々電磁弁27を介してコンプ
レッサ28に接続されている。そして分岐管25とエア
チューブ木管26の接続部には、例えば第6図(全体平
面図)及び第7図(第6図における■−■線断面矢視図
)に示す様なT字型接続部材29が使用されている。 該接I&部材29は第6.7図に示す如く、開口部30
.31にはエアチューブ本管26を、また開口部32に
は分岐管25を夫々挿入・接続するものであって1例え
ば接続部材29内に挿入された分岐管25はゴム製シー
ルリング33によって気密が保持され、嵌込み部材34
が分岐管25の外周壁と接圧した状態で受は部材35と
嵌合することによって分岐管25の脱出が防止されてい
る。 しかるに上記接続部材29は良好な気密性を発揮するも
のの、構造が複雑で接続操作が煩雑であるだけでなく部
品点数が多く高価であり、その為上記の様な多数の接続
箇所を有する自動かんがいシステムの分野に適用した場
合には接続の為の作業並びに部品コストが高騰し1問題
となっている。 本発明はこうした事情に着目してなされたものであって
、接続コストが安価であり、且つ気密性を確保しつつ容
易に接続操作を行なうことができる様なエアチューブ本
管への分岐管接続方法を提供しようとするものである。 E問題点を解決するための手段] 上記[1的を達成した本発明方法とは、エアチューブ本
管壁面に分岐管径より小径の孔を穿設した後1分岐管の
接続端に上記穿設孔より小径となる様な弾性的圧縮を加
え、これを該穿設孔へ挿入し、上記分岐管圧縮部の弾性
的回復力によって分岐管をエアチューブ本管に対し気密
的に接続する点に要旨が存在する。 [作用] 本発明においては、まず始めにエアチューブ木管壁面に
分岐管挿入用の孔を穿設する。尚穿設孔の孔棧は分岐管
径より小径とする必要がある。但し穿孔手段については
特に制限がなく、例えばポンチ等を用いてエアチューブ
本管壁面を打ち抜けばよい、一方分岐管の接続端は、上
記穿設孔に挿入可能とする為に穿設孔径より小径とする
必要があり、その為には例えば上記接続端をかしめ具等
の狭圧具によって縮径させる。但し縮径に当たっては分
岐管材料が破断しない様に弾性限界内で縮径を行なわな
ければならない、又縮径に際し必要により前記接続端を
加熱してもよい。 次いでエアチューブ本管の穿設孔に分岐管の縮径接続端
を挿入しその状態で保持すると、縮径接続端はその弾性
的回復力によって元の分岐管径に戻ろうとする。しかる
に縮径接続端のつけ根部はエアチューブ本管穿設孔に抑
えられて穿設孔径以上に広がることができない為縮径接
続部はエアチューブ本管の穿設孔にくい込み、エアチュ
ーブ木管と分岐管は強固に結合するだけでなく縮径接続
端つけ根部の外周面が穿設孔に強く密接する為高い気密
性が確保される。 本発明の基本構成は上記の通りであるが、穿設孔の孔径
については好ましくは分岐管径の85〜95%とするこ
とが推奨され、又分岐管接続端の外径は分岐管径の80
〜90%とすることが望ましい、又本発明におけるエア
チューブ本管及び分岐管の素材についてはプラスチック
材料でありさえすれば特に制限はなく、例えばPEやナ
イロン等が挙げられるが1本発明においては上記材料の
弾性的性質を利用するのでこの観点からはヤング4g0
.4〜1.0 (X 1G’ kg/ 0m2)の材料
が特に好ましい、尚エアチューブ本管と分岐管を同一材
料で形成すれば両者の線膨張率が同じとなる為温度変化
に伴う結合のゆるみや気密性の低下を一層確実に回避す
ることができる。その他、本発明においては穿孔操作と
挟圧操作を簡便に行なう為、第8図に示す様なポン チ
部36と挟圧部37を兼ね備えた工具38を使用するこ
とが推奨される。 [実施例] 第1図(A)に示す様に、外径g、om−のPE製エア
チューブ本管41にポンチ(図示せず)を用いて孔径4
60■φの孔42を穿設した。一方ダイヤフラム式バル
ブに連通ずる外径4.5 +s−のPE製分岐管25の
先端をかしめ具(図示せず)を用いて3.8 mm*に
縮径して接続用分岐管を製作した0次いで穿設孔42に
分岐管25のta続端25aを挿入し、しばらく経過す
ると第1図(B)(断面説明図)に示す様に分岐管接続
端の弾性的な回復によって接続端のつけ根部25bが穿
設孔42に強く密着し、且つ接続端の先端25aが穿設
孔径より広がって気密性を有する堅固な結合状態を得る
ことができた。 [発明の効果] 本発明は以上の様に構成されており以下要約する効果を
得ることができる。 (1)第6.7図に示す様な接続部材を一切必要としな
いので接続に要するコストを飛躍的に低減することがで
き、自動かんがいシステムの様な多数の接続箇所を有す
る分野において多大な経済的効果を得ることができる。 (2)接続の為の操作が容易であり、しかも堅固で且つ
十分な気密性を有する接続状態を得ることができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for connecting a plastic branch pipe to a plastic air tube main pipe, and more particularly, the cost for connection is low, and it is particularly suitable for automatic use in agricultural fields. The present invention relates to a method for connecting a branch pipe to a main air tube, which has great economic effects in application fields where there are many connection points, such as F-pulp in an irrigation system. [Conventional technology] Crop yields are greatly affected by local weather conditions, and the amount of rainfall has a particularly significant effect on crop growth, and drastic decreases in yields due to floods and droughts have never been seen since recorded history. It has caused countless tragedies all over the world. Therefore, for example, in areas with low rainfall, so-called irrigation is carried out in which artificial water supply equipment is installed in a field to supply water to crops, thereby assisting the growth of the crops. When implementing irrigation, there are several types of irrigation that can be considered depending on the cultivation form of the crop, but currently (a) irrigation;
(b) ridge irrigation, (c) path irrigation, (d)
Methods such as watering irrigation are the mainstream, and one of the methods (a) to (d) above is used depending on the topographical conditions of the site. By the way, for irrigation of general ridge-grown crops, ridge irrigation is commonly used because the equipment is simple and the amount of water supplied is easy to adjust.
, (b), and (c) have been considered. The method shown in FIG. 2(a) is a method in which water is supplied from the passageway 4 to the grooves (between the ridges) between the ridges 6, and a siphon 7 is placed between the passageway 4 where the water level 5 is high and the ridges. Water is supplied to the field where the water level is low by pouring water across the field, and when the water supply is to be stopped, the siphon 7 is removed from the passageway 4. In the irrigation equipment shown in Figure 2 (b), a slide gate-shaped weir is installed on the side wall of the waterway 4, and when the weir is opened, water is supplied to the furrows, and when the weir is closed, water is supplied to the field. water supply will be cut off. In the irrigation equipment shown in FIG. 2(C), the water flow in the water passage 4 is divided between the furrows through branch pipes and valves, and water is supplied to or cut off from the field by opening and closing the valves. In this type of irrigation equipment, irrigation water is poured into one end of the ridges from the water passage 4 provided along the field.
As shown in FIG. 3, the state of irrigation water supply to the fields tends to be larger on the side closer to the canal 4 and less on the side farther from the canal 4. Therefore, if the amount of water supplied for irrigation is increased to bring the amount of water supplied on the far side closer to the desired amount, the amount of water supplied on the side closer to the water channel 4 will be excessive, which may cause root rot on the side closer to the water channel 1. . As can be understood from this, it is by no means easy to maintain the moisture content in the soil in the field at an optimal moisture content over the entire length of the furrows, and in order to achieve this, It is necessary to establish some strategy for controlling the supply of irrigation water. In response to these demands, research into irrigation water supply cycles has progressed, and as a result, it has become clear that by repeating water supply and water supply interruption intermittently in a fixed cycle, a uniform water supply condition can be obtained throughout the field. It's here. Therefore, control valves such as solenoid valves or diaphragm air valves are installed at each water supply port formed in the water flow channel or at a rate of one control valve for several branch pipes to control the start and stop of irrigation water supply at specific times. It has become recommended that the water content in the field be adjusted to the optimum state over the entire field by repeating the process over a cycle time. [Problem 1 to be solved by the invention Particularly when performing furrow irrigation on a farm with a vast cultivated area, automation should be promoted in consideration of efficient use of labor. It is necessary to convert the device t for supplying water from the canal and/or the canal terminal to the field (such as the layer or siphon) into a device that can be centrally managed and regulated. Therefore, as mentioned above, the first idea is to install a control valve such as a solenoid valve or diaphragm valve instead of a weir or siphon, and start and stop water supply by remote control of the valve. The figure is a schematic diagram of a conventionally used diaphragm valve. Based on this figure, the valve is shown in a closed state, and when compressed air is supplied from the air introduction hole 22, The diaphragm IO is pressed downward and the valve stem 21 is pushed down in the direction of arrow A by the pressing force. Therefore, the valve stem 21
The gasket 23 provided at the tip of the gasket 23 separates from the valve seat 24 and descends, and the water flowing in the direction of the arrow Fa force passes through the gap between the valve seat 24 and the gasket 23 and flows to the right side of the drawing (arrow Fb). Then, when the supply of compressed air from the air introduction hole 22 is stopped and the pressure is released, the valve stem 21 rises to push up the diaphragm 10 due to the restoring force of the spring, the seal 23 is pressed against the valve seat 24, and the water flow Fa is By the way, in an automatic irrigation system as shown in FIG.
When the diaphragm type valve 20a is interposed in the valve 20a, a branch pipe 25 for supplying air (compressed air) is attached to each valve 20a, and the branch pipe 25 is connected to the air tube main pipe 26.
is connected to. The air tube wood pipe 26 is provided for each unit in which a predetermined number of diaphragm valves 20a are arranged, for example, every other unit, and each is connected to a compressor 28 via a solenoid valve 27. The connecting portion between the branch pipe 25 and the air tube wood pipe 26 is provided with a T-shaped connection, for example, as shown in FIG. 6 (overall plan view) and FIG. 7 (cross-sectional view taken along the line ■-■ in FIG. Member 29 is used. The contact member 29 has an opening 30 as shown in Fig. 6.7.
.. The air tube main pipe 26 is inserted and connected to the opening 31, and the branch pipe 25 is inserted and connected to the opening 32. For example, the branch pipe 25 inserted into the connecting member 29 is sealed airtight by a rubber seal ring 33. is held, and the fitting member 34
The receiver is fitted with the member 35 in a state in which it is in contact with the outer circumferential wall of the branch pipe 25, thereby preventing the branch pipe 25 from escaping. However, although the connecting member 29 exhibits good airtightness, it not only has a complicated structure and a complicated connection operation, but also has a large number of parts and is expensive. When applied to the field of systems, one problem is that the costs for connection work and parts increase. The present invention has been made in view of these circumstances, and provides a branch pipe connection to a main air tube that is inexpensive in connection cost, and allows for easy connection operations while ensuring airtightness. It is intended to provide a method. Means for Solving Problem E] The method of the present invention that achieves the first objective is to drill a hole with a smaller diameter than the branch pipe diameter in the wall surface of the main air tube, and then drill the hole at the connecting end of the first branch pipe. Applying elastic compression to make the diameter smaller than the hole, inserting it into the hole, and connecting the branch pipe airtightly to the main air tube by the elastic recovery force of the compressed part of the branch pipe. There is a summary in . [Operation] In the present invention, first, a hole for inserting a branch pipe is bored in the wood wall of the air tube. The diameter of the drilled hole must be smaller than the diameter of the branch pipe. However, there are no particular restrictions on the perforation means; for example, a punch or the like may be used to punch through the wall of the main air tube.On the other hand, the connecting end of the branch pipe should be made with a diameter smaller than the diameter of the perforation so that it can be inserted into the perforation. It is necessary to make the diameter small, and for that purpose, for example, the diameter of the connecting end is reduced using a narrow pressure tool such as a caulking tool. However, when reducing the diameter, the diameter must be reduced within the elastic limit so as not to break the branch pipe material, and the connecting end may be heated if necessary during the diameter reduction. Next, when the reduced diameter connecting end of the branch pipe is inserted into the bored hole of the main air tube and held in that state, the reduced diameter connecting end tends to return to the original branch pipe diameter due to its elastic recovery force. However, the base of the reduced-diameter connection end is suppressed by the air tube main's drilling hole and cannot expand beyond the diameter of the drilled hole, so the reduced-diameter connection part is wedged into the air tube's main hole, causing the air tube to form a wood pipe. The branch pipe is not only firmly connected, but also has a high airtightness because the outer circumferential surface of the base of the reduced diameter connection end is in close contact with the drilled hole. The basic configuration of the present invention is as described above, but it is recommended that the hole diameter of the drilled hole is preferably 85 to 95% of the branch pipe diameter, and the outer diameter of the branch pipe connection end is the branch pipe diameter. 80
It is desirable that the material of the main air tube and the branch pipe in the present invention be made of plastic material, as long as it is a plastic material. Examples include PE and nylon, but in the present invention, From this point of view, Young 4g0
.. 4 to 1.0 (X 1G' kg/0m2) is particularly preferable.If the main air tube and the branch tube are made of the same material, the coefficient of linear expansion of both will be the same, which will prevent the bonding due to temperature changes. Looseness and deterioration of airtightness can be more reliably avoided. In addition, in the present invention, it is recommended to use a tool 38 having both a punching part 36 and a clamping part 37 as shown in FIG. 8 in order to easily perform the drilling operation and the clamping operation. [Example] As shown in FIG. 1(A), a hole diameter of 4 is punched into a PE air tube main pipe 41 with an outer diameter of g and om- using a punch (not shown).
A hole 42 with a diameter of 60 mm was drilled. On the other hand, the diameter of the tip of a PE branch pipe 25 with an outer diameter of 4.5 +s-, which communicates with the diaphragm valve, was reduced to 3.8 mm* using a caulking tool (not shown) to produce a connecting branch pipe. 0 Next, the TA connecting end 25a of the branch pipe 25 is inserted into the bored hole 42, and after a while, the connecting end of the branch pipe recovers elastically as shown in FIG. 1(B) (cross-sectional explanatory diagram). The root portion 25b was in strong contact with the drilled hole 42, and the tip 25a of the connecting end was wider than the diameter of the drilled hole, so that a solid and airtight bonding state could be obtained. [Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below. (1) Since there is no need for any connection members as shown in Figure 6.7, the cost required for connection can be dramatically reduced, and it is very useful in fields with many connection points such as automatic irrigation systems. Economic effects can be obtained. (2) The operation for connection is easy, and a connection state that is firm and has sufficient airtightness can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の実施例方法を示す
概略説明図、第2図(a)〜(C)はうね聞かんがい方
法を示す斜視図、第3図は圃場における水分浸透状況を
示す断面説明図、第4図はダイヤフラム式バルブを示す
断面説明図、第5図は自動かんがいシステムを示す斜視
説明図、第6図はT字型接続部材を示す平面図、第7図
は第6図における■−w線断面矢視図、第8図は本発明
の実施に適用されるポンチ付きかしめ具を示す模式図で
ある。 25  ・・・分岐管    25a・・・接続端25
b・・・つけ根部   41  ・・・エアチューブ4
2  ・・・穿設孔
Figures 1 (a) and (b) are schematic explanatory diagrams showing an embodiment method of the present invention, Figures 2 (a) to (C) are perspective views showing a ridge irrigation method, and Figure 3 is a diagram showing a method for irrigation in a field. 4 is a sectional explanatory diagram showing the state of water penetration; FIG. 4 is a sectional explanatory diagram showing a diaphragm type valve; FIG. 5 is a perspective explanatory diagram showing an automatic irrigation system; FIG. 6 is a plan view showing a T-shaped connecting member; 7 is a sectional view taken along the line ■-w in FIG. 6, and FIG. 8 is a schematic diagram showing a caulking tool with a punch applied to the implementation of the present invention. 25... Branch pipe 25a... Connection end 25
b... Root part 41... Air tube 4
2...Drilling hole

Claims (1)

【特許請求の範囲】[Claims] プラスチック製エアチューブ木管の壁面にプラスチック
製分岐管を接続する方法であって、エアチューブ本管壁
面に分岐管径より小径の孔を穿設した後、分岐管の接続
端に上記穿設孔より小径となる様な弾性的圧縮を加え、
これを該穿設孔へ挿入し、上記分岐管圧縮部の弾性的回
復力によって分岐管をエアチューブ本管に対し気密的に
接続することを特徴とするエアチューブ本管への分岐管
接続方法。
A method of connecting a plastic branch pipe to the wall of a plastic air tube wood pipe, in which a hole with a diameter smaller than the diameter of the branch pipe is drilled in the wall of the main air tube, and then the connecting end of the branch pipe is connected to the Applying elastic compression to reduce the diameter,
A method for connecting a branch pipe to a main air tube, the method comprising inserting this into the bored hole and connecting the branch pipe to the main air tube in an airtight manner by the elastic recovery force of the branch pipe compression section. .
JP3499285A 1985-02-23 1985-02-23 Method of connecting branch tube to air tube main tube Pending JPS61197889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3499285A JPS61197889A (en) 1985-02-23 1985-02-23 Method of connecting branch tube to air tube main tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3499285A JPS61197889A (en) 1985-02-23 1985-02-23 Method of connecting branch tube to air tube main tube

Publications (1)

Publication Number Publication Date
JPS61197889A true JPS61197889A (en) 1986-09-02

Family

ID=12429636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3499285A Pending JPS61197889A (en) 1985-02-23 1985-02-23 Method of connecting branch tube to air tube main tube

Country Status (1)

Country Link
JP (1) JPS61197889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327886A (en) * 2001-04-27 2002-11-15 Agri Techno Yazaki Kk Connecting structure for supply port of air chamber and connecting pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327886A (en) * 2001-04-27 2002-11-15 Agri Techno Yazaki Kk Connecting structure for supply port of air chamber and connecting pipe
JP4574892B2 (en) * 2001-04-27 2010-11-04 アグリテクノ矢崎株式会社 Connecting structure of air chamber supply port and connecting pipe

Similar Documents

Publication Publication Date Title
US6892113B1 (en) Irrigation controller using regression model
US20050279856A1 (en) Water-conserving surface irrigation systems and methods
US20020070297A1 (en) Self-cleaning, pressure compensating, irrigation drip emitter
US20120066973A1 (en) Method for hydroponically growing plants that are root-nurtured
US5113888A (en) Pneumatic moisture sensitive valve
CN104584984A (en) Environment-friendly water-saving type infiltrating irrigation pipe with automatic adjusting function
AU2007330627B2 (en) Moisture responsive device and method
CN105210821B (en) A kind of method and device for automatically controlling watering
JPS61197889A (en) Method of connecting branch tube to air tube main tube
US5794848A (en) Hygrostat and system
CN115289273B (en) Drip irrigation valve for fine planting
Fouss Simulated feedback-operation of controlled-drainage/subirrigation systems
US4121621A (en) Pilot operated flushing valve
CN209135019U (en) Wheat multi items resisting drought saving water computer controls irrigation system
JP2004187510A (en) Dripping water supply valve opening and closing according to dry/wet of soil
CN2281068Y (en) Microporous pipes for permeating and dropping irrigation
CN218941927U (en) Buried drip irrigation pipe
CN217790776U (en) Efficient water-saving drip irrigation device
US20220217927A1 (en) Irrigation device emitters with rubber o-ring flow regulators
JPH0657100B2 (en) Irrigation control method
CN217336603U (en) Urban greening vegetation management and control system
CN219844435U (en) Reducing long and narrow drip irrigation pipe
JPS61197862A (en) Open/close control method of irrigation valve
AU702298B2 (en) Hygrostat and system
Anand et al. Automation Irrigation System for Floriculture, Vegetable and Cereal Crops