JPS61197690A - Coal gasifying equipment - Google Patents

Coal gasifying equipment

Info

Publication number
JPS61197690A
JPS61197690A JP3757685A JP3757685A JPS61197690A JP S61197690 A JPS61197690 A JP S61197690A JP 3757685 A JP3757685 A JP 3757685A JP 3757685 A JP3757685 A JP 3757685A JP S61197690 A JPS61197690 A JP S61197690A
Authority
JP
Japan
Prior art keywords
coal
gasifying agent
gasifying
fed
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3757685A
Other languages
Japanese (ja)
Inventor
Shuji Endo
遠藤 修二
Yasunori Tanji
保典 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3757685A priority Critical patent/JPS61197690A/en
Publication of JPS61197690A publication Critical patent/JPS61197690A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent adherence of molten ash in coal to a nozzle and avoid clinker troubles, by employing a metallic double tube as gasifying agent blowing nozzle for a fluidized bed coal gasifying oven and circulating a coolant in the space between inner and outer pipes of the double tube. CONSTITUTION:Raw material dust coal 10 is fed into a reaction chamber 2 of a fluidized bed coal gasifying oven 1 by means of a screw feeder 5 and a gasifying agent consisting of a mixt. of O2 or air with water vapor is fed through a gasifying agent blowing nozzle 6 which is made of metal such as stainless steel in a double-tube structure and is cooled with a coolant (e.g. water) circulated in the space between inner and outer pipes, to effect gasification reaction. Produced gas 12 is fed from the oven top to a next process and a part of it is blown into a combustion chamber 3 from a burner 8 for reaction with a mixt. of O2 or air with water vapor 13 fed through a gasifying agent blowing nozzle 7. The gas is led into the reaction chamber 2 through a throat 4 to fluidize the dust coal 10. Cooling of the gasifying agent blowing nozzle in the double-tube structure prevents adherence of molten ash to the tip of the nozzle 6.

Description

【発明の詳細な説明】 〔虚業上の利用分野〕 本発明は石炭ガス化装置の改良に関するものである。[Detailed description of the invention] [Field of practical use] The present invention relates to improvements in coal gasifiers.

〔従来の技術〕[Conventional technology]

最近石炭のガス化の歩望が傾くなるに伴ない、ガス化の
ための装置が種々開発されているが、流。
Recently, as the progress of coal gasification has been declining, various gasification devices have been developed.

動炉を利用する装置もその一つである。流動炉を利用し
てガス化する場合、流動層の温度を上げ高温反応を行な
わせればガス化反応速度も大きくなりガス化幼率も同上
してくることは知られているが、−万石炭中の灰分によ
るトラブルが発生するのが・酸点となっている。すなわ
ちガス化反応温度が上って、灰の1融点近(なると灰が
溶融し流動炉内の分散板や壁面に融着していわゆるタリ
ンカトラブルを発生するのである。このため一般の流動
炉ではガス化温度をi、ooo℃以上に上げることは困
難とされている。
One example is equipment that uses a furnace. When gasifying using a fluidized bed furnace, it is known that if the temperature of the fluidized bed is raised to perform a high-temperature reaction, the gasification reaction rate will increase and the gasification rate will also increase. Acid points are where problems occur due to the ash content inside. In other words, when the gasification reaction temperature rises and the ash approaches the 1 melting point, the ash melts and adheres to the dispersion plate and walls in the fluidized fluidized furnace, causing so-called tarinka trouble.For this reason, ordinary fluidized fluidized furnaces It is considered difficult to raise the gasification temperature above i,00°C.

ところで普通使用される流動炉は、炉底に多孔板型分散
板を設け、その下方よりガス化剤の空気、酸素又は水蒸
気などを送り、分散板上の石炭を流動化してガス化反応
を行なわしめている。しかしこの方法では上記分散板の
孔の間に、石炭粒子のよどみ部分が生じ、これがガス化
剤と接触して局部的に加熱され、石炭粒子中の灰分が溶
融して孔間を閉塞するタリンカトラブルを起しやすい。
By the way, a commonly used fluidized bed furnace has a perforated dispersion plate installed at the bottom of the furnace, and a gasifying agent such as air, oxygen, or steam is sent from below to fluidize the coal on the dispersion plate and perform a gasification reaction. It's tight. However, in this method, stagnation of coal particles occurs between the pores of the dispersion plate, which contacts the gasifying agent and is locally heated, causing the ash in the coal particles to melt and close the pores. Linker problems are likely to occur.

これを避けるため、ガス化温!’に灰の融点より約50
0℃下げて、950℃前後で操栗ヲ行なうと、ガス化効
率が低下し、又タールやフェノールなどの発生が増大す
るという問題が起ってくる。
To avoid this, change the gasification temperature! ' to about 50% higher than the melting point of ash
If the temperature is lowered by 0°C and the chestnut operation is carried out at around 950°C, problems arise in that the gasification efficiency decreases and the generation of tar, phenol, etc. increases.

この問題点を解消するため分散板を使用しない流動炉が
開発され現任利用されている。第2図はこの流動炉の断
面図で、(1)は流動炉、(2)は反応室、(3)は燃
焼室、(4)は反応室(2)と燃焼室(3)とを連結す
るスロート部、(5)は扮炭供給用スクr1ユフイーダ
、(6)、 (7)iガス化剤吹きこみノズル、(8)
iバーナ、(9)はチャー、叫は粉炭、α])はガス化
剤、CI2は生成ガス、αJはガス化剤、Q4は燃焼ガ
ス、(至)は塊状の灰、αQは灰の循環系路である。
To solve this problem, a fluidized bed furnace that does not use a dispersion plate was developed and is currently in use. Figure 2 is a cross-sectional view of this fluidized fluidized furnace, where (1) is the fluidized fluidized furnace, (2) is the reaction chamber, (3) is the combustion chamber, and (4) is the reaction chamber (2) and combustion chamber (3). The connecting throat part, (5) is the charcoal supplying screw R1 Euphida, (6), (7) i gasifying agent injection nozzle, (8)
i burner, (9) is char, shout is powdered coal, α]) is gasifying agent, CI2 is generated gas, αJ is gasifying agent, Q4 is combustion gas, (to) is lumpy ash, αQ is ash circulation It is a lineage.

図に示すように流動炉(1)は炉の上部の反応室(2)
と、下部の燃焼型(3)と、その両者をつなぐスロート
部(4)とから構成されている。原料の扮炭叫はスクI
Iユフイータ(5)ニより、反応室(2)内に装入され
、反応室下部のアルミナ等耐熱材料で形成されたノズル
(6ンよつ送入する酸素又は空気と水蒸気との混合物と
反応室(2〕内でガス化反応を行ない、発生した生成ガ
ス□□□は炉頂より次工程へ導かれる。この生成ガスの
うち一部は燃焼型(3)に返され1.バーナー(8)に
より燃焼室(3)内に吹込まれ、ガス化剤吹込みノズル
(7)より送入された酸虞又は空気と水蒸気との混合物
四と反応して燃焼し、その燃焼ガスα→はスロート部(
4)をイで反応室(2)内に吐出して粉炭αOを流動化
し、流動層全形成する。燃焼室(3)の燃焼温度は12
00℃位である。
As shown in the figure, the fluidized fluidized furnace (1) has a reaction chamber (2) in the upper part of the furnace.
It consists of a lower combustion type (3), and a throat part (4) that connects the two. The charcoal scream of the raw material is Suku I
It is charged into the reaction chamber (2) from the I-Euphita (5) and reacts with the mixture of oxygen or air and water vapor fed through the nozzle (6) formed of a heat-resistant material such as alumina at the bottom of the reaction chamber. A gasification reaction is carried out in the chamber (2), and the produced gas □□□ is led to the next process from the top of the furnace. A part of this produced gas is returned to the combustion mold (3) and sent to the burner (8). ) into the combustion chamber (3) and reacts with the acid or the mixture of air and water vapor supplied from the gasifier injection nozzle (7) and burns, and the combustion gas α→ is blown into the combustion chamber (3). Department (
4) is discharged into the reaction chamber (2) in step (a) to fluidize the powdered coal αO and completely form a fluidized bed. The combustion temperature of the combustion chamber (3) is 12
It is around 00℃.

なお上記反応室(2)内におけるガス化燃焼において、
ガス化温度ヲチヤ−(9)中の灰分の融点付近まで上昇
せしめると、灰は凝渠、造粒され塊状の灰(至)となり
、炉の中心付近でにスロート部(4)の燃焼ガスα嘩に
より上方に吹き上げられ、周辺部では下降して矢印(ト
)に示すように反応室(2)内を循環する。
In addition, in the gasification combustion in the reaction chamber (2),
When the gasification temperature is raised to near the melting point of the ash in the burner (9), the ash is coagulated and granulated to become lumpy ash, and the combustion gas α in the throat part (4) is generated near the center of the furnace. It is blown upward by the explosion, descends at the periphery, and circulates within the reaction chamber (2) as shown by the arrow (G).

その結果ざらに造粒が進み、粒径、デ度ともに大きくな
った塊状の灰QBは、スロート部(4)において、それ
に及ぼす重力の方が燃焼ガスα4による浮力より太き(
なって、燃焼室(2)fF3に落下し炉外に排出される
。なお燃焼ガスQ−1の流速を適当にコントロールする
ことにより、塊状の灰Q5を効率よ(落下させ炉外へ排
出することができる。
As a result, the granulation progresses roughly, and the lumpy ash QB, which has increased in both particle size and density, is produced at the throat part (4) where the gravity acting on it is larger than the buoyancy caused by the combustion gas α4 (
Then, it falls into the combustion chamber (2) fF3 and is discharged outside the furnace. By appropriately controlling the flow rate of the combustion gas Q-1, the lumpy ash Q5 can be efficiently dropped and discharged out of the furnace.

〔元側が解決しようとする問題点〕[Problems that the original party is trying to solve]

この方式の流動炉は分散板を使用しないので、その分タ
リンカトラブルが減少するだけでなく、反応室内の温度
と流動のコントロールを夫々独立して行なうことができ
るので、操業が従来方法に比較して格段に容易になる利
点がある。しかし本流動炉においても、ガス化温度を石
炭中の灰の融点より50℃低い1200℃迄上昇させる
と、ガス化剤吹込みノズル(6)の先端に灰が融着し、
ガス化剤αηの炉内への吹込みを阻害することがある。
This type of fluidized bed reactor does not use a dispersion plate, which not only reduces the number of problems caused by the flow rate, but also allows the temperature and flow inside the reaction chamber to be controlled independently, making the operation easier than with conventional methods. This has the advantage of being much easier to do. However, even in this fluidized bed furnace, when the gasification temperature is raised to 1200°C, which is 50°C lower than the melting point of ash in the coal, the ash fuses to the tip of the gasifier injection nozzle (6).
The blowing of the gasifying agent αη into the furnace may be inhibited.

これがこの流動炉の欠点である。This is the drawback of this fluidized furnace.

本発明にこの方式の流動炉において、上記灰の融層′を
起さないガス化剤吹込みノズルを提供しようとするもの
である。
The present invention aims to provide a gasifying agent injection nozzle that does not cause the above-mentioned ash melt layer in a fluidized bed furnace of this type.

〔問題点を解決するための手段〕[Means for solving problems]

石炭のガス化に使用する流動炉において、そのガス化剤
吹込みノズルを金msの二重管構造とし、内面Uと外筒
・aとの間に冷媒t−儂環させる。
In a fluidized bed furnace used for gasifying coal, the gasifying agent injection nozzle has a double tube structure of gold ms, and a refrigerant T-ring is placed between the inner surface U and the outer cylinder a.

〔作用〕[Effect]

上記二重管の材質や厚さ、冷媒の流速などを適当に選択
することにより、ガス化剤吹込みノズルは冷却されて、
その表面温度を石炭の灰の粘層温度(浴融したスラグ滴
を金属表面に滴下したとき、スラグ滴が金属表面に固着
する金属表面の温度)以下に保持することができる。こ
の結果ガス化剤吹込みノズルに灰が融着して、そのガス
化剤吹込口を閉塞するなどのトラブルの発生は防止され
る。
By appropriately selecting the material and thickness of the double pipe, the flow rate of the refrigerant, etc., the gasifying agent injection nozzle can be cooled.
The surface temperature can be maintained below the viscosity temperature of coal ash (temperature of the metal surface at which the slag droplets adhere to the metal surface when bath-melted slag droplets are dropped onto the metal surface). As a result, troubles such as ash being fused to the gasifying agent injection nozzle and clogging the gasifying agent injection port can be prevented.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す流動炉の断面図である
。(1)〜口Qは従来装置と同一部品である。
FIG. 1 is a sectional view of a fluidized bed furnace showing an embodiment of the present invention. (1) - Port Q are the same parts as the conventional device.

翰は本発明に係るガス化剤吹込みノズルで、(20a)
はその外筒管、(20b)はその内筒管である。
The handle is a gasifying agent injection nozzle according to the present invention, (20a)
(20b) is its outer tube, and (20b) is its inner tube.

図において、ガス化剤吹込みノズル(7)は、ステy 
vx−174(SUS 304 )で成形した内径27
.6−a。
In the figure, the gasifying agent blowing nozzle (7) is
Inner diameter 27 molded from vx-174 (SUS 304)
.. 6-a.

外径3411111の外rill ’# (20a)と
、同じ材質で内径16、1 ml、外径21.7mに成
形した内rtJ管(’20b)とから構成されており、
内外筒間には冷媒として水口υk 、0.3 L/ m
in、  の割で通している。このため流動炉の操業中
ガス化温度が上昇しても、ガス化剤吹込みノズル(7)
の表面温度は最扁で680℃程度で、石炭の灰の粘着温
度以下に保たれているので、石炭中の灰のその表面への
融着は回避される。
It consists of an outer rill '# (20a) with an outer diameter of 34111111 and an inner rtJ tube ('20b) made of the same material and molded with an inner diameter of 16.1 ml and an outer diameter of 21.7 m.
Between the inner and outer cylinders there is a water outlet υk, 0.3 L/m as a refrigerant.
In, it passes at a rate of . Therefore, even if the gasification temperature rises during operation of the fluidized bed furnace, the gasification agent injection nozzle (7)
The surface temperature of the coal is about 680° C. at its lowest point, which is kept below the sticking temperature of the coal ash, so that the ash in the coal is prevented from adhering to the surface.

〔@明の効果〕[@Ming effect]

本発明は石炭をガス化するのに使用される流動炉におい
て、その反応室に設けたガス化剤吹込みノズルを、ステ
ンレスAで形成した二重管構造とし、内外mfの間に冷
却水を通して上記ガス化剤吹込みノズルを冷却したので
、流動炉の反応室のガス化温度をある程度上昇せしめて
も、上記ガス化剤吹込みノズルに原料粉炭中の天分が融
着する恐れは解消した。
The present invention provides a fluidized bed furnace used for gasifying coal, in which the gasifying agent injection nozzle provided in the reaction chamber has a double pipe structure made of stainless steel A, and cooling water is passed between the inside and outside mf. Since the gasification agent injection nozzle was cooled, even if the gasification temperature in the reaction chamber of the fluidized bed furnace was increased to a certain extent, the fear that the natural substances in the coking coal would fuse to the gasification agent injection nozzle was eliminated. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す石炭のガス化に使用す
る流動炉の断面図、第2図は従来の流動炉の断rjrJ
因である。 図中(1)は流動炉、(2)はその反応室、αηはガス
化剤、翰はガス化剤吹込みノズル、(2L]a) tt
lその外向管、(20b)はその円筒管、シυは冷却水
である。 代理人 弁理士  木 村 三 朗 第1図 6:1フ’)−4t4pl −戸12=ノ・ヌ、1し1
7コーkj譚=q
Figure 1 is a cross-sectional view of a fluidized bed furnace used for coal gasification, showing an embodiment of the present invention, and Figure 2 is a cross-sectional view of a conventional fluidized bed furnace.
This is the cause. In the figure, (1) is the fluidized fluidized furnace, (2) is its reaction chamber, αη is the gasifying agent, and the wire is the gasifying agent injection nozzle. (2L] a) tt
l is the outward tube, (20b) is the cylindrical tube, and υ is the cooling water. Agent Patent Attorney Sanro Kimura Figure 1 6: 1f') -4t4pl -Do12=No Nu, 1shi1
7 kj tan = q

Claims (1)

【特許請求の範囲】[Claims] 石炭をガス化するための流動炉において、その反応室に
備えたガス化剤吹込みノズルを金属製の二重管で形成し
、その内筒管と外筒管との間に冷媒を循環せしめるよう
に構成したことを特徴とする石炭のガス化装置。
In a fluidized bed furnace for gasifying coal, the gasifying agent injection nozzle provided in the reaction chamber is formed of a double metal pipe, and the refrigerant is circulated between the inner and outer pipes. A coal gasification device characterized by being configured as follows.
JP3757685A 1985-02-28 1985-02-28 Coal gasifying equipment Pending JPS61197690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3757685A JPS61197690A (en) 1985-02-28 1985-02-28 Coal gasifying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3757685A JPS61197690A (en) 1985-02-28 1985-02-28 Coal gasifying equipment

Publications (1)

Publication Number Publication Date
JPS61197690A true JPS61197690A (en) 1986-09-01

Family

ID=12501360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3757685A Pending JPS61197690A (en) 1985-02-28 1985-02-28 Coal gasifying equipment

Country Status (1)

Country Link
JP (1) JPS61197690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729990B1 (en) 2005-03-28 2007-06-22 고등기술연구원연구조합 Coal gasfication reactor system using recirculation of coal gas
CN103937552A (en) * 2014-03-24 2014-07-23 北京交通大学 Three-section entrained flow bed hydrogenation vaporizing furnace and combined operation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120686A (en) * 1982-12-27 1984-07-12 Nippon Kokan Kk <Nkk> Coal gasifying equipment and its use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120686A (en) * 1982-12-27 1984-07-12 Nippon Kokan Kk <Nkk> Coal gasifying equipment and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729990B1 (en) 2005-03-28 2007-06-22 고등기술연구원연구조합 Coal gasfication reactor system using recirculation of coal gas
CN103937552A (en) * 2014-03-24 2014-07-23 北京交通大学 Three-section entrained flow bed hydrogenation vaporizing furnace and combined operation system
CN103937552B (en) * 2014-03-24 2015-11-18 北京交通大学 A kind of three-section type entrained flow bed coal hydrogenation gasification stove and combined operation system

Similar Documents

Publication Publication Date Title
JP4112173B2 (en) Method and apparatus for producing combustion gas, synthesis gas and reducing gas from solid fuel
US4707163A (en) Gasification of coal dust
KR900004107B1 (en) Process for the production of pig iron
KR930009971B1 (en) Process for the production of molten pig iron and steel preproducts
US3556773A (en) Refining of metals
SU1118292A3 (en) Method of obtaining molten cast iron or steel semiproduct from iron-containing material and device for effecting same
US4328019A (en) Melting system and process for use in the production of high temperature mineral wool insulation
JPS608692A (en) Method and device for liquefying surface layer by utilizing plasma
US3424573A (en) Process for combined oxygen iron refining and producing of ferrous melts
US1098534A (en) Method of and apparatus for generating producer-gas.
US2163148A (en) Slagging water-gas generator
JPS61197690A (en) Coal gasifying equipment
US4644557A (en) Process for the production of calcium carbide and a shaft furnace for carrying out the process
US1964915A (en) Apparatus for sintering and fusing finely divided material
JPS58224132A (en) Method for smelting aluminum by blast furnace method
JPS6154354B2 (en)
KR950006689B1 (en) Method of starting a plant for the production of pig iron or steel pre-material and arragnement for carrying out the method
US1204927A (en) Process for treating copper.
JPS59206487A (en) Gasifier for coal
US2526474A (en) Method of melting and purifying impure metal powder
JPS59142285A (en) Blowing gasifying agent into coal gasification oven
JPH075896B2 (en) Coal gasifier
JPH0152445B2 (en)
JPH05507527A (en) Method for producing liquid metal from metal oxide fine particles and reduction smelting furnace for carrying out this method
US2863730A (en) Method of carrying out high temperature reactions in shaft furnaces