JPS6119782A - Copper colloid catalyst solution - Google Patents

Copper colloid catalyst solution

Info

Publication number
JPS6119782A
JPS6119782A JP13850784A JP13850784A JPS6119782A JP S6119782 A JPS6119782 A JP S6119782A JP 13850784 A JP13850784 A JP 13850784A JP 13850784 A JP13850784 A JP 13850784A JP S6119782 A JPS6119782 A JP S6119782A
Authority
JP
Japan
Prior art keywords
copper
solution
aqueous solution
divalent
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13850784A
Other languages
Japanese (ja)
Inventor
Takao Sato
高雄 佐藤
Kenji Kobayashi
健治 小林
Shinichi Mitsui
三井 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13850784A priority Critical patent/JPS6119782A/en
Publication of JPS6119782A publication Critical patent/JPS6119782A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To provide a catalyst solution for electroless plating good in the precipitation property to the through-hole wall of a plastic laminate plate, constituted of an aqueous copper colloid solution with predetermined pH containing copper metal particles and gelatin in specific concn. CONSTITUTION:This catalyst solution for electroless plating comprises an aqueous copper colloid solution with pH 2-4 containing 0.3g/l or more of copper metal particles and 0.8g or more per 1g of copper metal particles of gelatin. In preparing this aqueous solution, 1.2g or more per 1g of a divalent copper ion of dimethylaminoborane is added to an aqueous solution with pH 1-2 and temp. of 40-70 deg.C containing the divalent copper ion and 0.8g or more per 1g of the divalent copper ion of gelatin. After the divalent copper ion was reduced to metal copper, the pH of this aqueous solution is adjusted to 2-4. The aforementioned catalyst solution by this nethod is used, for example, in the preparation of a printed wiring board and the electroless copper plating coating to the through- hole wall of a copper clad epoxy resin laminated plate can be perfectly performed.

Description

【発明の詳細な説明】 (技術分野) 本発明は無電解めっき用銅コロイド触媒液およびその製
造方法に関し、とくにプラスチック等の電気絶縁物質を
活性化して無電解めっきによる金属被覆工程の準備を行
なうための銅コロイド触媒液に関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a copper colloidal catalyst solution for electroless plating and a method for producing the same, particularly for activating an electrically insulating material such as plastic to prepare it for a metal coating process by electroless plating. The present invention relates to a copper colloidal catalyst solution for

(従来技術) 一般に電子工業においては、プラスチックを無電解めっ
きにより金属被覆し導電化することが広く行なわれてい
る。例えば印刷配線板の製造においては、銅張ジェポキ
シ樹脂積層板の表面の所望の位置に貫通孔を形成した後
貫通孔壁に無寛解めっき用触媒を吸着させ次いで無電解
銅めっき等の無電解めっきによシ貫通孔壁面に金属被覆
を施こし貫通孔壁面を導電化することが行なわれて諭る
(Prior Art) In general, in the electronics industry, it is widely practiced to coat plastics with metals by electroless plating to make them conductive. For example, in the production of printed wiring boards, after through-holes are formed at desired positions on the surface of a copper-clad epoxy resin laminate, a catalyst for non-remission plating is adsorbed onto the walls of the through-holes, and then electroless plating such as electroless copper plating is performed. It is recommended that a metal coating be applied to the wall surface of the through hole to make the wall surface conductive.

無電解めっき用触媒としてはパラジウム金属が一般に使
用されており、パラジウム金属の貫通孔壁面への形成は
貫通孔壁面を塩化第一錫と塩化パラジウムの混合コロイ
ド水溶液に接触させた後水洗する。この貫通孔壁面へは
パラジウム金属と錫化合物が同時に吸着する。無電解め
っきの触媒となるためにはパラジウム金属と同時に吸着
した錫化合物を塩酸溶液あるいはホウフッ化水素酸溶液
に浸漬して除去し、パラジウム金属が露出するようにし
なければならない。しかし上記酸水溶液に浸漬する際、
錫化合物の除去と同時にパラジウム金属も除去される場
合がある。特に銅張ジェポキシ樹脂積層板の貫通孔壁の
ガラス表面からはパラジウム金属が除去されやすく、シ
、ばしは貫通孔壁への無電解銅めっき析出不良の原因と
なっていた。
Palladium metal is generally used as a catalyst for electroless plating, and palladium metal is formed on the wall surface of the through hole by bringing the wall surface of the through hole into contact with a mixed colloidal aqueous solution of stannous chloride and palladium chloride, and then washing with water. Palladium metal and a tin compound are simultaneously adsorbed onto the wall surface of this through hole. In order to serve as a catalyst for electroless plating, the tin compound adsorbed at the same time as the palladium metal must be removed by immersion in a hydrochloric acid solution or a fluoroboric acid solution to expose the palladium metal. However, when immersed in the above acid aqueous solution,
Palladium metal may also be removed at the same time as the tin compound is removed. In particular, palladium metal is easily removed from the glass surface of the through-hole wall of a copper-clad epoxy resin laminate, and the presence of abrasives causes poor electroless copper plating deposition on the through-hole wall.

(発明の目的) 本発明の目的れ上記従来の無電解めっき用触媒液の欠点
を除去した新規な無電解めっき用触媒液卦よびその製造
方法を提供することにちる。
(Object of the Invention) It is an object of the present invention to provide a novel catalyst liquid for electroless plating that eliminates the drawbacks of the conventional catalyst liquid for electroless plating, and a method for producing the same.

(発明の構成) 本発明の無電解めっき用触媒液は、銅金属粒子の濃度が
0.3g/Q以上と銅金属粒子1g当りゼラチン0.8
g以上を含むP)12〜4の銅コロイド水溶液から成り
、銅コロイド水溶液は2価の銅イオンと2価の銅イオン
1g当シゼラチン08g以上を含むPH1〜2で、かつ
液温40〜70℃の水溶液に2価の銅イオン1g当り1
,2g以上のジメチルアミンボランを添加し2価の銅イ
オンを金属銅に還元した後、該水溶液のPHを2〜4に
調整することから製造される。
(Structure of the Invention) The catalyst solution for electroless plating of the present invention has a concentration of copper metal particles of 0.3 g/Q or more and 0.8 gelatin per 1 g of copper metal particles.
P) Containing 12 to 4 g or more of copper colloid aqueous solution, the copper colloid aqueous solution having a pH of 1 to 2 containing divalent copper ions and 08 g or more of shizelatin per 1 g of divalent copper ions, and a liquid temperature of 40 to 70°C. 1 per gram of divalent copper ion in an aqueous solution of
, 2 g or more of dimethylamine borane is added to reduce divalent copper ions to metallic copper, and then the pH of the aqueous solution is adjusted to 2 to 4.

本発明の銅コロイド触媒液の製造に於いて2価の銅イオ
ン源としては、硫酸鋼あるいは水酸化第2@が使用でき
、また水溶液のPH調整には硫酸および水酸化ナトリウ
ムちるいけ水酸化カリウムが使用される。2価の銅イオ
ンをジメチルアミンボランで還元する際、水素ガスの発
生に伴い、気泡が生成するが水溶液中の泡立ちを減少さ
せ、2価の銅イオンの還元反応を均一にするために、ブ
チルアルコール等の消泡性のあるアルコールを使用して
も、しいつジメチルアミンボランによシ還元された2価
の銅イオンは銅金属粒子となり、・ゼラチンにより保護
されコロイド粒子(銅コロイド)を形成する。鋼コロイ
ドはP)J4以下で安定であり、PHが4を仁えると凝
築沈殿してし捷う。また銅張ジェポキシ樹脂積層板の貫
通孔壁への吸着は、銅コロイド触媒液のPHが2〜4で
すぐれており、また貫通孔壁に吸着した銅コロイドのゼ
ラチン保護膜(銅金属粒子を保護している膜)は水洗に
より容易に除去され、銅金属粒子が貫通孔壁に残シ、無
電解めっき用触媒として働らく。なお銅コロイド触媒液
中の銅金属粒子の濃度は0.3 g/λ以上が適当でh
 J) s 03 g/βよシも減少すると銅コロイド
の吸着性が著しく減少する。
In the production of the copper colloidal catalyst solution of the present invention, sulfuric acid steel or hydroxide dihydroxide can be used as the divalent copper ion source, and sulfuric acid and sodium hydroxide, potassium hydroxide, etc. can be used to adjust the pH of the aqueous solution. is used. When divalent copper ions are reduced with dimethylamine borane, bubbles are generated as hydrogen gas is generated, but in order to reduce bubbling in the aqueous solution and make the reduction reaction of divalent copper ions uniform, butyl Even if an antifoaming alcohol such as alcohol is used, the divalent copper ions reduced by dimethylamine borane become copper metal particles, and are protected by gelatin to form colloidal particles (copper colloid). do. Steel colloids are stable below P)J4, and when the pH reaches 4, they coagulate and precipitate. In addition, adsorption to the through-hole walls of a copper-clad epoxy resin laminate is excellent when the pH of the copper colloid catalyst solution is 2 to 4. The film (which is coated with the coating) is easily removed by washing with water, and the copper metal particles remain on the walls of the through-holes, where they act as a catalyst for electroless plating. The appropriate concentration of copper metal particles in the copper colloidal catalyst solution is 0.3 g/λ or more.
J) When s 03 g/β also decreases, the adsorption of copper colloids decreases significantly.

(実施例) 以下本発明を実施例によシ詳細に説明する。(Example) The present invention will be explained in detail below using examples.

〔実施例−1〕 ゼラチン10gを約700mjLの純水に添加し、液温
約60℃でゼラチンを完全に純水に溶解させた。次いで
硫酸銅(CuSO4,51120)を24、9 g添加
し、完全に溶解させた後、水溶液のPHを硫酸水溶液で
約1.8に調整した。次に濃度100 g/l.のジメ
チルアミンボラン水溶液を100m1添加し、液温60
℃で銅イオンを完全に金属銅に還元した。なお消泡剤と
してブチルアルコールを20m!添加した。水溶液の温
度を室温まで冷却し水溶液の容量を純水を加えてILと
し、銅コロイド触媒液の濃縮液を製造した。本液中の銅
金属粒子の濃度は6.3g/Lゼラチンの濃度は10 
g/I1.である。
[Example-1] 10 g of gelatin was added to about 700 mjL of pure water, and the gelatin was completely dissolved in the pure water at a liquid temperature of about 60°C. Next, 24.9 g of copper sulfate (CuSO4, 51120) was added and completely dissolved, and the pH of the aqueous solution was adjusted to about 1.8 with an aqueous sulfuric acid solution. Next, a concentration of 100 g/l. Add 100ml of dimethylamine borane aqueous solution of
The copper ions were completely reduced to metallic copper at ℃. In addition, use 20m of butyl alcohol as an antifoaming agent! Added. The temperature of the aqueous solution was cooled to room temperature, and the volume of the aqueous solution was adjusted to IL by adding pure water to produce a concentrated solution of copper colloidal catalyst solution. The concentration of copper metal particles in this solution is 6.3g/L The concentration of gelatin is 10
g/I1. It is.

〔実施例−2〕 実施例−1で調製した銅コロイド触媒液の濃縮液を純水
で希釈し、銅金属粒子の濃度1 g/II=。
[Example 2] The concentrated copper colloidal catalyst solution prepared in Example 1 was diluted with pure water to obtain a copper metal particle concentration of 1 g/II=.

ゼラチンの濃度1.58 g/I1.、 PH= 3の
銅コロイド触媒液を調製した。この銅コロイド触媒液に
貫通孔の形成された銅張ジェポキシ樹脂禎層板を液温4
0℃で約1分間浸漬後1分間水洗し、次いで液温25℃
PH=13の無電解銅めっき液に約10分間浸漬し、貫
通孔壁への無電解銅めっきの析出性を調べた。貫通孔壁
の断面観察によシ貫通孔壁への無電解銅めっきの被覆は
完全であることが確認された。
Gelatin concentration 1.58 g/I1. A copper colloidal catalyst solution with pH=3 was prepared. A copper-clad jepoxy resin plate with through-holes formed in this copper colloidal catalyst solution was heated to 4.
After soaking at 0°C for about 1 minute, rinse with water for 1 minute, then soak at 25°C.
The sample was immersed in an electroless copper plating solution having a pH of 13 for about 10 minutes, and the deposition properties of electroless copper plating on the walls of the through hole were examined. A cross-sectional observation of the through-hole wall confirmed that the through-hole wall was completely coated with electroless copper plating.

〔実施例−3〕 実施例−1で調製した銅コロイド触媒液の濃縮液を純水
で希釈し、銅金属粒子の濃度0.3 g/λ。
[Example-3] The concentrated solution of the copper colloidal catalyst solution prepared in Example-1 was diluted with pure water, and the concentration of copper metal particles was 0.3 g/λ.

ゼラチンの濃度4.76g/It、PH=3の銅コロイ
ド触媒液を調製し、実施例−2と同じ操作により銅張り
エポキシ樹脂積層板に無電解銅めっきを行なった。
A copper colloidal catalyst solution with a gelatin concentration of 4.76 g/It and a pH of 3 was prepared, and electroless copper plating was performed on a copper-clad epoxy resin laminate using the same procedure as in Example-2.

(発明の効果) ・以上本発明により貫通孔壁への無電解銅めっきの析出
性はすぐれており、本発明の実用性が立証された。
(Effects of the Invention) As described above, the present invention has excellent deposition properties of electroless copper plating on the walls of through holes, and the practicality of the present invention has been verified.

Claims (2)

【特許請求の範囲】[Claims] (1)銅金属粒子の濃度が0.3g/l以上と銅金属粒
子1g当りゼラチン0.8g以上を含むPH2〜4の水
溶液からなる無電解めっき用銅コロイド触媒液。
(1) A copper colloidal catalyst solution for electroless plating consisting of an aqueous solution having a pH of 2 to 4 and containing 0.3 g/l or more of copper metal particles and 0.8 g or more of gelatin per 1 g of copper metal particles.
(2)2価の銅イオンと2価の銅イオン1g当りゼラチ
ン0.8g以上を含むPH1〜2で、かつ液温40〜7
0℃の水溶液に2価の銅イオン1g当り12g以上のジ
メチルアミンボランを添加し2価の銅イオンを金属銅に
還元した後、該水溶液のPHを2〜4に調整する工程か
ら成る無電解銅めっき用銅コロイド触媒液の製造方法。
(2) Contains divalent copper ions and 0.8 g or more of gelatin per 1 g of divalent copper ions, pH 1 to 2, and liquid temperature 40 to 7.
An electroless method consisting of the process of adding 12 g or more of dimethylamine borane per 1 g of divalent copper ions to an aqueous solution at 0°C to reduce the divalent copper ions to metallic copper, and then adjusting the pH of the aqueous solution to 2 to 4. A method for producing a copper colloidal catalyst liquid for copper plating.
JP13850784A 1984-07-04 1984-07-04 Copper colloid catalyst solution Pending JPS6119782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13850784A JPS6119782A (en) 1984-07-04 1984-07-04 Copper colloid catalyst solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13850784A JPS6119782A (en) 1984-07-04 1984-07-04 Copper colloid catalyst solution

Publications (1)

Publication Number Publication Date
JPS6119782A true JPS6119782A (en) 1986-01-28

Family

ID=15223747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13850784A Pending JPS6119782A (en) 1984-07-04 1984-07-04 Copper colloid catalyst solution

Country Status (1)

Country Link
JP (1) JPS6119782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280354A (en) * 1993-03-25 1994-10-04 Masaru Endo Corrugated roof board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280354A (en) * 1993-03-25 1994-10-04 Masaru Endo Corrugated roof board

Similar Documents

Publication Publication Date Title
US5071517A (en) Method for directly electroplating a dielectric substrate and plated substrate so produced
CA1229266A (en) Process for preparing a substrate for subsequent electroless deposition of a metal
JPH0397873A (en) Process for coating plastic product
US5342501A (en) Method for electroplating metal onto a non-conductive substrate treated with basic accelerating solutions for metal plating
JP2015078431A (en) Electroless metallization of dielectric with catalyst containing pyrazine derivative stable to alkali
US3674550A (en) Method of electroless deposition of a substrate and sensitizing solution therefor
JPH07302965A (en) Manufacture of printed circuit board
JPH0151546B2 (en)
US4762560A (en) Copper colloid and method of activating insulating surfaces for subsequent electroplating
CA2023846A1 (en) Process for the direct metallization of a non-conducting substrate
JPS6119782A (en) Copper colloid catalyst solution
US4681630A (en) Method of making copper colloid for activating insulating surfaces
JPS6123762A (en) Copper colloidal catalytic solution for electroless plating and its manufacture
JPS6123764A (en) Copper colloidal catalytic solution for electroless plating and its manufacture
JPS6119784A (en) Copper colloid catalyst solution for electroless plating and its preparation
JP3093259B2 (en) Complex compounds having oligomer or polymer properties
AU659857B2 (en) Mildly basic accelerating solutions for direct electroplating
EP0139233B1 (en) Method for conditioning a surface of a dielectric substrate for electroless plating
JPS637380A (en) Catalytic solution of copper colloid for electroless plating and its production
JPH10245444A (en) Formation of electoconductive film on polyimide resin surface
JPS634074A (en) Catalytic solution of copper colloid for electroless plating and its production
JPS6123763A (en) Copper colloidal catalytic solution for electroless plating
JPS6119783A (en) Copper colloid catalyst solution for electroless plating and its preparation
JPS62290879A (en) Catalytic solution of copper colloid for electroless plating and its production
GB2253415A (en) Selective process for printed circuit board manufacturing employing noble metal oxide catalyst.