JPS61196161A - Gas chromatograph anlysis apparatus and method - Google Patents

Gas chromatograph anlysis apparatus and method

Info

Publication number
JPS61196161A
JPS61196161A JP3651985A JP3651985A JPS61196161A JP S61196161 A JPS61196161 A JP S61196161A JP 3651985 A JP3651985 A JP 3651985A JP 3651985 A JP3651985 A JP 3651985A JP S61196161 A JPS61196161 A JP S61196161A
Authority
JP
Japan
Prior art keywords
column
flow path
cock
separation
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3651985A
Other languages
Japanese (ja)
Inventor
Yoshiaki Suzuta
鈴田 慶昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3651985A priority Critical patent/JPS61196161A/en
Publication of JPS61196161A publication Critical patent/JPS61196161A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/468Flow patterns using more than one column involving switching between different column configurations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • G01N30/463Flow patterns using more than one column with serial coupling of separation columns for multidimensional chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To achieve a higher separability and a shorter analysis, by dividing a first column into upstream and downstream columns while a six-way passage change-over cock is provided to connect the inlet sides of upstream and downstream columns to the output sides thereof respectively. CONSTITUTION:A mixed sample introduced 5 reaches a six-way passage change- over cock 17 by a carrier gas and enters a column 61 via passages 17-1 and 17-2 to undergo a separation. In this process, after a certain time passes, the component groups quicker to elute with a less holding time passes through passages 17-3 and 17-6 and reaches a column 62. But in this period, the component groups slow to elute with a larger holding time remains in the column 61. When the passage is turned as indicated by the broken line by the operation of the cock 17 at the optimum timing, the components in the column 62 pass through passages 17-5 and 17-2 to be introduced to the column 61 again, where is separated completely. Thus, the components elute with columns 9 and 10 sequentially from those quicker to elute with the smallest holding time at the final passage 17-4 through a rear changeover cock 8 after the changeover of the subsequent cock 17 to be detected 13 with a convergence section 11 and a resistance column 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばLNG運搬船貨物タンク、あるいはL
NG陸上貯東タンク等のイナーティングガスと天然ガス
との置換工程におけるこれら混合ガス並びに一般試料の
複数成分の混合試料(液体試料及び気体試料を含む)の
ガスクロマトグラフ分析装置及び分析方法に関する。す
なわち、本発明は、例えばLNGタンカーあるいはLN
G地下タンクの建造完成後、タンク内の空気を不活性ガ
ス(イナートガス、王にN!中85 %。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, an LNG carrier cargo tank or an LNG carrier cargo tank.
The present invention relates to a gas chromatograph analyzer and method for analyzing mixed gases and general samples (including liquid samples and gas samples) containing a plurality of components in a process of replacing inerting gas with natural gas in NG onshore storage tanks, etc. That is, the present invention can be applied to, for example, LNG tankers or LN tankers.
After the construction of the underground tank is completed, the air inside the tank is replaced with an inert gas (inert gas, 85% of which is inert gas).

Co、中15%)と置換するために行われるイナーティ
ング作業に引続き、イナートガスとガス状天然ガスとの
置換工程にタンク内の置換工程監視のために行うガス状
天然ガスの組成及び濃度分析をガスクロマトグラフにて
行うに際し、分離性の向上と分析時間の短mt−図りう
るガスクロマトグラフ分析装置及び分析方法に関する。
Following the inerting work performed to replace the inert gas with gaseous natural gas (Co, 15%), composition and concentration analysis of the gaseous natural gas was conducted to monitor the replacement process in the tank. The present invention relates to a gas chromatograph analyzer and an analysis method that can improve separation and shorten analysis time when using a gas chromatograph.

〔従来の技術〕[Conventional technology]

第2図は従来のガスク四マドグラフ流路構成図を示した
ものである。
FIG. 2 shows a diagram of a conventional gas flow chart.

例えば、LNG運搬船等のタンクでイナーティング作業
終了後、引続いて当該タンク等を天然ガスと置換しタン
ク内がほぼ完全に天然ガスと置換後、タンクを冷却して
r、NG (液化天然ガス]を貯蔵するという工程を必
要とする。
For example, after inerting work is completed on a tank of an LNG carrier, etc., the tank is replaced with natural gas, and after the inside of the tank is almost completely replaced with natural gas, the tank is cooled and replaced with r, NG (liquefied natural gas). ] is required.

上述の工程において、イナーティング作業後のタンク内
に天然ガスを充填しイナートガスと置換する際は、タン
ク内のイナートガスと、天然ガスの置換割合金短いイン
ターバルで刻々、監視する必要がある。この場合、イナ
ートガスの成分(Nh約85%、Co鵞、約15%)と
天然ガスノ成分(CF14Fe2O290%、 O,H
,5〜10チ、0sHs 5〜5 To、nC4T11
0 # 1calito各々α、5〜196)との混合
ガスをガスクロマトグラフ分析法にて各成分濃度を求め
ている。ただしこの場合、単一の分離カラムにて上記成
分を完全に分離することは不可能で一般に2〜3覆類の
カラムを組合せた第2図のようなカラム流路を構成して
分離分析を行っている。第2図について従来のカラム流
路構成と分析法について説明すると、tJIE2図にお
いて、1はキャリヤガスの入口で、ここでキャリヤーガ
スは、分析側流路と対象lI流路九二分される。2,1
4は分析側、対象側のそれぞれの流量調節用減圧器で、
3゜15はそれぞれのキャリヤーガス流路の圧力計でら
る。4は分析側に設けたキャリヤーガス分岐部、5は気
体試料導入装置、6は第1分離カラム、7は6とはy同
じ長さで同じ流路抵抗を有する抵抗カラム(通常6と同
一品]18は四方流路切換コック、9は$2の分離カラ
ム、10は第2の分離カラム9とはソ同一の流路抵抗を
有し分離吸着性の全く無い抵抗カラム、11は第2の分
離カラム9の流路と抵抗カラム10からの流路の合流部
、12は四方流路切換フック8を操作した時のカラム9
1I及び10側の流量変動を緩和するための抵抗カラム
10と同程の分離吸着性の全く無い抵抗カラム、13は
分析側、対象側の2流路を有するデュアルタイプの検出
器である。16は対象流路側の抵抗カラムである。
In the above process, when filling the tank with natural gas after the inerting operation and replacing it with inert gas, it is necessary to constantly monitor the inert gas in the tank and the replacement ratio of natural gas at short intervals. In this case, inert gas components (Nh about 85%, Co and about 15%) and natural gas components (CF14Fe2O290%, O, H
, 5-10 Chi, 0sHs 5-5 To, nC4T11
The concentration of each component was determined by gas chromatography analysis of a mixed gas with α, 5 to 196). However, in this case, it is impossible to completely separate the above components using a single separation column, and separation and analysis are generally performed by configuring a column flow path as shown in Figure 2, which combines two to three columns. Is going. To explain the conventional column flow path configuration and analysis method with reference to FIG. 2, in the tJIE2 diagram, 1 is the inlet of the carrier gas, where the carrier gas is divided into an analysis side flow path and a target lI flow path. 2,1
4 is a pressure reducer for flow rate adjustment on the analysis side and the target side, respectively.
3.15 is the pressure gauge of each carrier gas flow path. 4 is a carrier gas branch provided on the analysis side, 5 is a gas sample introduction device, 6 is a first separation column, and 7 is a resistance column having the same length and the same flow path resistance as 6 (usually the same product as 6). ] 18 is a four-way flow path switching cock, 9 is a $2 separation column, 10 is a second separation column with the same flow path resistance as 9 and has no separation adsorption properties, 11 is a second separation column. The confluence of the flow path of the separation column 9 and the flow path from the resistance column 10, 12 is the column 9 when the four-way flow path switching hook 8 is operated.
A resistance column 13 is a dual type detector having two flow paths, one on the analysis side and the other on the object side. 16 is a resistance column on the target flow path side.

なお分離カラム6は前記天然ガスの成分である炭化水素
をそれぞi″LL沸点い順番に分離しさらにCO!も分
離可能な充項剤入シカラムで、ここではガスクロ工業(
株)製の充填剤、商品名vz−toy充填した長さ2m
、内径5 rv’mφのカラムで、例えば前記の混合ガ
スを分析した場合はその溶出する成分はN2 + 01
14 、 O,H・・CO,・0MHm * 1’4”
l(1a nC4H1Oの順に分離される。分離カラム
9は通常シリカゲル等を充填し九カラムでここでは上記
相当品 ガスクロ工業(株]の充填剤 商品名Unib
eads工8を用いている。上記カラム6とコック操作
によシ、カラム9をつないだ流路〔6→(8−4)→(
8−5)→9〕にすると、カラム6では完全分離が不可
能なN、+OH4の成分群がN!と0111.とに完全
に分離する。勿論後続のCIH−〜n04H1・も分離
性に問題ないが、カラム9での保持時間が大きいため溶
出時間が長くなりクロマトグラムのピーク形状もブロー
ドになる。
The separation column 6 is a cycolumn containing a packing material that can separate the hydrocarbons, which are the components of the natural gas, in the order of i''LL boiling points, and also separate CO!.
Length 2m filled with filler manufactured by Co., Ltd., trade name: VZ-TOY
For example, when the above-mentioned mixed gas is analyzed using a column with an inner diameter of 5 rv'mφ, the eluted components are N2 + 01
14, O,H・・CO,・0MHm * 1'4”
Separation column 9 is usually filled with silica gel, etc., and is equivalent to the above.Filling material from Gascro Kogyo Co., Ltd.Product name: Unib
I am using eads 8. The flow path [6→(8-4)→(
8-5) → 9], the component group of N and +OH4, which cannot be completely separated in column 6, becomes N! and 0111. Completely separate. Of course, the subsequent CIH-~n04H1• has no problem in separation, but since the retention time in column 9 is long, the elution time becomes longer and the peak shape of the chromatogram becomes broader.

第2図の構成によるガスクロマトグラフ分析手段におけ
る分析側のみの流路について説明すると、轟初キャリヤ
ーガスは気体試料導入装置5を経てカラム6を通り流路
切換コック8″1実線のようにコック流路(8−4)、
[81)を経てカラム9に至る。分岐部4よシ分割され
たキャリヤーガスは、カラム7を経て流路切換コック8
の流路(8−2)、(8−1)を経てカラム10に至り
、合流部11にて、分析側分離カラム9からの流路と合
流し、抵抗カラム12全経て析出器15の分析側に至る
。尚、カラム切換コック8の操作で、クロマトグラムの
ベースラインにショックが生じない場合はカラム12は
装着しなくても良好なりロマトグラムが得られる。
To explain the flow path only on the analysis side in the gas chromatograph analysis means configured as shown in FIG. Road (8-4),
[81) and reaches column 9. The carrier gas divided through the branch section 4 passes through the column 7 and is then transferred to the flow path switching cock 8.
It reaches the column 10 through the channels (8-2) and (8-1), merges with the channel from the analysis-side separation column 9 at the confluence section 11, passes through the entire resistance column 12, and reaches the column 10 for analysis in the precipitator 15. reach the side. Note that if no shock occurs in the baseline of the chromatogram by operating the column switching cock 8, a good chromatogram can be obtained without installing the column 12.

上述の流路構成、キャリヤーガス流路で、準備されてい
る第2図のガスクロマトグラフ分析装置に、気体試料導
入装置5を操作して、混合ガス試料を分析側に導入する
と、混合ガスはカラム6に入り、このカラム6を通過中
に成分グループに分離され、カラム6の出口では溶出鷹
序にて(イ)Nl + CH4、(ロ) C,H,、(
ハ)Co、、に)O,H,、(ホ)jC,Hl・、(へ
)n○4H10の成分順にカラムから溶出して来る。こ
のときの、クロマトグラムを第4図に示す。キャリヤー
ガス流路t−第2図、実線のようにしておくと、これら
分離された成分はキャリヤーガスと共に切換ニック8の
(8−4)。
When the gas sample introducing device 5 is operated to introduce a mixed gas sample into the analysis side of the prepared gas chromatograph analyzer shown in FIG. 6, and while passing through this column 6, it is separated into component groups, and at the outlet of column 6, in the elution order, (a) Nl + CH4, (b) C, H, (
C) Co, ,) O, H, (e) jC, Hl., (f) n○4H10 components are eluted from the column in this order. The chromatogram at this time is shown in FIG. Carrier gas flow path t - If the solid line in FIG.

(8−5)Th経て、カラム9に入るが(イ)のH2+
 (!H4のグループがカラム9に遅し、保持時間が太
きく溶出の遅い(ロ)以降のグループが切換コック8よ
シ上流側に在る時期に切換コック8を操作し破線のよう
にするとこれら(ロ)以降の成分とキャリヤーガスはコ
ック8の(8−4)、(8−1)の流路を経てカラム1
0に又、カラム9内の(イ)のグループはカラム7より
のキャリヤーガスが切換コック8の破線流路(8−2)
、(8−1)を経てカラム9に至シ分離が続行され、(
イ)グループの完全な分離が行われる。一方(ロ)以降
のグループはカラム10では同等作用を受けることなく
、そのま\の順序でカラム10内を通過し、合流部11
でカラム9からの流路と合流し、抵抗カラム12を経て
検出器15に至シ、分離成分の検出が行われる。検出部
は電気信号としてチャート紙上への記録あるいは積分器
と接続して濃度の算出が行われる。カラム9、カラム1
0の長さと流量割合及びカラム切換コック8の切換タイ
ミングを適切に選ぶことにより、例に述べた混合ガスは
N2 e ClI4 e C24e CO2e C3T
ll * 1−’4H1゜。
(8-5) After Th, it enters column 9, but H2+ of (a)
(!When the H4 group is delayed to column 9 and the retention time is long and the elution is slow (b) and the subsequent groups are on the upstream side of the switch cock 8, operate the switch cock 8 and make the change as shown by the broken line. (b) Subsequent components and carrier gas pass through the flow paths (8-4) and (8-1) of cock 8 to the column 1.
Also, in the group (A) in column 9, the carrier gas from column 7 flows through the broken line flow path (8-2) of switching cock 8.
, (8-1) to column 9. Separation continues, (
b) Complete separation of groups occurs. On the other hand, the groups after (b) pass through the column 10 in the same order without being subjected to the same effect in the column 10, and reach the confluence section 11.
It merges with the flow path from the column 9, passes through the resistance column 12, and reaches the detector 15, where the separated components are detected. The detection unit records the electrical signal on chart paper or connects it to an integrator to calculate the concentration. column 9, column 1
By appropriately selecting the length of 0, the flow rate, and the switching timing of the column switching cock 8, the mixed gas mentioned in the example can be changed to N2 e ClI4 e C24e CO2e C3T
ll * 1-'4H1°.

n−C4H10の順序で完全に分離され分析できる。It can be completely separated and analyzed in the order n-C4H10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の上記のよりなカラム流路を利用したガスクロマト
グラフ分析手段でも、第4図に示すように、約18分以
内で分析可能であるが、初期目的のタンク内ガスの置換
工程監視のためには、さらに短時間で組成成分のほとん
どが分析出来るガスクロマトグラフ分析装置及び分析方
法が必要となる。
Even with the conventional gas chromatography analysis method using the above-mentioned narrow column flow path, analysis can be performed within about 18 minutes, as shown in Figure 4. requires a gas chromatograph analyzer and analysis method that can analyze most of the composition components in a shorter time.

本発明は、上記したタンク内ガスの置換工程全監視する
に際し、できるだけ短時間で組成及び濃度分析ができる
ガスクロマトグラフ分析装置及び分析方法全提供するこ
とを目的とする。
An object of the present invention is to provide a gas chromatograph analyzer and an analysis method that can analyze the composition and concentration in as short a time as possible when monitoring the entire tank gas replacement process described above.

また、本発明は、特殊な構造ではなく汎用型を利用する
ことができ、船舶、船室内又は現場管理室等にも簡単に
設置できるような小型軽量であり、さらに、自動化分析
することが可能なガスクロマトグラフ分析装置をも提供
することを目的とする。
In addition, the present invention can be used as a general-purpose type rather than a special structure, and is small and lightweight so that it can be easily installed in a ship, inside a ship, or in a field management room, and furthermore, it is capable of automated analysis. It is also an object of the present invention to provide a gas chromatograph analyzer.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、試料流路にWc1の分離カラム、
流路切換コック、第2の分離カラムと順に配設されたガ
スクロマトグラフ分析装置において、第1の分離カラム
を上流側カラムと下流側カラムに分離して流路を配設す
ると共に上流側カラムの入口側及び出口側と、下流側カ
ラムの入口側及び出口側とを夫々接続する六方流路切換
フックを配設してなることを特徴とするガスクロマトグ
ラフ分析装置である。
That is, the present invention includes a Wc1 separation column in the sample flow path,
In a gas chromatograph analyzer in which a flow path switching cock and a second separation column are arranged in order, the first separation column is separated into an upstream column and a downstream column, and a flow path is provided, and the upstream column is This gas chromatograph analyzer is characterized in that it is provided with hexagonal channel switching hooks that connect the inlet and outlet sides of the downstream column and the inlet and outlet sides of the downstream column, respectively.

さらに本発明の第2の発明はWj、1の分離カラム金上
R@カラムと下流側カラムに分離して流路を配設すると
共に上流側カラムの入口側及び出口側と、下流側カラム
の入口側及び出口側とを夫々接続する六方流路切換コッ
クを配設してなるガスクロマトグラフ分析装置によシ混
合成分の分析を行うガスクロマトグラフ分析方法におい
て、混合成分のうち保持時間が小さくて溶出時間が早く
分離性が悪い成分は、六方流路切換コックを介して上流
側カラム、下流側カラム、上流側カラムの順に流過させ
た後、六方流路切換コックを介して第2の分離カラムへ
流過させ、一方、混合成分のうち保持時間が大きくて溶
出時間が遅く分離性の良い成分は、六方流路切換コック
を介して上流側カラムのみを流過させ九後、六方流路切
換コックを介して後流側の異種カラムへ流過させること
を特徴とする分離性の向上と分析時間の短縮全図るガス
クロマトグラフ分析方法である。
Furthermore, the second invention of the present invention is to separate the Wj, 1 separation column Gold R @ column and the downstream column, and provide a flow path, and to connect the inlet and outlet sides of the upstream column and the downstream column. In a gas chromatograph analysis method that analyzes mixed components using a gas chromatograph analyzer equipped with a hexagonal flow path switching cock that connects the inlet side and the outlet side respectively, some of the mixed components elute due to a short retention time. Components that take a long time and have poor separability are passed through the hexagonal flow path switching cock in the order of upstream column, downstream column, and upstream column, and then passed through the hexagonal flow path switching cock to the second separation column. On the other hand, among the mixed components, components with long retention times, slow elution times, and good separation are passed through only the upstream column via the six-way flow switching cock, and then the six-way flow switching is performed. This is a gas chromatography analysis method that aims to improve separation performance and shorten analysis time by allowing the flow through a different kind of column on the downstream side through a cock.

本発明は、前述した第2図のカラム6の途中(カラム6
t−適当な割合に分割したその間)に六方流路切換コッ
クを設けるのみで、汎用のガスクロマトグラフ装置をそ
のまま利用することができる。また、カラムよシ溶出す
る成分で、保持時間が大きく遅く溶出する成分は一般に
分離性は良好でらるけれども、ピーク形状がブロードに
なシがちであるが、本発明ではカラムの途中よシ後段の
カラムあるいは検出器に接続されるのでピークがシャー
プである。一方、カラムよシ溶出する成分で、保持時間
が小さく早く溶出する成分は、本発明では途中に流路切
換コックを設けない場合のカラム長さと、さらにコック
切換操作により(本発明に従ってカラム長さの172の
位置に流路切換コックを設けた場合ン当初のカラム長さ
の1Aの長さの分を加えたカラム長さで分析できる。上
述のことをまとめると、本発明では一定の長さの分離カ
ラムにおいて、その途中に流路切換コックを設けて、分
割されたカラムの流路順序を入れ替えることができる。
The present invention is carried out in the middle of column 6 in FIG. 2 (column 6).
A general-purpose gas chromatograph apparatus can be used as is by simply providing a hexagonal flow path switching cock between the two sections (divided into appropriate proportions). In addition, components that elute from the column and elute slowly with long retention times generally have good separation, but tend to have broad peak shapes. Because it is connected to a column or detector, the peaks are sharp. On the other hand, components that elute from the column and elute quickly due to their short retention time are determined by the length of the column when no channel switching cock is provided midway, and by the cock switching operation (column length according to the present invention). If a flow path switching cock is provided at position 172, analysis can be performed using a column length that is 1A added to the initial column length.To summarize the above, in the present invention, a constant length In the separation column, a flow path switching cock can be provided in the middle of the separation column to change the flow path order of the divided columns.

従って本発明は、結果的には分離カラムの長さを、分離
対象成分の完全分離のための必要長さに増減できること
によシ、よシ完全な分離と分析時間の短縮を図ることが
できる。
Therefore, in the present invention, the length of the separation column can be increased or decreased to the length required for complete separation of the components to be separated, thereby achieving complete separation and shortening of analysis time. .

〔実施例〕〔Example〕

tlIi1図は本発明の実施例を示す流路構成図でl!
2図の気体試料・導入装置5よシ、四方流路切換コック
8までの流路構成の改良を示す図である。第1図におい
て、17は、本発明のために設けた六方流路切換コック
、(17−1)、(17−2〕・・・(17−6)は六
方流路切換コック17の各流路である。61.62は第
2図のカラム6と同種でロル(以降の作用説明において
は]長さが1/2のカラムで61→(17−5)→(1
7−6)I62と流路が構成されると第2図のカラム6
と同じ長さで同能力の分離作用がある。六方流路切換コ
ック17以降は第2図においては流路切換コック8に至
るが、ま九この第1図は第2図のカラム6周辺のみの改
良に限定せず、次段の流路切換コック部を、検出部と見
なして、通常ノガスクロマトグラフのカラム流路構成の
改良と読み替えるこちもできる。
tlIi1 Figure is a flow path configuration diagram showing an embodiment of the present invention.
2 is a diagram showing an improvement in the flow path configuration from the gas sample/introducing device 5 to the four-way flow path switching cock 8 shown in FIG. 2. FIG. In FIG. 1, 17 is a hexagonal passage switching cock provided for the present invention, (17-1), (17-2]... (17-6) are each flow of the hexagonal passage switching cock 17. 61.62 is the same type as column 6 in Figure 2, and is a column with a length of 1/2 (in the following explanation of the function), and 61 → (17-5) → (1
7-6) When I62 and the flow path are configured, column 6 in Figure 2
It has the same length and the same ability of separation action. The hexagonal flow path switching cock 17 and subsequent steps reach the flow path switching cock 8 in Fig. 2, but this Fig. 1 is not limited to improvements only around the column 6 in Fig. The cock part can also be regarded as a detection part and interpreted as an improvement to the column flow path configuration of a normal gas chromatograph.

次に、第1図に基づいて本発明による分析手段全説明す
る。説明は理屏を容易にするため、第2図のカラム6の
長さの1/2の位置に六方流路切換コック17を設けた
場合について述べる。
Next, the entire analysis means according to the present invention will be explained based on FIG. For ease of explanation, a case will be described in which a hexagonal flow path switching cock 17 is provided at a position 1/2 the length of the column 6 in FIG. 2.

第1図において気体試料導入装&5より導入された混合
試料は、キャリヤーカスによシ六方流路切換コック17
へ至り、その流路(17−1)。
In FIG. 1, the mixed sample introduced from the gas sample introduction device
leading to the flow path (17-1).

(17−2)’i経てカラム61に入り分離作用を受け
るが、成る時間経過し保持時間が小さく溶tB カ早1
/’ (イ)N、” CHa 、(C’) C*Ha、
(ハ)Co、 O成分グルー1は六方流路切換コック1
7の実線の流路(17−5)、(17−6)を通シカラ
ム62中に至る。この時期に、保持時間が大きい溶出の
遅いに)CI”m s(ホ)i−04H1+>−(へ)
n−04H1(1成分グループはまだカラム61の中に
ある。このような最適の時期に六方流路コック17t−
操作して、第1図破線のような流路罠すると、カラム6
2内に存する(イ)N鵞+OH4、(ロ)C!H−1(
ハ)Co鵞の成分は六方流路切換コック17の流路(1
7−5)、(17,−2〕を通シ再びカラム61へ導か
れよ)完全に分離される。そのうえ(イ)N!+CTi
4の成分は保持時間が小さく溶出が早いので、六方流路
切換コック17の操作前に未だカラム61内で分離作用
を受け、切換後も勿論カラム61内にあるところのに)
C*”ms(ホ)1−C4H1(1%(へ)n−”4H
10の各成分よシ溶出が早く、六方流路切換コック17
の最終流路(17−4)からの成分溶出順序は初めに(
イ)N1+OH4、続いてカラム61のみで分離された
に)’1H1s次に(ff) N1+ C+)I4と同
様に〕保持時間が大きな分離溶出の遅いH1−04”l
Os(へ)n−C4H16を追い越して溶出する(口)
C2H@、そして(ハ)CO,が溶出し、最後にH1−
OaHlo  そして(へ)n−C!4H1(1が溶出
する。また(イ) N2 + CH4のピークは前述の
ように後段のカラム9でN2とOH4に完全に分離され
る。このクロマトグラムを第5図に示す。上述のように
成分に)CsHs s (ホ)1−C4H10s(へ)
n−C4H10の分析は第2図のカラム長さの1/2で
充分であシ、又成分(イ)N1+ (:!H4、(o)
 C2H@、G’l COx u、第1図のカラム61
yf!:2回、カラム62t1回通過することになり、
同じ装備長さでsbながら、第2図のカラム6の11/
2倍の長さの分I@能力を利用できることによシ、よシ
完全な分離が行える。ただし、この例の場合、ピーク、
(ロ) O鵞11h(ハ)CO,と、ピークに)O,H
−との溶出順序が入れ替っていることに留意して、流路
切換コック操作時間、キャリヤーガス流量、流路切換コ
ック設置のカラムの分割点等を適切に選定することが必
要である。
(17-2) After passing through column 61, it is subjected to separation action, but as time passes and the retention time is small, it dissolves tB.
/'(I)N," CHa, (C') C*Ha,
(c) Co, O component glue 1 is hexagonal flow path switching cock 1
7, the solid line channels (17-5) and (17-6) lead to the sicolumn 62. At this time, the retention time is long and the elution is slow) CI"m s (e) i-04H1+>- (e)
n-04H1 (1 component group is still in column 61. At such an optimal time, the hexagonal flow channel cock 17t-
If you operate and trap the flow path as shown by the broken line in Figure 1, column 6
(a) N+OH4, (b) C! H-1(
c) The Co component is the channel (1) of the hexagonal channel switching cock 17.
7-5), (17,-2] and then led again to column 61) to be completely separated. Besides, (i)N! +CTi
Component 4 has a short retention time and elution is quick, so it is still subjected to the separation action in the column 61 before the hexagonal channel switching cock 17 is operated, and of course remains in the column 61 even after switching)
C*”ms(e)1-C4H1(1%(e)n-”4H
Elution is faster than each of the 10 components, and hexagonal flow path switching cock 17
The order of component elution from the final channel (17-4) is first (
b) N1 + OH4, then separated only by column 61)'1H1s, then (ff) N1+ C+) Same as I4] H1-04"l with long separation and slow elution with a long retention time
Os (he) overtakes and elutes n-C4H16 (mouth)
C2H@, and (c)CO, elute, and finally H1-
OaHlo and (to) n-C! 4H1(1) elutes. Also, (a) the N2 + CH4 peak is completely separated into N2 and OH4 in the latter column 9 as described above. This chromatogram is shown in Figure 5. component) CsHs s (e) 1-C4H10s (e)
For analysis of n-C4H10, 1/2 of the column length in Figure 2 is sufficient, and component (a) N1+ (:!H4, (o)
C2H@, G'l COx u, column 61 in Figure 1
yf! : It will pass twice and column 62t once,
With the same equipment length and sb, 11/ of column 6 in Figure 2
The ability to utilize twice the length allows for more complete separation. However, in this example, the peak,
(b) O 11h (c) CO, and at the peak) O, H
- It is necessary to appropriately select the operating time of the channel switching cock, the carrier gas flow rate, the dividing point of the column where the channel switching cock is installed, etc., keeping in mind that the elution order is reversed.

上記混合試料分析では従来の第2図のよりなカラム流路
構成金利用した分析方法で約18分である。(当該混合
試料を流路切換コックの構成なしに、’IC2図のカラ
ム6とカラム9の二種類の同じ長さのカラムを直列に接
続して、分析した場合には約40分でかつ、ピーク形状
がブロードでらる。)これを本発明では、第3図に示す
ように、分析時間が@2図の場合の172の9分以内で
可能であり、カラムの分割位&(コックの設置位置]や
操作条件の適切な選定に、より、さらに分析時間の短縮
が可能である。また本発明では、試料導入装置5及び六
方流路切換コック17の切換操作稼動及びタイミングを
、検出器の信号出力をデータ処理器に入力して、その演
算結果からコントロールすることによシ容易に分析の自
動化も可能となる。
The above-mentioned mixed sample analysis takes about 18 minutes using the conventional analysis method that utilizes the column flow path configuration shown in FIG. (If the mixed sample is analyzed by connecting two columns of the same length, column 6 and column 9 in the 'IC2 diagram, in series without the configuration of a flow path switching cock, it will take about 40 minutes and (The peak shape becomes broad.) In the present invention, as shown in Fig. 3, analysis time is possible within 9 minutes of 172 in the case of Fig. 2. The analysis time can be further shortened by appropriately selecting the installation position] and operating conditions.Furthermore, in the present invention, the switching operation and timing of the sample introduction device 5 and the hexagonal flow path switching cock 17 are controlled by the detector. The analysis can be easily automated by inputting the signal output to a data processor and controlling it from the calculation results.

本発明ては、例えばLNG運搬船貨物タンク、LNG陸
上貯蕨タンク等のイナーティングガスと天然ガスとの置
換工程における混合ガスを主として対象とするものであ
るが、本発明における試料の対象は、この組成試料に限
定するものではなくガスクロマトグラフ分析法にて分析
可能なめらゆる種類の混合、気体、液体試料を対象とす
ることができる。
The present invention is mainly aimed at mixed gases in the process of replacing inerting gas with natural gas in, for example, LNG carrier cargo tanks and LNG land storage tanks. The present invention is not limited to compositional samples, and can be applied to all kinds of mixed, gas, and liquid samples that can be analyzed by gas chromatography.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上詳記したように、六方流路切換コックを
配設したガスクロマトグラフ分析装置およびこの六方流
路切換コックを介して分析すべき成分の流路を切換えて
分析するようにした分析方法であるから、分離性の向上
と分析時間の短縮を図ることができる効果が生ずるもの
である。
As described in detail above, the present invention provides a gas chromatograph analyzer equipped with a hexagonal flow path switching cock, and an analysis device in which the flow path of a component to be analyzed is switched through the hexagonal flow path switching cock. Since it is a method, it has the effect of improving separation performance and shortening analysis time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す流路構成図でメ勺、第2
図は従来のガスクロマトグラフ流路構成図である。H3
図は本発明の実施例によるガスクロマトグラムを示す図
であシ、第4図は従来手段によるガスクロマトグラムを
示す図でおる。 復代理人  内 1)  明 復代理人  萩 原 亮 −
Figure 1 is a flow path configuration diagram showing an embodiment of the present invention.
The figure is a diagram showing a conventional gas chromatograph flow path configuration. H3
The figure shows a gas chromatogram according to an embodiment of the present invention, and FIG. 4 shows a gas chromatogram according to a conventional means. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】 1、試料流路に第1の分離カラム、流路切換コック、第
2の分離カラムと順に配設されたガスクロマトグラフ分
析装置において、第1の分離カラムを上流側カラムと下
流側カラムに分離して流路を配設すると共に上流側カラ
ムの入口側及び出口側と、下流側カラムの入口側及び出
口側とを夫々接続する六方流路切換コックを配設してな
ることを特徴とするガスクロマトグラフ分析装置。 2、第1の分離カラムを上流側カラムと下流側カラムに
分離して流路を配設すると共に上流側カラムの入口側及
び出口側と、下流側カラムの入口側及び出口側とを夫々
接続する六方流路切換コックを配設してなるガスクロマ
トグラフ分析装置により混合成分の分析を行うガスクロ
マトグラフ分析方法において、混合成分のうち保持時間
が小さくて溶出時間が早く分離性が悪い成分は、六方流
路切換コックを介して上流側カラム、下流側カラム、上
流側カラムの順に流過させた後、六方流路切換コックを
介して第2の分離カラムへ流過させ、一方、混合成分の
うち保持時間が大きくて溶出時間が遅く分離性の良い成
分は、六方流路切換コックを介して上流側カラムのみを
流過させた後、六方流路切換コックを介して後流側の異
種カラムへ流過させることを特徴とする分離性の向上と
分析時間の短縮を図るガスクロマトグラフ分析方法。
[Claims] 1. In a gas chromatograph analyzer in which a first separation column, a flow path switching cock, and a second separation column are arranged in order in a sample flow path, the first separation column is an upstream column. Separate flow paths are provided in the downstream column, and hexagonal flow path switching cocks are provided to connect the inlet and outlet sides of the upstream column and the inlet and outlet sides of the downstream column, respectively. A gas chromatograph analyzer characterized by: 2. Separating the first separation column into an upstream column and a downstream column and providing a flow path, and connecting the inlet and outlet sides of the upstream column and the inlet and outlet sides of the downstream column, respectively. In a gas chromatography analysis method in which mixed components are analyzed using a gas chromatography analyzer equipped with a hexagonal flow path switching cock, components with short retention times, fast elution times, and poor separability among mixed components are After flowing through the upstream column, downstream column, and upstream column in this order through the flow path switching cock, the mixture components are passed through the hexagonal flow path switching cock to the second separation column. Components with long retention times, slow elution times, and good separation are passed through only the upstream column via the hexagonal flow switching cock, and then flowed through the hexagonal flow switching cock to the downstream dissimilar column. A gas chromatography analysis method that uses flow to improve separation and shorten analysis time.
JP3651985A 1985-02-27 1985-02-27 Gas chromatograph anlysis apparatus and method Pending JPS61196161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3651985A JPS61196161A (en) 1985-02-27 1985-02-27 Gas chromatograph anlysis apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3651985A JPS61196161A (en) 1985-02-27 1985-02-27 Gas chromatograph anlysis apparatus and method

Publications (1)

Publication Number Publication Date
JPS61196161A true JPS61196161A (en) 1986-08-30

Family

ID=12472063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3651985A Pending JPS61196161A (en) 1985-02-27 1985-02-27 Gas chromatograph anlysis apparatus and method

Country Status (1)

Country Link
JP (1) JPS61196161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438559U (en) * 1987-08-31 1989-03-08
JP2009541733A (en) * 2006-06-21 2009-11-26 スミスズ ディテクション−ワトフォード リミテッド Detection apparatus and method
CN106841404A (en) * 2017-01-25 2017-06-13 苏州大学 A kind of high temperature Comprehensive two-dimensional LC device and its application method
CN109856294A (en) * 2019-02-27 2019-06-07 南京普特保仪器有限公司 A kind of chromatographic pretreating device of micro two-dimensional and its working method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222764A (en) * 1983-06-01 1984-12-14 Yokogawa Hokushin Electric Corp Gas chromatograph

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222764A (en) * 1983-06-01 1984-12-14 Yokogawa Hokushin Electric Corp Gas chromatograph

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438559U (en) * 1987-08-31 1989-03-08
JP2009541733A (en) * 2006-06-21 2009-11-26 スミスズ ディテクション−ワトフォード リミテッド Detection apparatus and method
CN106841404A (en) * 2017-01-25 2017-06-13 苏州大学 A kind of high temperature Comprehensive two-dimensional LC device and its application method
CN106841404B (en) * 2017-01-25 2019-11-05 苏州大学 A kind of high temperature Comprehensive two-dimensional LC device and its application method
CN109856294A (en) * 2019-02-27 2019-06-07 南京普特保仪器有限公司 A kind of chromatographic pretreating device of micro two-dimensional and its working method

Similar Documents

Publication Publication Date Title
DE3750751T2 (en) Gas chromatographic method for the separation of hydrogen isotopes.
JPH06511084A (en) protein chromatography system
US4446105A (en) System for analyzing coal liquefaction products
CN107941930B (en) Quick gaseous multicomponent chromatographic fractionation device of VOCs
US3790348A (en) Apparatus for determining the carbon monoxide, methane and total hydrocarbons content in air
US3220164A (en) Recirculation chromatography
JPS61196161A (en) Gas chromatograph anlysis apparatus and method
US3041869A (en) Vapor fraction analyzer
Nazareth et al. Automated analysis of antiepileptic drugs in serum by column-switching high-performance liquid chromatography
Henderson et al. Low temperature high-performance liquid chromatography of cis—trans proline dipeptides
US3800602A (en) Multi-stream gas chromatographic method and apparatus
US3524305A (en) Minimizing switching transients in multiple column chromatography
US3537297A (en) Venting of undesired components in chromatographic analyzer
US4536199A (en) Gas chromatograph for reseparating a sampel into pure components
DE2840612C2 (en) Device for switching the flow direction in a branch piece between two gas chromatographic separation columns
CN106053667A (en) Multi-position hydrocarbon online detection equipment and method
TW201508261A (en) Analysis device and associated method for operating simulated moving bed xylenes separation units using a raman spectrometer
US3152470A (en) Thermochromatographic apparatus and method of analysis
US3069897A (en) Chromatographic analysis
EP0406757B1 (en) Method for chromatographic separation
JP2595071B2 (en) Gas chromatograph
JPH0763744A (en) Instrument and method for analyzing type of saturated hydrocarbon, aromatic hydrocarbon, and olefinic hydrocarbon contained in gasoline, naphtha, light oil or the like
Bohrer et al. On-line deproteinization by adsorption of proteins on a polyethylene powder pre-column for the determination of Na, K, Mg and Ca in human serum by high-performance liquid chromatography
JP2568509B2 (en) Gas chromatograph mass spectrometer
Marchio A Dual-Channel GC Technique for Mixtures of Permanent Gases and C1–C2 Hydrocarbons