JPS61194398A - Decontaminator for material to be treated contaminated by radioactivity - Google Patents

Decontaminator for material to be treated contaminated by radioactivity

Info

Publication number
JPS61194398A
JPS61194398A JP3487685A JP3487685A JPS61194398A JP S61194398 A JPS61194398 A JP S61194398A JP 3487685 A JP3487685 A JP 3487685A JP 3487685 A JP3487685 A JP 3487685A JP S61194398 A JPS61194398 A JP S61194398A
Authority
JP
Japan
Prior art keywords
line
radioactivity
contaminated
decontamination
reduction treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3487685A
Other languages
Japanese (ja)
Inventor
大野 千左人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP3487685A priority Critical patent/JPS61194398A/en
Publication of JPS61194398A publication Critical patent/JPS61194398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、原子力施設における放射能で汚染されたタン
ク、配管、バルブ類等を被処理物として除染するための
放射能で汚染された被処理物の除染装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is a method for decontaminating radioactively contaminated tanks, piping, valves, etc. in a nuclear facility. Related to decontamination equipment for processed materials.

[発明の技術的背景とその問題点] 一般に原fカ施設に設置されているタンク、配管、バル
ブ類等は施設の運転に伴なって放射能が−・蓄積し、設
置場所の空個線壜が高くなるため、保守等の作業が難し
くなっている。このため、放射能レベルの高いタンク、
配管、バルブ類等が設置されている高線囚エリアに作業
員が立入る場合には、除染を行なって放射能レベルを下
げている。
[Technical background of the invention and its problems] In general, radioactivity accumulates in tanks, piping, valves, etc. installed in raw materials facilities as the facility is operated, and empty wires at the installation location accumulate. As the bottle becomes taller, maintenance work becomes difficult. For this reason, tanks with high radioactivity levels,
When workers enter the high-sensitivity area where piping, valves, etc. are installed, decontamination is carried out to lower the radioactivity level.

また、タンク、配管、バルブ類等に欠陥が生じ、新規の
ものと交換する必要が生じた場合には、取り除いたタン
ク、配管、バルブ類等の運搬を容儀にし、低レベル廃棄
物としての貯蔵を可能とする等のために除染を行なう必
要がある。
In addition, if a defect occurs in a tank, pipe, valve, etc. and it becomes necessary to replace it with a new one, the removed tank, pipe, valve, etc. will be transported and stored as low-level waste. It is necessary to carry out decontamination to make this possible.

しかしながら、タンク、配管、バルブ類等(以下、被処
理物と記す)はその内面の材質自体に放射能が浸透して
いるため表面に堆積している放射能を除去しただけでは
完全な除染はできず、被処理物自体も溶解して放射能が
浸透した表面層を除去する必要がある。
However, since radioactivity permeates the inner material of tanks, piping, valves, etc. (hereinafter referred to as objects to be treated), complete decontamination cannot be achieved by simply removing the radioactivity deposited on the surface. It is not possible to do so, and it is necessary to dissolve the object itself and remove the surface layer that has been penetrated by radioactivity.

この放射能除染に関しては、酸等の化学除染剤を用いる
化学除染法や電解除染法が知られている。
Regarding this radioactive decontamination, chemical decontamination methods and electrical decontamination methods using chemical decontamination agents such as acids are known.

前者は形状が複雑な大型機材の被処理への適用性は高い
ものの除染速度が・非常に遅く、除染係数が比較的小さ
い欠点がある。
Although the former method is highly applicable to processing large equipment with complex shapes, it has the drawbacks of extremely slow decontamination speed and relatively low decontamination coefficient.

一方、後者の電解除染法は除染速度、除染係数は高いも
のの、逆に形状が複雑であり、また、大型の被処理物へ
の適用には問題点がある。
On the other hand, although the latter electric decontamination method has a high decontamination speed and a high decontamination coefficient, it has a complicated shape and has problems in application to large objects to be treated.

さらに化学除染装置と電解除染装置で用いる除染剤は劣
化や放射能の蓄積等により、除染不能となるため二次廃
棄物が増大する問題点があった。・[発明の目的] 本発明は以上の事情に基づいてなされたもので、その目
的は材質自体に放射能が浸透してし)る被処理物の内面
を確実に溶解でき、従来例の欠点であった、大型機材や
形状の複雑なものも完全に除染  。
Furthermore, the decontamination agents used in chemical decontamination equipment and electrolytic decontamination equipment deteriorate and accumulate radioactivity, making decontamination impossible, resulting in an increase in secondary waste.・[Objective of the Invention] The present invention has been made based on the above circumstances, and its purpose is to reliably dissolve the inner surface of the object to be treated, where radioactivity permeates into the material itself, and to overcome the drawbacks of the conventional example. Even large equipment and items with complex shapes were completely decontaminated.

して放射能レベルをバックグラウンドレベルまで低下さ
せ、さらに除染剤を再生して二次廃棄物の発生量を最少
に抑えることができるとともに、被処理物から除去した
放射−能を多量に含んでいる使用後の除染剤を廃液とし
て処理する上で問題がないように酸化力を低減させるこ
とができる放射能で汚染れた被処理物の除染装置を提供
することにある。
The decontamination agent can be recycled to reduce the radioactivity level to the background level, and the amount of secondary waste generated can be minimized. It is an object of the present invention to provide a decontamination device for a workpiece contaminated with radioactivity, which can reduce the oxidizing power so that there is no problem in treating the used decontamination agent as waste liquid.

[発明の概要] すなわち本発明は、水溶液中で多価の酸化状態。[Summary of the invention] That is, the present invention is directed to polyvalent oxidation states in an aqueous solution.

を有する金属の低酸化状態の金属化合物を溶解させた酸
性溶液系の電解液を81調整する調整槽と、この調整槽
内の前記電解液が給液ラインを通して流入される電解槽
と、この電解槽に接続された液入ラインから前記電解液
が流入するように設けられた放射能で汚染された被処理
物と、この被処理物と前記電解槽との間に三方弁を介し
て接続された戻りラインと、前記三方弁の他方から廃液
還元ラインを介して接続された還元処理槽と、この還元
処理槽で還元された電解廃液を該還元処理槽に接続され
た廃液戻りラインから前記被処理物を経由して流出する
廃液ラインとを具備したことを特徴とするtlIII能
で汚染された被処理物の除染装置である。。
an electrolytic tank for adjusting an acidic solution-based electrolyte in which a metal compound having a metal with a low oxidation state is dissolved; A radioactively contaminated workpiece is provided so that the electrolytic solution flows in from a liquid input line connected to the tank, and a three-way valve is connected between the workpiece and the electrolytic tank. a reduction treatment tank connected from the other side of the three-way valve via a waste liquid return line, and an electrolytic waste liquid reduced in this reduction treatment tank from the waste liquid return line connected to the reduction treatment tank. This is an apparatus for decontaminating a workpiece contaminated with tlIII, characterized in that it is equipped with a waste liquid line that flows out through the workpiece. .

被処理物はタンク、配管、バルブなど電解液が貯溜され
る形状を有していることを特徴とする。
The object to be treated is characterized in that it has a shape such as a tank, piping, or valve in which the electrolyte is stored.

本発明によれば、材質自体に放射能が浸透している被処
理物の内面を確実に溶解でき、大型で形状の複雑なもの
も完全に除染して放射能レベルを低減させることができ
るとともに、除染剤を再生しながら除染を行なうので二
次廃棄物である使用・ 後の除染剤(電解液)の発生量を最少に抑えることがで
きる。
According to the present invention, it is possible to reliably dissolve the inner surface of the object to be treated whose material itself is permeated with radioactivity, and it is also possible to completely decontaminate even large objects with complex shapes and reduce the radioactivity level. At the same time, since decontamination is carried out while regenerating the decontamination agent, the amount of secondary waste generated after use and use of the decontamination agent (electrolyte) can be minimized.

また、被処理物から放射能を除去した使用後の除染剤を
廃液として処理する上で廃液処理系の不具合をさけるた
めに、除染剤中のCe4+をC6J4に還元することが
できる。
Furthermore, in order to avoid problems in the waste liquid treatment system when the used decontamination agent that has removed radioactivity from the object to be treated is treated as waste liquid, Ce4+ in the decontamination agent can be reduced to C6J4.

さらにフィルタを設けることにより、放・射面および不
純物が電極へ付着することを防ぐことができるため、C
e4+を効率良く再生することができる。
Furthermore, by providing a filter, it is possible to prevent the radiation surface and impurities from adhering to the electrode, so C
e4+ can be efficiently played back.

[発明の実施例1 以下、図面を参照しながら本発明に係る放射能で汚染さ
れた被処理物の除染装置の一実施例を・説明する。
[Embodiment 1 of the Invention] Hereinafter, an embodiment of the decontamination apparatus for a workpiece contaminated with radioactivity according to the present invention will be described with reference to the drawings.

第1図は本発明に係る装置を系統図であり、第2図およ
び第3図は第1図における装置の攪拌効果を比較して示
す特性図である。
FIG. 1 is a system diagram of the apparatus according to the present invention, and FIGS. 2 and 3 are characteristic diagrams comparing and showing the stirring effect of the apparatus in FIG. 1.

符号1は電解槽で、・電解槽1内には、たと・えばCe
 ” −Ce ”−HNO3溶液の電解液2と陽極。
Reference numeral 1 is an electrolytic cell, and inside the electrolytic cell 1 there is, for example, Ce.
"-Ce"-HNO3 solution electrolyte 2 and anode.

3および陰極4が収容されている。また、符号5はタン
ク形状の被処理物で、この被処理物5内に前記電解槽1
内の電解液2が流入ライン21を通って流入される。被
処理物5は電解液2が貯溜される形状を有しており、電
解液2を加熱するためのヒータ18が挿入されている。
3 and a cathode 4 are housed therein. Further, reference numeral 5 denotes a tank-shaped object to be treated, and the electrolytic tank 1 is placed inside this object to be treated 5.
The electrolyte 2 inside is flowed in through the inflow line 21. The object to be processed 5 has a shape in which an electrolytic solution 2 is stored, and a heater 18 for heating the electrolytic solution 2 is inserted therein.

また、被処理物5内の電解液2を電解槽1へ戻すための
戻りライン22が設けられている。この戻りライン22
にはポンプ6、フィルタ7および三方弁8が順次接続さ
れている。また、三・方弁8の他方には廃液還元ライン
23が接続されており、この廃液還元ライン23は還元
処理槽9の下部に接続されている。
Further, a return line 22 is provided for returning the electrolyte 2 in the object 5 to the electrolytic cell 1. This return line 22
A pump 6, a filter 7, and a three-way valve 8 are connected in this order. Further, a waste liquid reduction line 23 is connected to the other side of the three-way valve 8, and this waste liquid reduction line 23 is connected to the lower part of the reduction treatment tank 9.

この還元処理槽9内には陽極10および陰極11からな
る一対の電極が設けられている。符号13は調整槽で、
調整槽13内で電解液2が調整され、収容されている。
A pair of electrodes consisting of an anode 10 and a cathode 11 are provided within this reduction treatment tank 9. Reference numeral 13 is an adjustment tank;
The electrolytic solution 2 is adjusted and stored in the adjustment tank 13.

調整槽13には給液ポンプ14を有する給液ライン25
が接続され、調整槽13の電解液2は給液ポンプ14に
より給液ライン25を通って電解槽1に供給される。ま
た、ポンプ14の吐出側から分岐して攪拌ライン26が
設けられ、攪拌ライン26は調整槽13に接続している
。さらに、電解槽1の側面には循環ライン21が接続さ
れており、電解槽1をオーバーフローした電解液2は流
入ライン21を通って被処理物5に供給される。調整槽
13に接続された。攪拌う・イン26は、給液ポンプ1
4が排出された電解液2の一部が攪拌ライン26を通っ
て調整槽13に噴出される。また、調整槽13にはヒー
タ19が設けられており、−電解液2を加熱することに
より、電解液2の生成速度を速めている。電解槽1のセ
リウム再生用陽極3およびセリウム再生用陰極4は直流
ff1il!12に接続されている。・被処理物5には
戻りライン22が接続され、被処理物5に収容された電
解液2は循環ポンプ6によりフィルタ7を通って電解槽
1の下部から噴出される。
The adjustment tank 13 has a liquid supply line 25 having a liquid supply pump 14.
is connected, and the electrolytic solution 2 in the adjustment tank 13 is supplied to the electrolytic tank 1 through the liquid supply line 25 by the liquid supply pump 14. Further, a stirring line 26 is provided branching from the discharge side of the pump 14, and the stirring line 26 is connected to the adjustment tank 13. Further, a circulation line 21 is connected to the side surface of the electrolytic cell 1, and the electrolytic solution 2 that has overflowed the electrolytic cell 1 is supplied to the object to be processed 5 through the inflow line 21. It was connected to the adjustment tank 13. The stirring unit 26 is the liquid supply pump 1
A part of the electrolytic solution 2 from which the electrolyte 4 has been discharged is ejected into the adjustment tank 13 through the stirring line 26. Further, the adjustment tank 13 is provided with a heater 19, which heats the electrolytic solution 2 to increase the production speed of the electrolytic solution 2. The cerium regeneration anode 3 and the cerium regeneration cathode 4 of the electrolytic cell 1 are supplied with direct current ff1il! 12. - A return line 22 is connected to the object to be treated 5, and the electrolytic solution 2 contained in the object to be treated 5 is ejected from the lower part of the electrolytic cell 1 through a filter 7 by a circulation pump 6.

一方、戻りライン22に設けた三方弁8を切換えること
により、戻りライン22は廃液還元ライン23に接続さ
れ、被処理物5の電解液2は循環ポンプ6よりフィルタ
7、廃液還元ライン・23を通って還元処理槽9の下部
から噴出される。還元処理槽9の還元処理用陽極10お
よび還元処理用陰極11は直流電源12に接続されてい
る。還元処理槽9には廃液戻りライン24が接続され、
還元処理槽9をオーバーフローした電解液2は廃液戻り
ライン24を通って被処理物5に戻される。
On the other hand, by switching the three-way valve 8 provided in the return line 22, the return line 22 is connected to the waste liquid reduction line 23. It passes through and is ejected from the lower part of the reduction treatment tank 9. A reduction treatment anode 10 and a reduction treatment cathode 11 of the reduction treatment tank 9 are connected to a DC power source 12 . A waste liquid return line 24 is connected to the reduction treatment tank 9,
The electrolyte 2 that has overflowed the reduction treatment tank 9 is returned to the object to be treated 5 through the waste liquid return line 24 .

電解液2に含まれるCe4÷をce”にする還元処理が
終了したところで、電解液2は被処理物5に接続されて
いる既設の廃液ライン29を使用して図示してない廃液
処理系へ送液されるようになっている。また、被処理物
5内のヒータ18は、電解液2の温度を上昇させて除染
速度を速くする−た・めのものである。
When the reduction process of converting Ce4÷ contained in the electrolytic solution 2 to ce'' is completed, the electrolytic solution 2 is transferred to a wastewater treatment system (not shown) using the existing wastewater line 29 connected to the object to be treated 5. The heater 18 in the object to be treated 5 is used to increase the temperature of the electrolytic solution 2 and speed up the decontamination speed.

電解槽1と還元処理槽9の上部には排ガスライン27が
接続され、電解液2から発生するH2O−11NO:l
蒸気およびミストは、排ガスライン27を通ってコンデ
ンサ15で凝縮され、凝・縮液戻すライン28を通って
電解槽1に回収される。回収しぎれなかったl−120
−HNO3蒸気およびミストは排気ブロア17に吸引さ
れてデミスタ16で回収される。
An exhaust gas line 27 is connected to the upper part of the electrolytic cell 1 and the reduction treatment tank 9, and the H2O-11NO:l generated from the electrolytic solution 2 is
The steam and mist pass through the exhaust gas line 27 and are condensed in the condenser 15, and are collected into the electrolytic cell 1 through the condensate return line 28. L-120 that could not be recovered
-HNO3 vapor and mist are sucked into the exhaust blower 17 and recovered by the demister 16.

以上の如く構成された本発明に係る放射能で汚染された
被処理物の除染装置では、まず調整槽19内で所定回の
Ce (NO3)3をヒータ19で所定温度に加熱しな
がらH2O−HNO3溶液に溶解し、電解液を調整して
給液ポンプ14により給液ライン25を通して電解槽1
と被処理物5に収容し、循環ポンプ6により調整した電
解・液2を戻りライン22を通して電解槽1の下部から
噴出させ、循環ライン21を通して電解槽1と被処理物
5を循環させる電解液2をヒータ18により所定温度に
加熱し、排気10ア17で電解槽1内を負圧にする。同
時に直流N源12によりセリウム再生用陽極3とセリウ
ム再生用陰極4の間(N圧を印加し、所定の電流密度の
電流を流すと以下に示す反応が起こり、Ce卦はCe4
+−に酸化する。
In the decontamination apparatus for a radioactively contaminated workpiece according to the present invention configured as described above, first, Ce (NO3)3 is heated to a predetermined temperature by the heater 19 in the adjustment tank 19 for a predetermined number of times, and then H2O - Dissolve in HNO3 solution, adjust the electrolyte, and pass it through the liquid supply line 25 by the liquid supply pump 14 to the electrolytic cell 1.
The electrolytic solution 2 contained in the object to be treated 5 and adjusted by the circulation pump 6 is ejected from the lower part of the electrolytic cell 1 through the return line 22, and the electrolytic solution is circulated between the electrolytic cell 1 and the object to be processed 5 through the circulation line 21. 2 is heated to a predetermined temperature by the heater 18, and the inside of the electrolytic cell 1 is brought to negative pressure by the exhaust gas 10a 17. At the same time, when N pressure is applied between the cerium regeneration anode 3 and the cerium regeneration cathode 4 by the DC N source 12 and a current with a predetermined current density is passed, the following reaction occurs, and the Ce trigram becomes Ce4
Oxidizes to +-.

セリウム再生用陽極 ce”  4064÷+6−    −−・−−−−−
−、< 1 )20H−→H20+(1/ 2)02 
 (↑)−+2e−・・・・・・・・・・(2) セリウム再生用陰極 H+ +6− →(1/ 2) H2(↑)  ・−・
−(3)セリウム再生用陽極3でのCe4+の生成反応
はce”が拡散して陽極表面に到達する速度に依存する
。そのため、電解液2を電解槽1の下部から噴出させて
攪拌させるとCe4+の生成反応を促進させる効果があ
る。
Cerium regeneration anode ce” 4064÷+6− −−・−−−−
−, < 1)20H−→H20+(1/2)02
(↑)−+2e−・・・・・・・・・・(2) Cerium regeneration cathode H+ +6− →(1/2) H2(↑) ・−・
-(3) The production reaction of Ce4+ in the cerium regeneration anode 3 depends on the speed at which ce" diffuses and reaches the anode surface. Therefore, if the electrolytic solution 2 is spouted from the bottom of the electrolytic cell 1 and stirred, It has the effect of promoting the Ce4+ production reaction.

また、電解液2に浸漬されている被処理物5の内面では
以下に示す反応が起こり表面に付着した放射能および金
属(M)の表面が溶解するとともに汚染が除去さ1れる
Further, the following reaction occurs on the inner surface of the object to be processed 5 immersed in the electrolytic solution 2, and the radioactivity and metal (M) adhering to the surface are dissolved and contamination is removed.

M  + Ce   ”  −>   M  +  +
Ce  j+    −・−−−−−−・−(4−)電
解液2を所定時間循環後、被処理物5は表面に付着した
放M能およびその表面の汚染層が除去され、放射能レベ
ルは著しく低下する?。 。
M + Ce” −> M + +
Ce j+ −・−−−−−−・− (4−) After circulating the electrolyte 2 for a predetermined period of time, the radiation activity attached to the surface of the object 5 and the contamination layer on the surface are removed, and the radioactivity level is reduced. Will there be a significant decline? . .

一方、被処理物5と反応して還元されたCe”は、常時
直流N源12がら電圧を印加し、所定の・電流密度の電
流を流しているため、(7)・式の反応が起こりCe4
+を生成する。また、電解液2中に浮遊する鉄等の酸化
物を戻りライン22に設けたフィルタ7で回収するため
、セリウム再生用陽極3へ鉄等の酸化物が付着するのを
防ぐことかで・き、効率良<Ce’+を生成することが
できる。
On the other hand, since a voltage is constantly applied from the DC N source 12 and a current of a predetermined current density is passed through the Ce" which has been reduced by reacting with the object to be treated 5, the reaction of equation (7) occurs. Ce4
Generate +. In addition, since oxides such as iron floating in the electrolyte 2 are recovered by the filter 7 provided in the return line 22, it is possible to prevent oxides such as iron from adhering to the cerium regeneration anode 3. , it is possible to efficiently generate <Ce'+.

電解液2による除染が終了した乏ころで、二方弁8を切
換えて、被処理物5内に収容されている電解液2を循環
ポンプ6により循環ライン22と・廃液還元ライン23
を通して還元処理槽9の下部から噴出させ、廃液戻しラ
イン24を通して還元処理槽9と被処理物5を循環させ
る電解液2をヒータ18により所定温度に加熱し、排気
ブロワ17で還元処理槽9を負圧にする。同時に直流−
源12により還元処理用陽極10と還元処理用陰極11
の間に電圧を印加し、所定の電流密度の電流を流すと以
下に示す反応が起こり、酸化力のあるCe4+を酸化力
のないQe・訃に還元する。
When decontamination with the electrolytic solution 2 has been completed, the two-way valve 8 is switched to transfer the electrolytic solution 2 contained in the object 5 to the circulation line 22 and the waste liquid reduction line 23 using the circulation pump 6.
The electrolytic solution 2 is ejected from the lower part of the reduction treatment tank 9 through the heater 18 and circulated between the reduction treatment tank 9 and the object to be treated 5 through the waste liquid return line 24. The electrolyte 2 is heated to a predetermined temperature by the heater 18. Make it negative pressure. At the same time DC-
An anode 10 for reduction treatment and a cathode 11 for reduction treatment by a source 12
When a voltage is applied between them and a current with a predetermined current density is passed, the following reaction occurs, and Ce4+, which has oxidizing power, is reduced to Qe, which has no oxidizing power.

還元処理用陽極 201−ド −+H20+(1/   2)  02 
  (↑ ) + 20! ”−・・・・・・・・(5
) 還元処理用陰極 Ce ” +e −→Ce ”     −−= (6
)1−1” +e −→(1/2) H2(↑)−(7
)還元処理用陰極11でのCeJ+の生成反応は、Ce
・4+が拡散して陰極表面に到達する速度に依存する。
Anode 201-de for reduction treatment -+H20+ (1/2) 02
(↑) +20! ”−・・・・・・・・・(5
) Cathode for reduction treatment Ce ” +e −→Ce ” −−= (6
)1-1” +e −→(1/2) H2(↑)−(7
) The reaction for producing CeJ+ at the cathode 11 for reduction treatment is based on CeJ+.
- Depends on the rate at which 4+ diffuses and reaches the cathode surface.

そのほか、電解液2を還元処理槽・9の下部から噴出さ
せて攪拌させるとCe註の生成反応を促進させる効果が
ある。
In addition, if the electrolytic solution 2 is jetted out from the lower part of the reduction treatment tank 9 and stirred, it has the effect of promoting the reaction for producing Ce notes.

電解液2の中のCe4+が所定sy1以干になったなら
ば循環ポンプ6を停止して電解液2の還元処理を終了し
、被処理物5に接続した既設の廃液う・イン29より電
解液2を廃液処理系へ送液する。
When Ce4+ in the electrolytic solution 2 becomes equal to or higher than the predetermined sy1, the circulation pump 6 is stopped to complete the reduction process of the electrolytic solution 2, and electrolysis is carried out from the existing waste liquid pipe 29 connected to the object to be treated 5. Send liquid 2 to the waste liquid treatment system.

また、Ce卦をCe4+に再生する場合と同様に、電解
液2中に浮遊する鉄等の酸化物を循環戻りライン22に
設けたフィルタ7で回収するため、還元処理用陽極10
へ鉄等の酸化物が付着・するのを防ぐことができ、効率
良<Ce’+をCa”に還元することができる。
In addition, as in the case of regenerating Ce4+, in order to recover oxides such as iron floating in the electrolytic solution 2 with the filter 7 provided in the circulation return line 22, the reduction treatment anode 10
It is possible to prevent oxides such as iron and the like from adhering to the surface, and it is possible to efficiently reduce <Ce'+ to Ca''.

なお、電解4f11、還元処理槽9ともにドレンライン
が設けられており、槽内に残存する電解液2は被処理物
5に移送される。
Incidentally, both the electrolysis tank 4f11 and the reduction treatment tank 9 are provided with a drain line, and the electrolytic solution 2 remaining in the tank is transferred to the object to be processed 5.

一方、電解液2から発生する+20−=HNO3蒸気お
よびミストは、電解4!1および還元処理槽9の上部に
接続した排ガスライン27・を通ってコンデンサ15で
凝縮され、凝縮液戻りライン28を通って電解槽1に回
収される。回収しきれなかった1lzo−HNO3蒸気
およびミストは排気ブロア17に吸引されてデミスタ1
6により回収される。
On the other hand, +20-=HNO3 vapor and mist generated from the electrolytic solution 2 pass through the exhaust gas line 27 connected to the upper part of the electrolytic solution 4! It passes through and is collected in the electrolytic cell 1. The 1lzo-HNO3 vapor and mist that could not be completely recovered are sucked into the exhaust blower 17 and sent to the demister 1.
It is recovered by 6.

なお、セリウム再生用電極材料はHNO3およびCe4
+等の強酸化剤に耐食性を示・し、電解しても研磨され
ない材料、例えば白金、チタン等を用いる。
In addition, the electrode materials for cerium regeneration are HNO3 and Ce4.
Use materials such as platinum, titanium, etc. that exhibit corrosion resistance to strong oxidizing agents such as + and are not polished by electrolysis.

一方、還元処理用電極材料は、還元処理用陽極10に関
しては黒鉛、金、白金などのように酸素過電圧の高い金
属材料を用いると酸素の生成よりCe 3÷がC6,4
+に酸化するのに使われる電流の割合が大きくなるため
、酸素生成の電流効率が悪くなる。したがって、還元処
理用陽極10はCe 3“がCe4+に変換し難い材料
、すなわち酸素過電圧の低い金属材料あるいは金属酸化
物材料であることが重要である。一般に酸素通電・圧の
大きさは黒鉛、金、白金、パラジウム、カドミウム、白
金(メッキ)、銀、鉛、ニッケル、銅、鉄、コバルトの
順に小さくなる。還元処理の電流効率を良くするには、
還元処理用陽極10の材料は酸素過電圧の絶対値がce
”がCe’十に酸化する電圧の絶対値より小さい材料と
する必要がある。
On the other hand, when using a metal material with a high oxygen overvoltage such as graphite, gold, platinum, etc. for the anode 10 for reduction treatment, Ce 3 ÷ C 6,4
Since the proportion of current used for oxidation to + increases, the current efficiency for oxygen production decreases. Therefore, it is important that the anode 10 for reduction treatment is made of a material in which Ce 3" is difficult to convert into Ce 4+, that is, a metal material or metal oxide material with a low oxygen overvoltage. Generally, the magnitude of the oxygen current and pressure is graphite, Gold, platinum, palladium, cadmium, platinum (plated), silver, lead, nickel, copper, iron, and cobalt decrease in this order.To improve the current efficiency of reduction treatment,
The material of the anode 10 for reduction treatment has an absolute value of oxygen overvoltage of ce
It is necessary to use a material whose absolute value is smaller than the absolute value of the voltage at which Ce' is oxidized to ten.

次に、還元処理用陰極11に関しては、白金、鉄、ニッ
ケルなどのように水素過電圧の低い金・属材料を用いる
とCeA+がCe”に還元されるより水素の生成に使わ
れる電流の割合が大きくなるため、Ce 4+がCe 
5+に還元される電流効率が悪くなる。したがって、還
元処理用陰極11は水素の生成し難い材料、すなわち水
素過電圧の高い金属材料あるいは金属酸化物材料である
ことが重要である。一般に水素過電圧の大きさは白金黒
、ロジウム、金、タングステン、平滑白金、ニッケル、
干すブデン、鉄、銀、アルミニウム、ベリリウム、ニオ
ブ、タンタル、銅、黒鉛、ビスマス、鉛、スズ、インジ
ウム、タリウム、水銀、カドミウムの順に大きくなる。
Next, regarding the cathode 11 for reduction treatment, if a metal material with low hydrogen overvoltage is used, such as platinum, iron, or nickel, the proportion of current used to generate hydrogen will be lower than the reduction of CeA+ to Ce''. Ce 4+ becomes Ce
The efficiency of the current reduced to 5+ deteriorates. Therefore, it is important that the reduction treatment cathode 11 be made of a material that does not easily generate hydrogen, that is, a metal material or metal oxide material that has a high hydrogen overvoltage. In general, the magnitude of hydrogen overvoltage is platinum black, rhodium, gold, tungsten, smooth platinum, nickel,
Dried budden, iron, silver, aluminum, beryllium, niobium, tantalum, copper, graphite, bismuth, lead, tin, indium, thallium, mercury, and cadmium.

還元処理の電流効率を良くするには、還元処理用陰極1
1の材料は水素過電圧の絶対値がCe4+がCe卦に還
元され・る電圧の絶対値より大きい材料とする必要があ
る。
In order to improve the current efficiency of reduction treatment, the reduction treatment cathode 1
The material No. 1 needs to be a material in which the absolute value of the hydrogen overvoltage is greater than the absolute value of the voltage at which Ce4+ is reduced to Ce squares.

また、電解液の攪拌機能としては、攪拌機等を用いても
よい。
Furthermore, a stirrer or the like may be used to stir the electrolytic solution.

次に上記実施例の効果を確認するために行なった実験の
結果を第2図および第3図によって説明する。
Next, the results of an experiment conducted to confirm the effects of the above embodiment will be explained with reference to FIGS. 2 and 3.

第2図において線aは攪拌なしの電解、線すは攪拌あり
の電解を示している。なお、縦軸は電解液中のCe4+
濃度および電流効率を、横軸は電゛解時間を示している
In FIG. 2, line a shows electrolysis without stirring, and line a shows electrolysis with stirring. Note that the vertical axis represents Ce4+ in the electrolyte.
The concentration and current efficiency are shown on the horizontal axis, and the electrolysis time is shown on the horizontal axis.

電解条件としては、Ce  (No3>3’度0.8m
O℃/J2、HNO3濃度2 mol、 / iの電解
液を電解液温度80℃、電流密度0.3A/c/で電解
してCe4+の生成を行なった。Ce 、 4+生成量
は電位差滴定法で分析して求め、電流効率ηは以下のよ
うにして求められた。
The electrolytic conditions are Ce (No3>3' degree 0.8m
Ce4+ was generated by electrolyzing an electrolytic solution with an electrolytic solution temperature of 80° C. and a current density of 0.3 A/c/i at 0° C./J2 and a HNO3 concentration of 2 mol/i. The amount of Ce 4+ produced was determined by analysis using potentiometric titration, and the current efficiency η was determined as follows.

77 = 96485x Ce ’+生成It (wo
n/ffl ) x電解液液量(ぶ)・/電解時間(5
ec) X電流(A)第2図から明らかなように、電解
液を攪拌して電解を行なえば効率良<ce’十を生成、
および再生することができる。
77 = 96485x Ce'+Generation It (wo
n/ffl) x electrolyte volume (bu)/electrolysis time (5
ec) X current (A) As is clear from Figure 2, if electrolysis is carried out by stirring the electrolyte, efficient
and can be played.

次に第3図について説明する。第2図の結果を基にCe
4+濃度0.4mon / A、HtlO311度2I
IIOぶ/(の電解液を80℃に加熱して汚染金属(S
US304.2 B x S ch40x 500)を
浸漬し、同時に0.3Acifの電流密度でCe4+の
再生を行なった。
Next, FIG. 3 will be explained. Based on the results in Figure 2, Ce
4+ concentration 0.4mon/A, HtlO311 degrees 2I
Heat the electrolyte of IIO to 80℃ to remove contaminated metals (S).
US304.2 B x S ch40x 500) was immersed, and Ce4+ was simultaneously regenerated at a current density of 0.3 Acif.

曲線Cは電解液を攪拌しないで被処理金属を浸漬した場
合、曲1Iadは電解液を攪拌して被処理金属を浸漬し
た場合、水平線eはバックグラウンドを示している。な
お、縦軸はγ線強f!!(aplを、横軸は除染時間を
示している。
Curve C shows the case where the metal to be processed is immersed without stirring the electrolytic solution, curve 1Iad shows the case where the metal to be processed is immersed while stirring the electrolytic solution, and the horizontal line e shows the background. Note that the vertical axis is the γ-ray strength f! ! (The horizontal axis shows the decontamination time.

第3図から明らかなように電解液・を攪拌して被処理金
属を浸漬すれば、除染時FrR60分間で表面の汚染量
をバックグラウンドレベルまで低下さけることができる
。電解液を攪拌せずに被処理金属を浸漬した場合は12
0分除染しても表面の汚染量をバックグラウンドレベル
まで低下させることは認められなかった。
As is clear from FIG. 3, by stirring the electrolytic solution and immersing the metal to be treated, it is possible to reduce the amount of surface contamination to the background level within 60 minutes of FrR during decontamination. 12 when the metal to be treated is immersed in the electrolyte without stirring
Even after 0 minutes of decontamination, it was not observed that the amount of surface contamination was reduced to the background level.

[発明の効果1 上述の如く本発明は、Ce3+Ce4+−FINO3溶
液系で被処理物である槽類等の内面の溶解、およびCe
4+の再生ができるレドックス(電解酸化−還元)反応
を用いた除染装置である。
[Effect of the invention 1 As described above, the present invention is capable of dissolving the inner surfaces of tanks and the like that are objects to be treated using a Ce3+Ce4+-FINO3 solution system, and of dissolving Ce3+Ce4+-FINO3 solution system.
This is a decontamination device that uses a redox (electrolytic oxidation-reduction) reaction that can regenerate 4+.

したがって、本発明によれば、電解液を攪拌・すること
により、効率良<ce’十の生成と再生を行なうことが
でき、しかも鉄等の酸化物をフィルりで捕集することに
より電極への不純物の付着を防止することができ、さら
に効率良<ce’+の再生ができる。
Therefore, according to the present invention, it is possible to efficiently generate and regenerate <ce'> by stirring and stirring the electrolyte, and moreover, by collecting oxides such as iron with a filler, it is possible to transfer them to the electrode. It is possible to prevent the adhesion of impurities, and moreover, it is possible to regenerate efficiently <ce'+.

また、材質自体に放射能が浸透している被処理物の内面
を確実に溶解でき、大型機材や形状の複雑なものも完全
に除染して放射能レベルをバックグラウンドレベルまで
低下させることができる。
In addition, it is possible to reliably dissolve the inner surfaces of objects to be treated whose materials themselves are penetrated with radioactivity, and it is possible to completely decontaminate large equipment and objects with complex shapes, reducing radioactivity levels to background levels. can.

さらに、除染剤を再生して使用すること・により二次廃
棄物の発生量を最少に抑えることができる。
Furthermore, by recycling and using the decontamination agent, the amount of secondary waste generated can be minimized.

そのうえ、被処理物から除去した放射能を多聞に含んで
いる使用後の除染剤を廃液処理系へ移送する前に、除染
剤に含まれるCe4+をCe5+に還元処理しているの
で、廃液処理系の機器を腐食することはない。
Furthermore, before the used decontamination agent, which contains a large amount of radioactivity removed from the object to be treated, is transferred to the waste liquid treatment system, the Ce4+ contained in the decontamination agent is reduced to Ce5+, so the waste liquid It will not corrode processing equipment.

な・お、上記実施例では、電解液としてce”−Ce”
−HNO3溶液系について説明し、たが、これに限るこ
となく、低酸化状態の金属化合物は水および酸に溶解さ
せると溶液中で低酸化状態の金属イオンとな・るCrS
+またはV4+などが使用できる。また酸性溶液として
は硝酸のほかに硫酸または塩酸が使用できる。そして、
高酸化状態の金属イオンはCe’+に対してCe4+、
Cr J+に対してCr′t、v4÷に対して■ であ
る。
In addition, in the above example, ce”-Ce” was used as the electrolyte.
-HNO3 solution system is explained, but is not limited thereto.When a metal compound in a low oxidation state is dissolved in water and an acid, it becomes a metal ion in a low oxidation state in the solution.CrS
+ or V4+ can be used. In addition to nitric acid, sulfuric acid or hydrochloric acid can be used as the acidic solution. and,
Highly oxidized metal ions are Ce'+, Ce4+,
Cr't for Cr J+, ■ for v4÷.

さらに被処理物としては金属のほかに樹脂の表面に付着
または沈着した放射能で汚染さ−れたものも適用できる
Furthermore, as the object to be treated, in addition to metals, objects contaminated with radioactivity attached or deposited on the surface of resin can also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る放射能で汚染された被除染物の除
染装冒の一実施例を示す系統口、第2図および第3図は
本発明の詳細な説明するためのもので、第2図は電解時
間とCe4+の濃度の関係を示す特性図、第3図は除染
時間と表面汚染量の低減との関係を示す特性図である。 1・・・・・・・・・・・・電解槽 2・・・・・・・・・・・・電解液 3・・・・・・・・・・・・セリウム再生用陽極4・・
・・・・・・・・・・セリウム再生用陰極5・・・・・
・・・・・・・被処理金属6・・・・・・・・・・・・
循環ポンプ7・・・・・・・・・・・・フィルタ 8・・・・・・・・・・・・三方弁 9・・・・・・・・・・・・還元処理槽10・・・・・
・・・・・・・還元処理用陽極11・・・・・・・・・
・・・還元処理用陰極12・・・・・・・・・・・・直
流電源13・・・・・・・・・・・・調整槽 14・・・・・・・・・・・・給液ポンプ15・・・・
・・・・・・・・コンデンサ16・・・・・・・・・・
・・デミスタ17・・・・・・・・・・・・排気ブロア
18・・・・・・・・・・・・ヒータ 19・・・・・・・・・・・・ヒータ 21・・・・・・・・・・・・流入ライン22・・・・
・・・・・・・・戻りライン23・・・・・・・・・・
・・廃液還元ライン24・・・・・・・・・・・・廃液
戻りライン25・・・・・・・・・・・・給液ライン2
6・・・・・・・・・・・・攪拌ライン27・・・・・
・・・・・・・排ガスライン28・・・・・・・・・・
・・凝縮液戻りライン29・・・・・・・・・・・・廃
液ライン出願人     株式会社 東 芝 日本原子力事業株式会社 代理人 弁理士 須 山 佐 − 第2図 電解時間(hr) 第3図 除染時間(分)
Figure 1 shows an embodiment of the decontamination equipment for radioactively contaminated objects according to the present invention, and Figures 2 and 3 are for detailed explanation of the present invention. , FIG. 2 is a characteristic diagram showing the relationship between electrolysis time and Ce4+ concentration, and FIG. 3 is a characteristic diagram showing the relationship between decontamination time and reduction in the amount of surface contamination. 1...... Electrolytic cell 2... Electrolyte 3... Cerium regeneration anode 4...
......Cerium regeneration cathode 5...
・・・・・・Metal to be processed 6・・・・・・・・・・・・
Circulation pump 7...Filter 8...Three-way valve 9...Reduction tank 10... ...
......Anode 11 for reduction treatment...
・・・Reduction treatment cathode 12・・・・・・・・・DC power supply 13・・・・・・・・・Adjustment tank 14・・・・・・・・・・・・・・・Liquid supply pump 15...
・・・・・・・・・Capacitor 16・・・・・・・・・・
...Demister 17...Exhaust blower 18...Heater 19...Heater 21... ......Inflow line 22...
・・・・・・Return line 23・・・・・・・・・
...Waste liquid return line 24...Waste liquid return line 25...... Liquid supply line 2
6...... Stirring line 27...
・・・・・・Exhaust gas line 28・・・・・・・・・
...Condensate return line 29...Waste liquid line Applicant Toshiba Corporation Representative for Japan Atomic Energy Corporation Patent attorney Satoshi Suyama - Figure 2 Electrolysis time (hr) 3 Figure decontamination time (minutes)

Claims (7)

【特許請求の範囲】[Claims] (1)水溶液中で多価の酸化状態を有する金属の低酸化
状態の金属化合物を溶解させた酸性溶液系の電解液を濃
度調整する調整槽と、この調整槽内の前記電解液が給液
ラインを通して流入される電解槽と、この電解槽に接続
された流入ラインから前記電解液が流入するように設け
られた放射能で汚染された被処理物と、この被処理物と
前記電解槽との間に三方弁を介して接続された戻りライ
ンと、前記三方弁の他方から廃液還元ラインを介して接
続された還元処理槽と、この還元処理槽で還元された電
解廃液を該還元処理槽に接続された廃液戻りラインから
前記被処理物を経由して流出する廃液ラインとを具備し
たことを特徴とする放射能で汚染された被処理物の除染
装置。
(1) An adjustment tank for adjusting the concentration of an acidic electrolyte in which a metal compound in a low oxidation state of a metal with a multivalent oxidation state is dissolved in an aqueous solution, and the electrolyte in this adjustment tank is supplied as a liquid. an electrolytic cell into which the electrolytic solution flows through a line; a radioactively contaminated object to be treated that is provided so that the electrolytic solution flows into the electrolytic cell through an inflow line connected to the electrolytic cell; A return line is connected between the two through a three-way valve, a reduction treatment tank is connected from the other side of the three-way valve through a waste liquid reduction line, and the electrolytic waste liquid reduced in this reduction treatment tank is transferred to the reduction treatment tank. 1. A decontamination device for a workpiece contaminated with radioactivity, comprising: a wastewater return line connected to a wastewater return line that flows out through the workpiece.
(2)被処理物はタンク、配管、バルブなど電解液が貯
溜される形状を有していることを特徴とする特許請求の
範囲第1項記載の放射能で汚染された被処理物の除染装
置。
(2) Removal of a radioactively contaminated object as set forth in claim 1, wherein the object has a shape such as a tank, piping, or a valve in which an electrolytic solution is stored. Dyeing equipment.
(3)低酸化状態の金属化合物は水および酸に溶解され
ると溶液中で低酸化状態の金属イオンとなるCe^3^
+、Cr^3^+、V^4^+から選ばれた少なくとも
1種の化合物であることを特徴とする特許請求の範囲第
1項記載の放射能で汚染された被処理物の除染装置。
(3) When a metal compound in a low oxidation state is dissolved in water or an acid, it becomes a metal ion in a low oxidation state Ce^3^
Decontamination of a workpiece contaminated with radioactivity according to claim 1, characterized in that it is at least one compound selected from +, Cr^3^+, and V^4^+. Device.
(4)酸性溶液は硝酸、硫酸、塩酸のいずれか1種を含
む溶液であることを特徴とする特許請求の範囲第1項記
載の放射能で汚染された被処理物の除染装置。
(4) The apparatus for decontaminating a workpiece contaminated with radioactivity according to claim 1, wherein the acidic solution is a solution containing any one of nitric acid, sulfuric acid, and hydrochloric acid.
(5)調整槽には攪拌ラインが設けられていることを特
徴とする特許請求の範囲第1項記載の放射能で汚染され
た被処理物の除染装置。
(5) The decontamination device for a workpiece contaminated with radioactivity according to claim 1, wherein the adjustment tank is provided with a stirring line.
(6)還元処理槽内には陽極および陰極からなる一対の
電極が設けられていることを特徴とする特許請求の範囲
第1項記載の放射能で汚染された被処理物の除染装置。
(6) The decontamination device for a workpiece contaminated with radioactivity according to claim 1, wherein a pair of electrodes consisting of an anode and a cathode are provided in the reduction treatment tank.
(7)電解槽には排ガスラインを通してコンデンサおよ
びデミスタが順次接続されており、デミスタには該電解
槽に連通する凝縮液戻りラインが接続されていることを
特徴とする特許請求の範囲第1項記載の放射能で汚染さ
れた被処理物の除染装置。
(7) A capacitor and a demister are sequentially connected to the electrolytic cell through an exhaust gas line, and the demister is connected to a condensate return line communicating with the electrolytic cell. A decontamination device for objects to be treated that are contaminated with the radioactivity described above.
JP3487685A 1985-02-23 1985-02-23 Decontaminator for material to be treated contaminated by radioactivity Pending JPS61194398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3487685A JPS61194398A (en) 1985-02-23 1985-02-23 Decontaminator for material to be treated contaminated by radioactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3487685A JPS61194398A (en) 1985-02-23 1985-02-23 Decontaminator for material to be treated contaminated by radioactivity

Publications (1)

Publication Number Publication Date
JPS61194398A true JPS61194398A (en) 1986-08-28

Family

ID=12426348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3487685A Pending JPS61194398A (en) 1985-02-23 1985-02-23 Decontaminator for material to be treated contaminated by radioactivity

Country Status (1)

Country Link
JP (1) JPS61194398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515687A (en) * 2008-03-28 2011-05-19 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the cleaning solution produced during the wet chemical cleaning of nuclear steam generators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515687A (en) * 2008-03-28 2011-05-19 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adjusting the cleaning solution produced during the wet chemical cleaning of nuclear steam generators

Similar Documents

Publication Publication Date Title
EP1054413B1 (en) Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
EP1487748B1 (en) Electrochemical process for decontamination of radioactive materials
US4701246A (en) Method for production of decontaminating liquid
EP0475622A1 (en) Process for removing radioactive burden from spent nuclear reactor decontamination solutions using electrochemical ion exchange
US5439562A (en) Electrochemical decontamination of radioactive metals by alkaline processing
KR20090031483A (en) Regenerative electrochemical polishing decontamination of metallic radioactive wastes and decontamination liquid waste treatment by electro-sorption and electro-deposition
WO1989001224A1 (en) Nuclear fuel reprocessing plant
JP2004286471A (en) Method and device for chemical decontamination of radioactivity
JP5253994B2 (en) Treatment method of radioactive metal waste
JPH11510262A (en) Nuclear plant component decontamination method.
US11342092B2 (en) Electrolyte for electrochemical decontamination and preparation method and application thereof
JPS61194398A (en) Decontaminator for material to be treated contaminated by radioactivity
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
CN111951994A (en) System for treating uranium in nuclear wastewater by utilizing photocatalytic three-dimensional electrolysis method
JP6652827B2 (en) Secondary waste reduction method for chemical decontamination, secondary waste elution and recovery device, and chemical decontamination system
US5545795A (en) Method for decontaminating radioactive metal surfaces
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JP6643196B2 (en) Secondary waste elution and recovery device for chemical decontamination and chemical decontamination system
JP3044306B1 (en) Radioactive waste decontamination system and operating method thereof
JPS59224598A (en) Electrolytic regenerating method of used ion-exchange resin
JPH08254597A (en) Method for treating waste liquid containing ammoniac nitrogen and organic substance
GB2385061A (en) Process water treatment using electrodialysis
JPH02171695A (en) Treatment of radioactive waste liquid
JPS6093999A (en) Method of treating chemically decontaminated waste liquor
JPS60249097A (en) Decontamination device for radioactive contaminated metal