JPS61196133A - Loading for sample material test - Google Patents

Loading for sample material test

Info

Publication number
JPS61196133A
JPS61196133A JP3629685A JP3629685A JPS61196133A JP S61196133 A JPS61196133 A JP S61196133A JP 3629685 A JP3629685 A JP 3629685A JP 3629685 A JP3629685 A JP 3629685A JP S61196133 A JPS61196133 A JP S61196133A
Authority
JP
Japan
Prior art keywords
load
test
magnetic field
current
test specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3629685A
Other languages
Japanese (ja)
Inventor
Motoki Yagawa
矢川 元基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3629685A priority Critical patent/JPS61196133A/en
Publication of JPS61196133A publication Critical patent/JPS61196133A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable a highly accurate testing, by arranging a conducting test object in a uniform normal magnetic field to run current to the test-sample crossing the flux of the magnetic field. CONSTITUTION:A conducting test sample 30 is arranged in a uniform normal magnetic field 10 and both ends of a discharge circuit 20 are connected to the test sample 30 to flow current in the direction crossing that of the flux of the magnetic field 10. Consequently, a magnetic force is generated in the test sample 30 according to the direction and the intensity of current to impart a uniform load thoroughly at a high accuracy without causing vibration and repulsion in the test sample 30. The load also is calculated from values of current and the magnetic field at a high accuracy. Moreover, this eliminates any load transmitting body which applies a load to the test sample 30 in contact therewith thereby facilitating the testing under a special condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、材料あるいは構造物の強度特性等を試験する
際の荷重負荷方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a load application method for testing the strength characteristics of materials or structures.

(従来の技術) 従来、ある材料の強度特性を試験する場合、第12図に
示すようにその材料を所定の形状、寸法に仕立てた試験
体1を、所定の台2.3上に設置し、油圧源(図示せず
)で発生した荷重を荷重伝達体4を介して前記試験体1
に加え、該荷重に対する変位量や、亀裂を生じたり破壊
した時の荷重を測定することにより、その強度特性を求
める方法が用いられていた。また、この時、荷重の測定
は荷重伝達体4に取付けた歪みゲージの出力値により行
なっていた。
(Prior Art) Conventionally, when testing the strength characteristics of a certain material, a test specimen 1 made of the material in a predetermined shape and size is placed on a predetermined table 2.3 as shown in FIG. , a load generated by a hydraulic power source (not shown) is transferred to the test body 1 via a load transmission body 4.
In addition, a method has been used to determine the strength characteristics by measuring the amount of displacement under the load and the load at the time of cracking or destruction. Further, at this time, the load was measured by the output value of a strain gauge attached to the load transmitting body 4.

(発明が解決しようとする問題点) 前記構成によれば、荷重は試験体1と台2゜3及び荷重
伝達体4との接触により付与されることになるが、この
際、第12図(b)(c)(e)に示すように試験体1
に発生する振動や反跳等により、試験体1と台2.3又
は荷重伝達体4との接触が正しく保持されなくなる(図
中、矢印で示す箇所)ため、該試験体1に実際に加えた
荷重を精度良く測定することができず、特に高速荷重負
荷状態における破壊靭性(動的破壊靭性’ KId、J
Id)を試験する場合のように、短時間(例えば1mS
eC)に大きな荷重く動的負荷)を加える時には大きな
誤差を生じていた。また、このような短時間の負荷を作
用させる場合、油圧源等によって荷重を制御するのは極
めて難しかった。ざらにまた、試験体1と荷重伝達体4
との接触が必要なため、腐蝕、高温、又は低温等の特殊
環境条件下の試験を行なう場合、試験体1と外界との遮
断が困難である等の問題点があった。
(Problems to be Solved by the Invention) According to the above configuration, the load is applied through contact between the test specimen 1, the table 2.3, and the load transmitting body 4, but in this case, as shown in FIG. b) Test specimen 1 as shown in (c) and (e)
Due to vibrations, recoil, etc. that occur in It is not possible to accurately measure the applied load, and the fracture toughness (dynamic fracture toughness 'KId, J
Id) for a short period of time (e.g. 1 mS)
A large error occurred when applying a large load (dynamic load) to eC). Furthermore, when applying a load for such a short time, it is extremely difficult to control the load using a hydraulic power source or the like. Furthermore, the test specimen 1 and the load transmitting body 4
Therefore, when testing under special environmental conditions such as corrosion, high temperature, or low temperature, there were problems such as difficulty in isolating the test specimen 1 from the outside world.

(問題点を解決するための手段) 本発明では前記問題点を解決するため、材料あるいは構
造物の強度特性等を試験する際の荷重負荷方法において
、導電性の試験体30又は応力を加えようとする面に導
電151を設けた試験体50を一様な定常磁場10中に
配置し、該試験体30又は導電層51に前記磁場10の
磁束の向きと交差する方向に向けて電流を流すようにし
た。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention applies a conductive test specimen 30 or stress in a load loading method when testing the strength characteristics of materials or structures. A test body 50 with a conductive layer 151 provided on the surface thereof is placed in a uniform steady magnetic field 10, and a current is passed through the test body 30 or the conductive layer 51 in a direction that intersects the direction of the magnetic flux of the magnetic field 10. I did it like that.

(作用) 前記構成によれば、試験体30又は導電層51には周知
のように電流の向きや強さに従う電磁力が発生すること
になるため、該試験体30又は50に撮動や反跳を発生
させることなく、その全体に均等な荷重を高精度に付与
することができ、また、その荷重も前記電流の値と前記
磁場の強さを表わす値より簡単且つ高精度に算出でき、
さらに荷重の制御は前記電流を制御することにより簡単
に行なうことができ、短時間の荷重を容易に付与するこ
とができ、さらにまた、試験体30又は50に接触して
荷重を加える荷重伝達体が不要なため、特殊条件下にお
ける試験が容易となる。
(Function) According to the above configuration, as is well known, an electromagnetic force is generated in the test object 30 or the conductive layer 51 according to the direction and strength of the current. A uniform load can be applied to the entire part with high precision without causing jumps, and the load can be calculated easily and with high precision from the value representing the current value and the strength of the magnetic field.
Furthermore, the load can be easily controlled by controlling the current, and the load can be easily applied for a short time. Since this is not necessary, testing under special conditions becomes easier.

(実施例) 第1図乃至第10図は本発明の第1の実施例を示すもの
で、図中、10は磁場、20は放電回路、30は試験体
である。
(Example) Figures 1 to 10 show a first example of the present invention, in which 10 is a magnetic field, 20 is a discharge circuit, and 30 is a test object.

前記磁場10は、磁束密度Bの磁束が(−2)方向に向
かう一様な定常磁場で、S極及びN極を互いに対向させ
て配置したマグネット11.12の間に形成されている
The magnetic field 10 is a uniform steady magnetic field in which the magnetic flux with a magnetic flux density B is directed in the (-2) direction, and is formed between magnets 11 and 12 in which the south pole and the north pole are arranged to face each other.

放電回路20は、コンデンサ21とサイリスタ22とコ
イル23と抵抗24とが直列に接続されてなり、その両
端は試験体30に接続されている。なお、コンデンサ2
1を充電する回路、サイリスタ22を導通させる回路は
周知であるから、ここでは省略する。
The discharge circuit 20 includes a capacitor 21, a thyristor 22, a coil 23, and a resistor 24 connected in series, and both ends thereof are connected to a test object 30. In addition, capacitor 2
Since the circuit for charging the thyristor 1 and the circuit for making the thyristor 22 conductive are well known, their description will be omitted here.

試験体30は、導電性の金属、例えば原子炉圧力容器用
鋼A308 cl、3鋼を断面長方形の棒状に形成し、
幅狭の一側面31の略中央に予め亀裂32を設けてなっ
ている。該試験体30は磁場10内において、その長手
方向がX軸に平行で、前記−側面31が(−y)方向に
向き且つy軸に直交するよう、一対の台40.41にそ
の一端33並びに他端34付近にて支持される。該試験
体30の一端33及び他端34には前記放電回路20の
両端がそれぞれ接続される。又、前記−側面31に対向
する面35の略中央には周知のコンデンサ容量変位計(
図示せず)が取付けられ、さらに前記亀裂32の両側に
は周知の電位差検出器(図示せず)が接続される。
The test specimen 30 is made of a conductive metal, such as A308 cl, 3 steel for nuclear reactor pressure vessels, formed into a rod shape with a rectangular cross section.
A crack 32 is previously provided approximately at the center of one narrow side surface 31. The test specimen 30 is placed on a pair of stands 40, 41 with one end 33 thereof in the magnetic field 10 so that its longitudinal direction is parallel to the and is supported near the other end 34. Both ends of the discharge circuit 20 are connected to one end 33 and the other end 34 of the test body 30, respectively. Furthermore, a well-known capacitor capacitance displacement meter (
(not shown) is attached, and furthermore, well-known potential difference detectors (not shown) are connected to both sides of the crack 32.

第2図は試験体30の具体的な形状を示すもので、各部
の寸法は長さ428HR,幅30am、厚さ61m1!
で、その一端33並びに他端34より7amの位置には
前記放電回路20との接続用の直径6Mのケーブル接続
孔33a、34aがそれぞれ設けられている。又、亀裂
32は幅2履、長さ9m+の溝32aと、その底部に連
続する長さ約3Mの疲労亀裂32bとからなっている。
Figure 2 shows the specific shape of the test specimen 30, and the dimensions of each part are length 428HR, width 30am, and thickness 61m1!
Cable connection holes 33a and 34a with a diameter of 6M for connection with the discharge circuit 20 are provided at positions 7 am from one end 33 and the other end 34, respectively. The crack 32 consists of a groove 32a with a width of 2 mm and a length of 9 m+, and a fatigue crack 32b with a length of about 3 m continuous to the bottom of the groove 32a.

該亀裂32の両側には前記電位差検出器との接続用の直
径3mのケーブル接続孔36.37がそれぞれ設けられ
ている。又、−側面31の一端33並びに34より14
履の位置にて台40.41に支持される。
Cable connection holes 36, 37 with a diameter of 3 m are provided on both sides of the crack 32, respectively, for connection with the potential difference detector. Also, -14 from one end 33 and 34 of the side surface 31
It is supported by a stand 40.41 at the position of the shoes.

この様な構成において、コンデンサ21に充分大きな電
圧を充電しサイリスタ22を導通させると、周知のLC
R直列放電回路の放電特性に基づくパルス電流Iが試験
体30の一端33及び他端34間に(−X)方向に流れ
、(−y)方向の衝撃的な電磁力(IXB)が該試験体
3oに付与される。
In such a configuration, if the capacitor 21 is charged with a sufficiently large voltage and the thyristor 22 is made conductive, the well-known LC
A pulse current I based on the discharge characteristics of the R series discharge circuit flows between one end 33 and the other end 34 of the test object 30 in the (-X) direction, and an impulsive electromagnetic force (IXB) in the (-y) direction is applied to the test. It is given to the body 3o.

例えば、磁束密度Bを1.7Tesla(磁気飽和のた
め試験体内部は2 Te5la) 、前記放電回路20
の各素子の値を、コンデンサ21は22mF。
For example, if the magnetic flux density B is 1.7 Tesla (2 Te5 la inside the test piece due to magnetic saturation), the discharge circuit 20
The value of each element is 22mF for capacitor 21.

コイル23は11μH9抵抗24は45mΩとし(最大
充電エネルギ18kJ)とし、コンデンサ21の充電電
圧1000Vでサイリスタ22を導通させると、時刻0
.5m5ecで最大電流値18kAのパルス電流が試験
体30に流れ、衝撃的な電磁力が試験体30に付与され
る。
The coil 23 is 11 μH, the resistor 24 is 45 mΩ (maximum charging energy 18 kJ), and when the thyristor 22 is made conductive with the charging voltage of the capacitor 21 of 1000 V, the time 0
.. A pulse current with a maximum current value of 18 kA flows through the test object 30 for 5 m5 ec, and an impactful electromagnetic force is applied to the test object 30.

なお、A308 cl、3鋼のような磁性体の試験体3
0には、(−y)方向に作用する力のほかに(−Z)と
(Z)方向に磁力が作用する。そこで図示しないが、(
2)方向の変形を押えつつ(−y)方向への変形を円滑
に行なわせ、その時生じる摩擦力は試験体全体に分散す
るよう、試験体30の長手方向の16箇所に等間隔でテ
フロン・リングを取付け、これをテフロン製の支持板で
挟み込み、側面から支持するものとする。
In addition, test specimen 3 of magnetic material such as A308 cl, 3 steel
0, magnetic forces act in the (-Z) and (Z) directions in addition to the force acting in the (-y) direction. Although not shown, (
2) In order to suppress the deformation in the (-y) direction and to smoothly deform in the (-y) direction, and to disperse the frictional force generated at that time over the entire test specimen, Teflon was applied at 16 locations in the longitudinal direction of the test specimen 30 at equal intervals. A ring is attached, sandwiched between Teflon support plates, and supported from the sides.

又、試験は温度を一196〜115℃の間で数点を設定
して行なうが、動的負荷の試験の際の温度設定法として
は図示しないが、高温の場合、アスベスト板でマグネッ
ト11.12間に炉を作り上下二つのヒータで加熱し、
低温の場合には、前記側面支持板にアスベスト板の底を
付け、これに液体窒素やアルコール、ドライアイス等の
冷媒を入れ、試験体30を完全に浸して所定温度に冷や
すものとする。
In addition, the test is conducted by setting the temperature at several points between -196 and 115°C. Although the temperature setting method during the dynamic load test is not shown, in the case of high temperature, an asbestos plate is used to set the magnet 11. Build a furnace between 12 and heat it with two heaters, upper and lower.
In the case of low temperatures, an asbestos plate bottom is attached to the side support plate, and a refrigerant such as liquid nitrogen, alcohol, or dry ice is poured into this to completely immerse the test specimen 30 and cool it to a predetermined temperature.

次に、前記電磁力による動的負荷を与えた場合の動的破
壊靭性値の解析について述べる。
Next, an analysis of the dynamic fracture toughness value when a dynamic load due to the electromagnetic force is applied will be described.

周知のように電磁力は体積力であるから、試験体30全
体に負荷される。この電磁力の解析法を簡単に説明する
と、まず、試験体内の電流分布を計算し、次にこれに磁
束密度を乗じた電磁力分布を入力データとして二次元動
的弾塑性破壊解析を行なう。ここで、破壊パラメータと
しては岸本う(岸本・ばか2名、 jam、 46−4
10. A(昭55)、1049.)によって体積力(
電磁力)や慣性力の存在する問題に拡張されたJ積分(
J積分)を使用する。解析条件としては磁束密度を2T
eslaとし、下記に示す物性値を用い、又、平面応力
を仮定した。
As is well known, electromagnetic force is a body force, and therefore is applied to the entire test specimen 30. To briefly explain the electromagnetic force analysis method, first, the current distribution inside the test object is calculated, and then a two-dimensional dynamic elastoplastic fracture analysis is performed using the electromagnetic force distribution obtained by multiplying this by the magnetic flux density as input data. Here, the destruction parameter is U Kishimoto (Kishimoto, two idiots, jam, 46-4
10. A (1977), 1049. ) by the body force (
The J integral (
J integral). The analysis conditions are magnetic flux density of 2T.
esla, the physical property values shown below were used, and plane stress was assumed.

記 Youna’s modulus  E−2,06x 
10” HPaY 1eld strength  6
y = 441     HPa)1ardening
  rate   H’  −1960HPaPois
son’s  ratio  v−0,3Mass d
ensity   ρ=8.03X10/(g/113
第3図は充電エネルギE。が、7.0kJ(図中、実線
で示す。)と15.4kJ (図中、破線で示す。)の
場合の電流値(入力値)とJ積分(結果)の時刻歴であ
る。ここでは、電流を時定数一定で定数倍変化させただ
けにも拘らず、J積分の時刻歴はピーク時刻が遅れる等
大きく変化している。このことから、時刻歴は荷重条件
の変化に対して非常に敏感な量であることがわかる。
Youna's modulus E-2,06x
10” HPaY 1eld strength 6
y = 441 HPa)1ardening
rate H' -1960HPaPois
son's ratio v-0,3Mass d
intensity ρ=8.03X10/(g/113
Figure 3 shows charging energy E. are the time histories of the current value (input value) and J integral (result) in the case of 7.0 kJ (indicated by the solid line in the figure) and 15.4 kJ (indicated by the broken line in the figure). Here, even though the current is only changed by a constant time constant and the time constant is constant, the time history of the J integral changes significantly, such as the peak time being delayed. This shows that the time history is a quantity that is extremely sensitive to changes in load conditions.

又、図示しないが、支持端反力には振動周期が支持点の
外にある試験体端部の一次横振動モードとほぼ一致する
大きな振動が乗っていた。しかし、反力の値は常に正で
あり、本試験体系の場合、Kalthoff  ()<
althoff 、 Proc 、  I 、 Con
r 。
Although not shown, the support end reaction force included large vibrations whose vibration period almost matched the primary transverse vibration mode of the end of the test piece outside the support point. However, the value of the reaction force is always positive, and in the case of this test system, Kalthoff () <
althoff, Proc, I, Con
r.

AI)DliCatiOn  Of  FraCtll
re  Mechanics  t。
AI) DliCatiOn Of FraCtll
re Mechanics t.

Materials  and  S tructur
es 、  (1984) 。
Materials and Structure
es, (1984).

107、)が指摘するような衝撃時の試験体の反跳は起
こらないと推定される。
107,), it is presumed that the test specimen does not recoil upon impact.

このように電磁力負荷体系でも衝撃の影響はある程度用
れるが、第4図に示すJla分と試験体中央部の変位饅
δの関係では傾向が異なる。同図において、実線はEC
=7.OkJの動的負荷、破線はE。−15,4kJの
動的負荷、鎖線は静的負荷の場合を示す。ここでは荷重
の大きさに応じてJの最大値が変化するほかは、荷重速
度かにに換算して1.8x10 〜2.7X105MN
/m   −8と高速であるわりに振動も少なく途中の
腹歴は数%の差で一致する。しかも比較のためプロット
した同形状試験体の静的三点曲げの結果とも一致する。
In this way, even in the electromagnetic force loading system, the influence of impact can be used to some extent, but the relationship between Jla and the displacement δ at the center of the test piece shown in FIG. 4 has a different tendency. In the same figure, the solid line is EC
=7. Dynamic load of OkJ, broken line is E. -15.4 kJ dynamic load, the dashed line shows the case of static load. Here, except that the maximum value of J changes depending on the size of the load, the loading speed is converted to 1.8 x 10 ~ 2.7 x 105 MN.
Despite the high speed of /m -8, there is little vibration, and the antinode history coincides with a difference of a few percent. Moreover, it also agrees with the static three-point bending results of the same-shaped specimen plotted for comparison.

これは次のように考えられる。This can be thought of as follows.

即ち、電磁力が体積力として試験体全体にlil的に負
荷されると、支持端を除いて衝撃による局所内高応力場
は形成されず、その結果、荷重負荷部からの顕著な応力
波伝ばが起こらない。一方、支持端は亀裂から遠く離れ
ているため、そこから伝ばする曲げ波は亀裂に到達する
までに高次モードが分散する。従って、試験体は高速変
形下でもほぼ準静的な変形モードを保つことになり、第
4図にみられるような荷重変化の影響を受けにくい安定
したJ−δ関係が得られることになる。従って、本試験
法の場合、J値評価にはJ−tlIl係のほかにJ−δ
関係の利用が考えられるが、荷重条件の変化に対して安
定している点と、変形挙動を直接表わす実験値は破壊時
刻よりその時の変位δであることから後者を使用する。
In other words, when electromagnetic force is applied to the entire test specimen as body force, no local high stress field is formed due to the impact except at the supporting end, and as a result, significant stress wave propagation from the load bearing area occurs. It doesn't happen. On the other hand, since the support end is far away from the crack, higher-order modes of the bending waves propagating from there are dispersed before reaching the crack. Therefore, the test specimen maintains a substantially quasi-static deformation mode even under high-speed deformation, and a stable J-δ relationship that is not easily affected by load changes as shown in FIG. 4 is obtained. Therefore, in the case of this test method, in addition to J-tlIl, J-δ is used for J value evaluation.
Although it is possible to use the relationship, the latter is used because it is stable against changes in loading conditions and the experimental value that directly represents the deformation behavior is the displacement δ at that time rather than the time of failure.

ここでは動的破壊靭性値として、KIdは電位差法(E
P法)によって限界変位置δ。を測定しJ−δ関係から
対応するに1.LIC)を決定する。
Here, as the dynamic fracture toughness value, KId is the potential difference method (E
P method) to determine the limit displacement δ. 1. Measured and corresponded from the J-δ relationship. LIC).

一方、JId試験では最大変位借δ1を測定しJ−δ関
係からJ、値を求め、これとΔaを用いてRカーブを作
成しJIdを決定する。
On the other hand, in the JId test, the maximum displacement δ1 is measured, the value J is determined from the J-δ relationship, and an R curve is created using this and Δa to determine JId.

第5図は、前記試験体30(但し、長さは300履、支
持位置は両端33.34よりそれぞれ70履の地点)に
対し、周知のMTS引張試験機により静的三点曲げ試験
を行なった場合の7℃と105℃のものについてのJ積
分−荷重点変位関係の解析と実験の結果を示す。図中、
○は7℃の実験値、Δは105℃の実験値、破線は7℃
の解析値、一点鎖線は105℃の解析値を示す。ここで
実験値は荷重−変位関係をもとにRiceの簡便式から
計算されたものである。両者はどちらの温度でも良好に
一致しており、本解析法が充分な精度を有することが確
認される。
FIG. 5 shows a static three-point bending test performed on the test specimen 30 (length: 300 feet, supporting position 70 feet from both ends 33, 34) using a well-known MTS tensile tester. The results of the analysis and experiment of the J-integral-load point displacement relationship for the cases of 7°C and 105°C are shown below. In the figure,
○ is the experimental value at 7℃, Δ is the experimental value at 105℃, and the broken line is 7℃.
The dashed line indicates the analytical value at 105°C. Here, the experimental values are calculated from Rice's simple equation based on the load-displacement relationship. The two agree well at both temperatures, confirming that this analytical method has sufficient accuracy.

第6図は、前記動的試験において得られた試験体30中
央部変位δの時刻歴の解析及び実験結果の7℃の時の一
例を示す。図中、破線は解析結果、実線は実験結果を示
す。ピーク時刻等はぼ合っているが、全体的に実験値が
少し低い。その主な原因としては、磁力対策として試験
体30に取付けたテフロン・リング、テフロン・プレー
ト(図示せず)間の摩擦によるエネルギ・ロスが考えら
れる。しかし、時刻歴にこの程度の差しか与えない摩擦
力によって変形モードが変化することはほとんどないと
推定され、J値評価の基礎となるJ−δ関係はそのまま
利用できると考えられる。
FIG. 6 shows an example of the analysis and experimental results of the time history of the displacement δ at the center of the test body 30 obtained in the dynamic test at 7°C. In the figure, the broken line shows the analysis results, and the solid line shows the experimental results. The peak times etc. are not consistent, but overall the experimental values are a little low. The main reason for this is thought to be energy loss due to friction between the Teflon ring and Teflon plate (not shown) attached to the test specimen 30 as a countermeasure against magnetic force. However, it is estimated that the deformation mode will hardly change due to the frictional force that causes only a difference of this magnitude in the time history, and it is considered that the J-δ relationship, which is the basis of J value evaluation, can be used as is.

電磁力を利用する本試験法は完全な荷重制御試験である
ため、電磁エネルギの調節により任意の変位設定が可能
である。よって、upper 5heH域でのRカーブ
法の適用は容易である。しかし、低温において急速にへ
き開破壊が起こる場合には、゛荷重落下”からその発生
を検知することができないために別の手法を考える必要
がある。そこで電位差法(EP法)を利用することにし
た。
This test method, which uses electromagnetic force, is a complete load control test, so any displacement can be set by adjusting the electromagnetic energy. Therefore, it is easy to apply the R curve method in the upper 5heH region. However, when cleavage fracture occurs rapidly at low temperatures, it is necessary to consider another method because it is not possible to detect the occurrence from "load drop." Therefore, we decided to use the potentiometric method (EP method). did.

第7図、及び第8図に一70℃で完全にへき開破壊した
場合の結果を示す。ここで、第7図が磁場中に置かれた
試験体αと磁場外に置かれたダミー試験体βのそれぞれ
の亀裂端での電位差の時刻歴であり、第8図が電流と試
験体中央部変位の時刻歴である。第7図をみると、両者
は同様の腰歴をたどった後、時刻1m5ecから試験体
αの電位差だけが急増しそれが約1.5m5eCまで続
いている。これは1m5ecでへき開破壊が発生し、リ
ガメントの減少につれて電気抵抗が増加して1.5m5
ecでほぼ破断した結果と解釈される。
Figures 7 and 8 show the results when complete cleavage fracture occurred at -70°C. Here, Figure 7 shows the time history of the potential difference at the crack edge of the test piece α placed in the magnetic field and the dummy test piece β placed outside the magnetic field, and Figure 8 shows the current and the center of the test piece. This is the time history of part displacement. Looking at FIG. 7, after both of them followed the same hip history, only the potential difference of the test body α suddenly increased from time 1m5eC and continued to about 1.5m5eC. Cleavage failure occurs at 1 m5ec, and as the ligament decreases, the electrical resistance increases and 1.5m5
This is interpreted as a result of almost rupture at ec.

一方、第8図の変位曲線には1m5ec近辺にまったく
変化がなく、むしろ試験体の分断時刻1.5m5ecに
小さな“段″がみられる。
On the other hand, in the displacement curve of FIG. 8, there is no change at all near 1 m5 ec, but rather a small "step" is seen at the time of separation of the test specimen, 1.5 m5 ec.

又、この電位差の結果から亀裂進展速度を評価すること
は、ぜい性破壊のように高速亀裂進展の場合、進展速度
によって電位差−亀裂長の較正関係が変化するため困難
なものとなる。しかし、比較的速度の遅い延性亀裂進展
では二つの電位差を比較することにより可能である。
Furthermore, it is difficult to evaluate the crack growth rate from the result of this potential difference in the case of high-speed crack growth such as brittle fracture because the calibration relationship between potential difference and crack length changes depending on the growth rate. However, ductile crack growth, which occurs at a relatively slow rate, can be achieved by comparing two potential differences.

第9図は7℃の試験において得られた静的Rカーブと動
的Rカーブの比較を示す。ここで、鈍化曲線としては日
本溶接協会のTS小委員会において、本材料に対して推
奨されているJ=46YΔaを用いた。なお、δ、は静
的引張試験から得られた降伏応力である。この結果では
、亀裂進展初期は亀裂進展初期においては明らかに動的
結果のほうが小さく、亀裂が進むにつれてその差がなく
なっている。又、これより高温の結果では第9図はどの
差はみられないが、同様の傾向を示した。
Figure 9 shows a comparison of the static R-curve and dynamic R-curve obtained in the 7°C test. Here, as the blunting curve, J=46YΔa, which is recommended for this material by the TS subcommittee of the Japan Welding Society, was used. Note that δ is the yield stress obtained from the static tensile test. In this result, the dynamic result is clearly smaller at the initial stage of crack propagation, and the difference disappears as the crack progresses. Further, in the results at higher temperatures than this, FIG. 9 shows a similar tendency, although no difference was observed.

ここで得られた静的及び動的破壊靭性値と温度の関係を
第10図に示す。結果はすべて数値解析によりJで評価
したものを次式によってに値に換算した。
The relationship between the static and dynamic fracture toughness values obtained here and temperature is shown in FIG. All results were evaluated using J through numerical analysis and were converted into values using the following formula.

K=(EJ)”       ・・・・・・(1)E 
: Young’s modulus動的試験の荷重速
度は、Kz8×104〜2×10  MN/m   −
sである。
K=(EJ)” ・・・・・・(1)E
: The loading rate of Young's modulus dynamic test is Kz8×104 to 2×10 MN/m −
It is s.

本試験では装置の荷重容量の制限から試験体の板厚が薄
く、はとんどのデータが板厚に関する有効条件を満足し
ていない。しかし、すべての試験を同一形状の試験体で
行なったので動的効果の検討には有効であると考えられ
る。そこで、第10図をみると遷移温度領域以下では破
面にみられた破壊様式の相違を反映してKIdがKIc
より30〜50%はど低下し、遷移温度も40〜50℃
はど高温側ヘシフトしており、岩舘ら(岩舘・ほか3名
、鉄と鋼、69(昭58)、308.)の結果と良い対
応を示している。また、uppershe l f域で
もKIdがKIcより10〜20%はど低下しているが
、これは亀裂伝は速度の増大に伴って剪断破面率が減少
する不安定破壊時の減少に類似して、歪み速度効果によ
り剪断破面率が減少した結果とも考えられる。しかし、
Upper 5helf域のこの傾向はKldかに工。
In this test, the thickness of the specimen was thin due to the limited load capacity of the equipment, and most of the data did not satisfy the valid conditions regarding the thickness. However, since all tests were conducted on test specimens of the same shape, it is considered to be effective in examining dynamic effects. Therefore, looking at Figure 10, below the transition temperature region, KId changes to KIc, reflecting the difference in the fracture mode observed on the fracture surface.
It is 30-50% lower than that, and the transition temperature is 40-50℃.
The temperature has shifted to the high temperature side, showing good correspondence with the results of Iwadate et al. In addition, even in the uppershelf region, KId is 10 to 20% lower than KIc, but this is because crack propagation is similar to the decrease during unstable fracture where the shear fracture ratio decreases as the velocity increases. This is also considered to be the result of a decrease in the shear fracture ratio due to the strain rate effect. but,
This trend in the Upper 5 helf area is Kld crab work.

より高くなる前記岩舘らやL ogsdon (Log
sdon、 W、 A、、proc、 of theW
inter Annual  Meetino of 
the A SM E 。
Said Iwadate et al. Logsdon (Log
sdon, W, A,, proc, of the W
inter Annual Meetino of
the ASM E.

MPC−8(1978)、149.)の報告と全く異な
る結果となった。岩舘らの報告にはflowStres
sの上昇がKldをKICより15〜20%はど大きく
する原因であると述べられており、第10図でも歪み速
度効果を考慮した解析を行なえば確かにKId値はさら
に増加すると考えられる。しかし、それはに値が荷重の
172乗に比例すること、高歪み速度域が亀裂近傍に限
られることを考慮すれば、動的降伏応力が20%程度増
加してもたかだか数%程度に止まるものと推定される。
MPC-8 (1978), 149. ) The results were completely different from those reported. The report by Iwadate et al.
It is stated that the increase in s is the cause of making Kld 15 to 20% larger than KIC, and it is believed that the KId value will certainly increase further if an analysis is performed in consideration of the strain rate effect in FIG. 10. However, considering that the value is proportional to the 172nd power of the load and that the high strain rate region is limited to the vicinity of the crack, even if the dynamic yield stress increases by about 20%, it will only increase by a few percent. It is estimated to be.

従って、上記の亀裂進展量に与える歪み速度効果も考慮
すれば、KIdがKIcより大きくなることはないと考
えられる。
Therefore, if the above-mentioned strain rate effect on the amount of crack growth is also considered, it is considered that KId will not become larger than KIc.

以上のことより次の結論が得られる。From the above, the following conclusion can be drawn.

(1)本試験法では荷重が電磁力という一様な分布力で
あるために靭性値への高次モードの振動の混入を避ける
ことができる上、変形モードが荷重速度によらない一定
モードとなっているため、再現性が高く、靭性値の決定
に際して有利である。
(1) In this test method, the load is electromagnetic force, which is a uniformly distributed force, so it is possible to avoid mixing higher-order mode vibrations into the toughness value, and the deformation mode is a constant mode that does not depend on the loading speed. Therefore, it has high reproducibility and is advantageous in determining toughness values.

(2>A308 cl、3鋼の動的破1ilI′M性値
は遷移温度領域以下だけでなく、upper 5hel
f域においても減少する。
(2>A308 cl, the dynamic fracture resistance value of 3 steel is not only below the transition temperature region, but also in the upper 5heil
It also decreases in the f range.

なお、これまでの説明は、試験体に衝撃的な動的負荷を
与えて試験する場合について述べたが、例えば電流値を
徐々に増加させて加えるようにすれば静的な負荷を与え
ることができ、また、試験体を破壊しない程度のパルス
電流を所定時間毎に繰返し加えれば疲労強度等を試験す
ることもでき、その他にも電流の加え方を変えることに
より各種の試験を行なうことができる。
The explanation so far has been about the case of testing by applying a shocking dynamic load to the test specimen, but for example, if the current value is gradually increased and applied, it is possible to apply a static load. It is also possible to test fatigue strength, etc. by repeatedly applying a pulsed current that does not destroy the specimen at predetermined intervals, and various other tests can be performed by changing the way the current is applied. .

第11図は本発明の第2の実施例を示すもので、ここで
は非導電性の試験体を使用する場合を示す。図中、50
は木材、合成樹脂等の非導電性の試験体であり、前記試
験体30と同様な形状に形成されている。51は前記試
験体50の上面に形成された導電層、例えばアルミニウ
ムテープであり、接着剤等により貼り付けられている。
FIG. 11 shows a second embodiment of the present invention, in which a non-conductive test specimen is used. In the figure, 50
is a non-conductive test piece made of wood, synthetic resin, etc., and is formed in the same shape as the test piece 30 described above. Reference numeral 51 denotes a conductive layer formed on the upper surface of the test specimen 50, such as an aluminum tape, and is attached with an adhesive or the like.

該アルミニウムテープ51の両端は放電回路20の両端
に接続されている。なお、導電層としては導電性があれ
ばどのようなものでも良いが、鉄系の金属等では前述し
たように(−2)方向及び(Z)方向に磁力が働くため
、非磁性のものが適している。而して、放電回路20よ
りアルミニウムテープ51に電流■が流されると、該ア
ルミニウムテープ51に(−y)方向の電磁力(IXB
)が働き、これが試験体50の上面全体に加わる。従っ
て、第1の実施例の場合と同様な負荷が試験体50に与
えられることになり、同様に試験を行なうことができる
。なお、その他の構成、作用は第1の実施例と同様であ
る。
Both ends of the aluminum tape 51 are connected to both ends of the discharge circuit 20. The conductive layer may be made of any material as long as it has conductivity, but as mentioned above, magnetic force acts in the (-2) direction and (Z) direction with iron-based metals, so non-magnetic materials may be used. Are suitable. Therefore, when a current (2) is applied to the aluminum tape 51 from the discharge circuit 20, an electromagnetic force (IXB) is applied to the aluminum tape 51 in the (-y) direction.
) is applied to the entire upper surface of the test specimen 50. Therefore, the same load as in the case of the first embodiment is applied to the test specimen 50, and the test can be conducted in the same manner. Note that the other configurations and operations are the same as those of the first embodiment.

(発明の効果) 以上説明したように本発明によれば、材料あるいは構造
物の強度特性等を試験する際の荷重負荷方法において、
導電性の試験体又は応力を加えようとする面に導N層を
設けた試験体を一様な定常磁場中に配冒し、該試験体又
は導電層に前記磁場の磁束の向きと交差する方向に向け
て電流を流すようにしたため、試験体又は導電層には周
知のように電流の向きや強さに従う電磁力が発生するこ
とになり、該試験体又は導電層に撮動や反跳を発生させ
ることなく、その全体に均等な荷重を高精度に付与する
ことができ、また、その荷重も前記電流の値と前記磁場
の強さを表わす値より簡単且つ高精度に算出でき、さら
に荷重の制御は前記電流を制御することにより簡単に行
なうことができ、短時間の荷重を容易に付与することが
でき、さらにまた、試験体又はに接触して荷重を加える
荷重伝達体が不要なため、特殊条件下における試験が容
易となる等の利点がある。
(Effects of the Invention) As explained above, according to the present invention, in a load application method when testing the strength characteristics of a material or structure,
A conductive test piece or a test piece with a conductive N layer on the surface to which stress is to be applied is placed in a uniform steady magnetic field, and the test piece or conductive layer is placed in a direction that intersects the direction of the magnetic flux of the magnetic field. Since the current is passed towards the test object or conductive layer, an electromagnetic force is generated in the test object or the conductive layer according to the direction and strength of the current, which causes the test object or the conductive layer to take an image or recoil. It is possible to apply an even load to the entire area with high precision without generating any magnetic field, and the load can be calculated easily and with high precision from the value representing the current value and the strength of the magnetic field. can be easily controlled by controlling the above-mentioned current, it is easy to apply a short-time load, and furthermore, there is no need for a load transmitter to apply the load by contacting the test piece or the test piece. This has advantages such as ease of testing under special conditions.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の説明に供するもので、第1図乃至第11
図は本発明の第1の実施例を示し、第1図は概略構成を
示す斜視図、第2図は試験体の具体例を示す斜視図、第
3図はTi流値とJ積分の時刻歴を示す図、第4図は動
的J−δ関係と静的J−δ関係の比較を示す図、第5図
は静的J−δ関係の解析と実験の比較を示す図、第6図
は変位δの時刻歴の解析と実験の比較を示す図、第7図
は電位差の時刻歴を示す図、第8図は電流と変位の時刻
歴を示す図、第9図は静的Rカーブと動的Rカーブの比
較を示す図、第10図は静的・動的破壊靭性値の温度依
存性を示す図、第11図は本発明の第2の実施例を示す
概略構成図、第12図(a)〜(f)は従来の試験にお
ける試験体の振動の様子を示す図である。 10・・・磁場、20・・・放電回路、30.50・・
・試験体、40.41・・・台、51・・・導電層。 粥  乙  l 第3図 餅町t(rnsec) 第4図 第5図 変位置、6 (mm) 第6図 時間  ↑(msec) 9    へ7図 第8図 時間 ↑(msec) 第9図 第10図 温度   T(”C) 第11図
The drawings are provided to explain the present invention, and include Figures 1 to 11.
The figures show a first embodiment of the present invention, in which Fig. 1 is a perspective view showing the schematic configuration, Fig. 2 is a perspective view showing a specific example of the test specimen, and Fig. 3 is the time of Ti flow value and J integral. Figure 4 is a diagram showing a comparison between the dynamic J-δ relationship and static J-δ relationship. Figure 5 is a diagram showing a comparison between analysis and experiment of the static J-δ relationship. The figure shows a comparison between the analysis and experiment of the time history of displacement δ, Figure 7 shows the time history of potential difference, Figure 8 shows the time history of current and displacement, and Figure 9 shows the static R. A diagram showing a comparison between the curve and the dynamic R curve, FIG. 10 is a diagram showing the temperature dependence of static and dynamic fracture toughness values, and FIG. 11 is a schematic configuration diagram showing the second embodiment of the present invention. FIGS. 12(a) to 12(f) are diagrams showing how the test specimen vibrates in conventional tests. 10...Magnetic field, 20...Discharge circuit, 30.50...
- Test specimen, 40.41... stand, 51... conductive layer. Congee Otsu l Figure 3 Mochicho t (rnsec) Figure 4 Figure 5 Changed position, 6 (mm) Figure 6 Time ↑ (msec) To 9 Figure 8 Time ↑ (msec) Figure 9 Figure 10 Figure Temperature T (''C) Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)材料あるいは構造物の強度特性等を試験する際の
荷重負荷方法において、導電性の試験体又は応力を加え
ようとする面に導電層を設けた試験体を一様な定常磁場
中に配置し、該試験体又は導電層に前記磁場の磁束の向
きと交差する方向に向けて電流を流すことを特徴とする
材料試験の荷重負荷方法。
(1) In the loading method when testing the strength characteristics of materials or structures, a conductive test specimen or a test specimen with a conductive layer on the surface to which stress is to be applied is placed in a uniform steady magnetic field. 1. A method for applying a load for a material test, characterized in that a current is passed through the test object or the conductive layer in a direction intersecting the direction of the magnetic flux of the magnetic field.
(2)電流としてLCR直列放電回路によるパルス電流
を流すことを特徴とする特許請求の範囲第1項記載の材
料試験の荷重負荷方法。
(2) A load application method for material testing as set forth in claim 1, characterized in that a pulse current from an LCR series discharge circuit is passed as the current.
JP3629685A 1985-02-27 1985-02-27 Loading for sample material test Pending JPS61196133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3629685A JPS61196133A (en) 1985-02-27 1985-02-27 Loading for sample material test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3629685A JPS61196133A (en) 1985-02-27 1985-02-27 Loading for sample material test

Publications (1)

Publication Number Publication Date
JPS61196133A true JPS61196133A (en) 1986-08-30

Family

ID=12465846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3629685A Pending JPS61196133A (en) 1985-02-27 1985-02-27 Loading for sample material test

Country Status (1)

Country Link
JP (1) JPS61196133A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319087A (en) * 1976-08-04 1978-02-21 Toyota Auto Body Co Ltd Method of detecting crack in fatigue test etc*
JPS58139048A (en) * 1982-02-15 1983-08-18 Shimadzu Corp Measuring method for displacement in testing of very low temperature material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319087A (en) * 1976-08-04 1978-02-21 Toyota Auto Body Co Ltd Method of detecting crack in fatigue test etc*
JPS58139048A (en) * 1982-02-15 1983-08-18 Shimadzu Corp Measuring method for displacement in testing of very low temperature material

Similar Documents

Publication Publication Date Title
Niordson A unit for testing materials at high strain rates: By using ring specimens and electromagnetic loading, high strain rates are obtained in a tension test in a homogeneous, uniaxial strain field
CA1325895C (en) Determining plane strain fracture toughness and the j-integral for solid materials using stress field modified miniature specimens
US4497209A (en) Nondestructive testing of stress in a ferromagnetic structural material utilizing magnetically induced velocity change measurements
Johnson et al. Dynamic stress-strain relations for annealed 2S aluminum under compression impact
Stashenko et al. Design of mechanical properties of structural materials for power plant equipment
Clark et al. Discussion of the forces acting in tension impact tests of materials
Kobayashi et al. Evaluation of dynamic crack initiation and growth toughness by computer aided Charpy impact testing system
JPS61196133A (en) Loading for sample material test
Thompson Strain dependence of electromagnetic generation of ultrasonic surface waves in ferrous metals
Hyer et al. Non-linear vibrations of three-layer beams with viscoelastic cores, II: Experiment
Marur et al. A compact testing system for dynamic fracture studies
JP2000146716A (en) Method and device for measuring residual stress
Lang et al. Reflecting on the mechanical driving force of fatigue crack propagation
Schabtach et al. Measurement of the damping of engineering materials during flexural vibration at elevated temperatures
Slot et al. Experimental procedures for low-cycle-fatigue research at high temperatures: Experimental approach is described for testing laboratory specimens of the hourglass type using servocontrolled, hydraulic testing machines
Garofalo Survey of various special tests used to determine elastic, plastic, and rupture properties of metals at elevated temperatures
Carden et al. Comparison of the flow curves of 6061 aluminum alloy at high and low strain rates
Schoenekess et al. Special constructed and optimised eddy-current sensors for measuring force and strain in steel reinforced concrete
Adams Damping of ferromagnetic materials at direct stress levels below the fatigue limit
Potter Damping capacity of metals
Weissmann Determination of mechanical design properties of materials
Klepaczko et al. Effect of tempering on quasi-static and impact fracture toughness and mechanical properties for 5140 H steel
Yagawa et al. Dynamic fracture mechanics with electromagnetic force and its application to fracture toughness testing
Gross Engineering Materials Evaluation by Reversed Bending
Sharpe Jr et al. Dynamic fracture toughness evaluation by measurement of CTOD