JPS61194381A - Apparatus for measuring electron beam - Google Patents

Apparatus for measuring electron beam

Info

Publication number
JPS61194381A
JPS61194381A JP60034376A JP3437685A JPS61194381A JP S61194381 A JPS61194381 A JP S61194381A JP 60034376 A JP60034376 A JP 60034376A JP 3437685 A JP3437685 A JP 3437685A JP S61194381 A JPS61194381 A JP S61194381A
Authority
JP
Japan
Prior art keywords
electron beam
electron
detector
detectors
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60034376A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kaga
広靖 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60034376A priority Critical patent/JPS61194381A/en
Publication of JPS61194381A publication Critical patent/JPS61194381A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to accurately measure the magnitude of electron beam, by forming a structure cyclically changed in its depth and applying the irradiation and scanning of electron beam to said cyclic structure to detect the cyclic change of a transmitted electron. CONSTITUTION:Electron beam to be measured emitted from an electron gun and shaped and condensed by an aperture and a condenser lens is controlled by a deflection control apparatus 4 and a deflection plate 5 to irradiate detectors 6, 7, 8. Each of the detectors to be used is prepared by a method wherein an oxide insulating film 7 of SiO2 is grown on a silicon substrate 8 to which conductivity was provided and PMMA is applied to said insulating film and image drawing is further applied to form a cyclic structure. Secondary electrons emitted from the detectors 6, 7, 8 by irradiating electron beam to be collected by a semiconductive electron detector 11 and amplified to a predetermined level by an amplifier 12 to be inputted to a recorder 13. Because this reflected secondary electrons and an absorbed current change corresponding to the diameter of the irradiated electron beam, the measurement of a beam diameter is enabled.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子線測定装置に係シ、特に走査電子顕微鏡
・電子線描画装置等、電子ビームを細く収束して用いる
電子線装置において、例えば電子ビームの大きさの情報
を得るのに適した電子線測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electron beam measuring device, and particularly in an electron beam device such as a scanning electron microscope or an electron beam lithography device that uses a finely focused electron beam. The present invention relates to an electron beam measuring device suitable for obtaining information on the size of an electron beam.

〔発明の背景〕[Background of the invention]

従来この糧の測定はファラデーカップを用いて電子ビー
ム電流を測定したシ、ナイフェツジ等の断面形状を有す
る検出器に照射する電子ビームを偏向して前記検出器か
らの反射・2次電子あるいは吸収電流を測定してその変
化の割合から求めてい喪。しかしながら従来装置にあっ
ては検出器の断面形状が鋭利でなく、シかも切断面にう
ねシがある等の理由によって正確な測定ができないこと
Conventionally, this type of measurement has been carried out by measuring the electron beam current using a Faraday cup, by deflecting the electron beam irradiated onto a detector having a cross-sectional shape such as a knife shape, and by measuring the reflected/secondary electrons or absorbed current from the detector. Mourning is determined by measuring the rate of change. However, in conventional devices, the cross-sectional shape of the detector is not sharp, and the cut surface may have ridges, making accurate measurements impossible.

さらに、微細ビームにおいては検出器の中で透過電子が
散乱され拡がる。その拡がシが微細ビーム径と同等ある
いはそれ以上となるため、ビーム径測定に与える影響が
大きく正確な測定ができない等の欠点がめった。
Furthermore, in a fine beam, transmitted electrons are scattered and spread within the detector. Since its expansion is equal to or larger than the fine beam diameter, it has a large influence on beam diameter measurement and has many disadvantages, such as making accurate measurements impossible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電子線の大きさに関する電子線測定装
置を提供することにある。
An object of the present invention is to provide an electron beam measuring device for measuring the size of an electron beam.

〔発明の概要〕[Summary of the invention]

検出器を周期的構造とし、周期を所望のビーム径測定が
可能な大きさにした。周期構造は物差に相当する。ビー
ムを周期構造体に照射、走査させたとき周期性が鮮明な
信号として得られるか否かをビーム径と関係づけ、ビー
ム径を決定する。高分解能電子顕微鏡の分解能の試験と
して金蒸着像のランダムな微細構造が分解できるかどう
かで試す方法と似ている。
The detector has a periodic structure, and the period is made large enough to measure the desired beam diameter. The periodic structure corresponds to a ruler. The beam diameter is determined by determining whether or not periodicity is obtained as a clear signal when the periodic structure is irradiated and scanned with the beam, in relation to the beam diameter. This method is similar to the method used to test the resolution of high-resolution electron microscopy by testing whether the random fine structure of gold deposition images can be resolved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の原理を第1.2図によシ説明する。第1
図は、物質1に電子線2が照射している状態であシ、透
過電子3が物質l内で拡がっている′ことを示している
。物質lの深さ方向を2とし、第1図の深さに人、Bを
定め次とする。モンテカルロシュミレーションで照射電
子2の物質l内での散乱状態をシュミレートし深さ方向
の到達電子数を求めたのが第2図である。第2図におい
てNOは入射電子数である。几は飛程であり、実験L2
6B−aO@84tn11c 弐几=0.412g       と本シュミレーショ
ンは良く一致した。Naは、深さ八における透過電子数
、Nuも同様、Nは、散乱・反射電子を除いた物質l内
で静止した電子数で、飛程几を与える入射電子数に相当
する。本発明では周期的に深さA、Bと変化する構造体
を作り、この周期構造体にビームを照射走査させ透過電
子の周期的変化を検出する。ビームの径がこの周期と同
等あるいはそれ以上の大きさの時、検出信号の振幅は小
さい。ビーム径が周期構造体の周期以下になると、ビー
ム径に関係して検出信号の振幅が変化し、ビーム径が細
いほど大きな振幅の信号が得られる。
The principle of the present invention will be explained below with reference to FIG. 1.2. 1st
The figure shows that a substance 1 is being irradiated with an electron beam 2, and that transmitted electrons 3 are spreading within the substance 1. Let the depth direction of the substance 1 be 2, and set the person B at the depth shown in Figure 1 as follows. FIG. 2 shows a Monte Carlo simulation of the scattering state of the irradiated electrons 2 in the substance 1, and the number of electrons arriving in the depth direction. In FIG. 2, NO is the number of incident electrons.几 is the range, experiment L2
6B-aO@84tn11c 弐几=0.412g and this simulation agreed well. Na is the number of transmitted electrons at a depth of 8, and Nu is the same.N is the number of electrons stationary within the material l excluding scattered and reflected electrons, and corresponds to the number of incident electrons that give the range. In the present invention, a structure whose depth changes periodically between A and B is created, and the periodic structure is irradiated and scanned with a beam to detect periodic changes in transmitted electrons. When the diameter of the beam is equal to or larger than this period, the amplitude of the detection signal is small. When the beam diameter becomes less than the period of the periodic structure, the amplitude of the detection signal changes in relation to the beam diameter, and the smaller the beam diameter, the larger the amplitude of the signal obtained.

以下、本発明の一実施例を第3図によシ説明す今。第3
図は装置の概略構成図で、図中点線は側室対象電子ビー
ムを示している。例えば電子銃から放出され、アパチャ
、コンデンサレンズf通t)整形集束されたものである
。偏向制御装置4は偏向板5の電界を変え、この電子ビ
ームを制御する。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. Third
The figure is a schematic configuration diagram of the apparatus, and the dotted line in the figure indicates the electron beam targeted for the side chamber. For example, it is emitted from an electron gun and shaped and focused using an aperture or condenser lens. A deflection control device 4 changes the electric field of a deflection plate 5 to control this electron beam.

制御された電子ビームは、6,7.8からなる検出器に
照射される。従来装置にあっては、これは金属線からな
るもの、メツシュにされたもの、ナイフェツジ状のもの
にそれぞれ7アラデーカツプを組み合せ検出器としてい
た。本発明装置では、以下に述べる検出器を用いる。シ
リコン基盤8に導電性をもたせて、その上に84(hの
酸化絶縁膜80.1μm成長させたうえでPMMAt−
塗布、微細電子ビーム露光によって0.1μm周期のラ
インアンドスペースを描画したのちエツチングしA1を
蒸着、最後にPMMAを除去し周期構造6を作り検出器
6,7.8とする。
The controlled electron beam is irradiated onto a detector consisting of 6,7.8. In the conventional device, a detector is made by combining seven Aradeck cups each with a metal wire, a mesh, or a knife. The device of the present invention uses the detector described below. The silicon substrate 8 is made conductive, an oxide insulating film 84 (h) is grown to a thickness of 80.1 μm, and then PMMAt-
Lines and spaces with a period of 0.1 .mu.m are drawn by coating and fine electron beam exposure, and then etching is performed to deposit A1.Finally, PMMA is removed to form a periodic structure 6, which serves as detectors 6, 7.8.

検出器6,7.8には電流計9,10を接続し、照射し
た電子ビームの吸収電流を測定した。またこの検出器6
,7.8の上方には、半導体電子検出器11を配置前記
検出器6,7.8からの反射、2次電子を捕捉検出する
ものである。この検出信号は増幅器12により所定レベ
ルに増幅され記録tl−13に入力される。この装置に
おいて電子ビームを偏向し、徐々に検出器6の周期が変
化する方向に照射していくと、反射・2次電子及び吸収
電流は、第4図に示すよう検出器60周期と同周期の変
化を示す。第4図のΔSは、照射電子ビームの直径に応
じて変化する量で、たとえば所定ビーム径のΔSを実験
的に求めておき、とのΔSになるようにコンデンサーレ
ンズにフィードバックを行ない、ビーム径を一定に制御
することを行なう。
Ammeters 9 and 10 were connected to the detectors 6 and 7.8, and the absorbed current of the irradiated electron beam was measured. Also, this detector 6
, 7.8, a semiconductor electron detector 11 is arranged to capture and detect reflected secondary electrons from the detectors 6, 7.8. This detection signal is amplified to a predetermined level by the amplifier 12 and input to the recording tl-13. In this device, when the electron beam is deflected and irradiated in a direction that gradually changes the period of the detector 6, the reflected secondary electrons and absorption current will have the same period as the 60 periods of the detector, as shown in Figure 4. shows the change in ΔS in Fig. 4 is an amount that changes depending on the diameter of the irradiated electron beam. For example, ΔS for a given beam diameter is experimentally determined, and feedback is given to the condenser lens so that ΔS becomes . control to a constant value.

第5図は、検出器6をW1振幅0.05μm周期。In FIG. 5, the W1 amplitude of the detector 6 is set at a cycle of 0.05 μm.

0.1μmの周期構造を作シ、厚さ0.4μmとしたと
き電流計9で得られる信号をモンテカルロシュミレーシ
ョンで求めたもので、横軸はビーム径である。この結果
から、ビーム径と検出信号の間には、はぼ線形な関係が
あることがわかる。つまff。
The signal obtained by the ammeter 9 when a periodic structure of 0.1 μm is made and the thickness is 0.4 μm is obtained by Monte Carlo simulation, and the horizontal axis is the beam diameter. This result shows that there is an approximately linear relationship between the beam diameter and the detection signal. Tsum ff.

本実施列によれば、電子ビーム径を計測することができ
る。このことを利用し、所望の電子ビーム径に正しく制
御することもできる。さらに応用例として、検出器6,
7.8を第6図に示すよう、周期の変化する方向を90
.。変えて組合せ、電子ビームを第6図実線の矢印方向
に走査させ、非点収差補正を行なうことも可能である。
According to this implementation sequence, the electron beam diameter can be measured. Utilizing this fact, it is also possible to accurately control the electron beam diameter to a desired value. Furthermore, as an application example, the detector 6,
7.8 as shown in Figure 6, the direction in which the period changes is 90
.. . It is also possible to correct astigmatism by changing the combination and scanning the electron beam in the direction of the solid arrow in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子ビームの形状を周期体によって検
出しているため、多数個のビーム径検出器が集まった形
になっている。そのため統計的な信号が得られるので、
従来装置のような形状に起因した検出誤差の回避に効果
がある。
According to the present invention, since the shape of the electron beam is detected by the periodic body, a large number of beam diameter detectors are assembled. Therefore, a statistical signal is obtained, so
This is effective in avoiding detection errors caused by the shape of conventional devices.

従来方法では、検出器内部での照射電子ピ〜ムの拡りが
検出誤差の要因でめつ之。本発明では、透過電子を積極
的に利用し横方向への拡りは測定されず特定の深さ以下
での吸収電流の測定を行なう之めこの問題は重要でない
。検出器6に、金、タングステンなどの重金属を用いる
ことによって、電子ビームに対する反射・2次電子放出
効率を向上させ、S/Nの良い検出を行うことができる
In conventional methods, the spread of the irradiated electron beam inside the detector is a major cause of detection errors. In the present invention, this problem is not important because transmitted electrons are actively utilized and absorption current is measured below a certain depth without measuring lateral spread. By using a heavy metal such as gold or tungsten for the detector 6, reflection and secondary electron emission efficiency for the electron beam can be improved, and detection with a good S/N ratio can be performed.

半導体プロセス技衛等を用い、本発明検出器を製造可能
である等の効果がある。
The present invention has the advantage that the detector of the present invention can be manufactured using semiconductor process technology and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は物質内部での散乱電子を示す図、第2図は透過
飛程を示す図、第3図は本発明装置の一実施列を示す概
略構成図、第4図は測定検出特性を示す図、第5図はS
/Nと電子ビーム径の関係を示す図、第6図は本発明装
置の応用例を示す図でるる。 5・・・偏向板、6,7.8・・・検出器、9.10・
・・電流針、11・・・半導体検出器、14.15・・
・検出器、16.17・・・電子線、1・・・物質内部
、2・・・照射電子線、3・・・透過散乱電子。
Fig. 1 is a diagram showing scattered electrons inside a substance, Fig. 2 is a diagram showing a transmission range, Fig. 3 is a schematic configuration diagram showing one implementation row of the device of the present invention, and Fig. 4 is a diagram showing measurement detection characteristics. The figure shown in Figure 5 is S.
FIG. 6 is a diagram showing the relationship between /N and the electron beam diameter, and is a diagram showing an example of application of the device of the present invention. 5... Deflection plate, 6, 7.8... Detector, 9.10.
...Current needle, 11...Semiconductor detector, 14.15...
・Detector, 16.17...Electron beam, 1...Inside of substance, 2...Irradiated electron beam, 3...Transmitted scattered electron.

Claims (1)

【特許請求の範囲】 1、電子ビーム検出体とこの検出体をこの検出体から信
号が得られるように電子ビームで走査する手段とを備え
前記電子ビーム検出体には前記走査時に前記信号が強く
生ずる部分と弱く生ずる部分とを周期的に形成しそれら
の部分に関する前記信号の強弱にもとづいて前記電子ビ
ームの大きさに関する情報を得るようにしたことを特徴
とする電子線測定装置。 2、前記信号は複数種類の信号であることを特徴とする
特許請求の範囲第1項の電子線測定装置。
[Claims] 1. An electron beam detector and means for scanning the detector with an electron beam so that a signal is obtained from the detector; 1. An electron beam measuring device characterized in that a portion where the electron beam is generated and a portion where the beam is weakly generated are periodically formed, and information regarding the size of the electron beam is obtained based on the strength of the signal regarding these portions. 2. The electron beam measuring device according to claim 1, wherein the signal is a plurality of types of signals.
JP60034376A 1985-02-25 1985-02-25 Apparatus for measuring electron beam Pending JPS61194381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034376A JPS61194381A (en) 1985-02-25 1985-02-25 Apparatus for measuring electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034376A JPS61194381A (en) 1985-02-25 1985-02-25 Apparatus for measuring electron beam

Publications (1)

Publication Number Publication Date
JPS61194381A true JPS61194381A (en) 1986-08-28

Family

ID=12412447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034376A Pending JPS61194381A (en) 1985-02-25 1985-02-25 Apparatus for measuring electron beam

Country Status (1)

Country Link
JP (1) JPS61194381A (en)

Similar Documents

Publication Publication Date Title
JP3749107B2 (en) Semiconductor device inspection equipment
CN100592028C (en) Method and apparatus of measuring thin film sample and method and apparatus of fabricating thin film sample
JP2004340652A (en) Flaw inspection device and positive electron beam application device
JP2002107134A (en) Thickness meter for x-ray fluorescence film
KR930022512A (en) Method and apparatus for indicating columnar of sample
JP4767650B2 (en) Semiconductor device inspection equipment
JP2000048758A (en) Reflected electron detecting device
JP2008304452A (en) Semiconductor inspection system and apparatus utilizing non-vibrating contact potential difference sensor and controlled illumination
JPS639807A (en) Method and device for measuring film thickness
JPH0135304B2 (en)
US4086491A (en) Direct measurement of the electron beam of a scanning electron microscope
KR20070056327A (en) Method for scanning of a substrate and method and apparatus for inspecting characteristic of crystal
JPS61194381A (en) Apparatus for measuring electron beam
JPH08339952A (en) Mark position identification device and mark position identification method
Novikov Backscattered electron imaging of micro-and nanostructures: 1. Method of analysis
KR101377938B1 (en) Medium Energy Ion Scattering spectrometer
JPS584314B2 (en) Electron beam measuring device
JPH0531724B2 (en)
JP2701764B2 (en) Apparatus and method for measuring size of charged particle beam
JP2996210B2 (en) Sample absorption current spectroscopy
JP2000173528A (en) Scanning electron microscope
JPH0580158A (en) Charged particle beam measuring device
KR100687074B1 (en) System for analysis of thin film using the scattering of focused ion beam
KR101052361B1 (en) Spectrometer Using Heavy Energy Ion Beam Scattering
JPS63142825A (en) Auxiliary evaluation method for ic operation