JPS61194222A - Production of metallic filament - Google Patents

Production of metallic filament

Info

Publication number
JPS61194222A
JPS61194222A JP3270885A JP3270885A JPS61194222A JP S61194222 A JPS61194222 A JP S61194222A JP 3270885 A JP3270885 A JP 3270885A JP 3270885 A JP3270885 A JP 3270885A JP S61194222 A JPS61194222 A JP S61194222A
Authority
JP
Japan
Prior art keywords
fibers
cooling
liquid
flow
quenching zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270885A
Other languages
Japanese (ja)
Inventor
Mototatsu Doi
元達 土肥
Kazuhiko Kawaike
川池 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3270885A priority Critical patent/JPS61194222A/en
Publication of JPS61194222A publication Critical patent/JPS61194222A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain continuously a metallic thin filament having spherical section, from a metallic melt having amorphous phase forming ability or crystallite forming ability, by setting a means to accelerate a liquid medium in the middle of a quenching zone. CONSTITUTION:The metal 1 melted under heating is jetted from the spinning nozzle 4 into a filament by a pressurizing device, and introduced into a quenching zone of the cooler 6. The flow velocity of a cooling medium in the cooling pipe 7 is accelerated by high-pressure water jetted from the jet pump 9 and reaches >=10m/s, the jet flow of the molten metal 1 is rapidly quenched, and solidified, to give the thin filament 5. Water is usually used as the cooling medium.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属繊維の高速固化による製造方法に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for manufacturing metal fibers by rapid solidification.

〔発明の背景〕[Background of the invention]

最近、旧来からのダイス引抜きによる金属繊維の製造に
代って、金属溶融流体のジェット流から直接線状に固化
させて高速で繊維を得る方法が種々検討されている。こ
の方法による装置が完成すると金属繊維を多量に安価に
製造できるばかりでなく、延性が少なくダイス引抜きが
困難な材料の繊維を製造でき、しかも、線状に固化させ
る際の冷却速度が速くなると非晶質となシ、従来の結晶
質金属繊維には無い特異な性質をもつ金属繊維が得られ
る。しかし、金属溶融流体のジェット流から直接線状に
固化させて繊維を得る、いわゆる、溶融直接紡糸法には
大きな難問かめる。一般に、金属は溶融状態では粘度が
低く、表面張力が強い性質を持つ。そのため、ノズルか
ら高速で噴出し六回形状(@状)の溶融金属ジェット流
は自身の形状を維持できず、短時間のうちにくびれが生
じ、最終的には液滴となってしまう。従って、溶融直接
紡糸法で連続した金属繊維を製造するには、ジェット流
の凝固を形状が破壊される前に完了させる工夫が必要と
なる。
Recently, instead of the conventional production of metal fibers by die drawing, various methods have been studied to obtain fibers at high speed by directly solidifying into a linear shape from a jet stream of molten metal fluid. If a device using this method is completed, it will not only be possible to produce metal fibers in large quantities at low cost, but also to produce fibers of materials that have low ductility and are difficult to draw with a die. Since it is crystalline, a metal fiber with unique properties not found in conventional crystalline metal fibers can be obtained. However, the so-called melt direct spinning method, in which fibers are obtained by directly solidifying a jet stream of molten metal fluid into a linear shape, poses a big problem. In general, metals have low viscosity and high surface tension in their molten state. Therefore, the six-fold (@-shaped) molten metal jet stream ejected from the nozzle at high speed cannot maintain its own shape, becomes constricted within a short period of time, and eventually becomes droplets. Therefore, in order to produce continuous metal fibers using the direct melt spinning method, it is necessary to devise ways to complete the solidification of the jet flow before the shape is destroyed.

これまでに数多くの工夫が試みられ、技術的にはかなり
進泰している。ジェット流の凝固を形状が破壊される前
に完了させるために採られる実現性の高い手段は大きく
分けて二つに分類できる。
Many attempts have been made so far, and considerable progress has been made technically. Highly feasible means to complete the solidification of the jet flow before the shape is destroyed can be broadly classified into two types.

ひとつは、溶融金属の特徴である低粘度と強い表面張力
を改善し、凝固が完了するまでの時間はくびれが生じた
り液滴にならないようにする考え方である。具体的には
ジェット流をジェット流の一種以上の成分と化学反応を
起こすガス状雰囲気に噴出し、液状ジェット流上に酸化
物等による固体の被膜を形成させて表面張力を低下さら
に酸化物を溶融ジェット液中に拡散分布させることによ
シ粘度を向上させる。また、他の方法によれば静電気の
電荷をジェット流の形状の安定化、維持に利用している
。しかし、溶融金属中に雰囲気ガスと反応生成物を作ら
せるために反応性元素を加えると、溶融金属の機械的、
電気的あるいは他の物性に悪影響を及ぼす。ま六、この
方法だけで溶融金属の形成を安定化するのはきわめて困
難で、固体の被膜が形成されても溶融金属は自重によシ
ネ連続に変形し、金属表面が連続的に作られるのに追従
できず、極端な場合には、被膜が形成された部 ・分と
、不十分な部分、もしくは、全く形成されない部分がで
き、得られる金属細線には使用上不都合な不均一性が生
じ、ジェット流の破断にもつながる。また、静電気でジ
ェット流の安定化を実現するためには高電圧を印加する
必要があシ、多くの問題、欠点がある。
One idea is to improve the low viscosity and strong surface tension that are characteristic of molten metal, and to prevent the formation of constrictions or droplets during the time until solidification is complete. Specifically, the jet stream is ejected into a gaseous atmosphere that causes a chemical reaction with one or more components of the jet stream, forming a solid film of oxides etc. on the liquid jet stream, lowering the surface tension and further removing the oxides. The viscosity is improved by diffusing and distributing it in the molten jet liquid. Another method uses electrostatic charges to stabilize and maintain the shape of the jet stream. However, when a reactive element is added to the molten metal to create a reaction product with the atmospheric gas, the mechanical
Adversely affects electrical or other physical properties. Sixth, it is extremely difficult to stabilize the formation of molten metal using this method alone, and even if a solid film is formed, the molten metal will continuously deform due to its own weight, and a continuous metal surface will be created. In extreme cases, there will be areas where the coating is formed, and areas where the coating is insufficient or not formed at all, resulting in non-uniformity in the resulting thin metal wire that is inconvenient for use. , which also leads to breakage of the jet stream. Furthermore, in order to stabilize the jet flow using static electricity, it is necessary to apply a high voltage, which causes many problems and drawbacks.

ガラスは高温で粘度が低下し、引張ると細く糸をひく性
質をもつ。このガラスの曳糸性を利用したガラス被覆溶
融紡糸法は所定のガラス管中に紡糸しようとする金属を
入れ、これを高周波加熱によりて溶−1かつ、ガラス管
をも軟化させ高速で巻取ることによシ、ガラスで被覆さ
れた金属繊維を得る。ガラスを除去するには機械的、あ
るいは、化学的な方法が採られるが、フッ酸水溶液に浸
せきすれば、除去できる。しかし、この工程もかなり複
雑で、生産コストが高く、しかも、良質な金属繊維を安
定に多量生産するのは困難である。
Glass's viscosity decreases at high temperatures, and it has the property of becoming a thin thread when stretched. The glass-coated melt-spinning method takes advantage of the spinnability of glass.The metal to be spun is placed in a predetermined glass tube, and the metal is melted by high-frequency heating, which also softens the glass tube and is wound at high speed. In particular, glass-coated metal fibers are obtained. Mechanical or chemical methods are used to remove glass, but it can be removed by immersing it in an aqueous hydrofluoric acid solution. However, this process is also quite complicated, the production cost is high, and it is difficult to stably produce high-quality metal fibers in large quantities.

以上の方法に対して、金属溶融ジェット流をその形状が
変化しないうちに急速に冷却凝固させて金属繊維を作成
するもうひとつの考え方が、近年、注目を浴びている。
In contrast to the above-mentioned methods, another approach has been attracting attention in recent years, in which metal fibers are created by rapidly cooling and solidifying a molten metal jet stream before its shape changes.

この考え方では、円形断面で太さを一定に保ちつつ急速
に冷却凝固させる技術の確立が課題で、当初(1960
年頃)はガス中に分散した蒸気化液体のミスト、あるい
は、ガス−固体分散体で冷却することが試みられた。し
かし、これらの冷却媒体では冷却速度が遅く、ジェット
流を安定に凝固させ、連続で太さが均一で、良質な金属
a@を得るには前述の考え方、すなわち、化学的あるい
は静電気的安定化を併用する必要がある。冷却速度を高
めるには金属溶融流体から熱を奪う媒体を選択すれば良
く、最近は高速回転している熱伝導率が高い金属ロール
表面にジェット流を噴出して急冷する方法(ロール法)
、並びに水で代表される原状媒体(冷媒)中にジェット
流を噴出して急冷する液中紡糸法が提案されている。
The challenge with this idea was to establish a technology to rapidly cool and solidify a circular cross-section while maintaining a constant thickness.
(circa 1996) attempted cooling with a mist of vaporized liquid dispersed in a gas or a gas-solid dispersion. However, the cooling rate of these cooling media is slow, and in order to stably solidify the jet flow and obtain a continuous, uniform thickness, and high quality metal a@, the above-mentioned concept, that is, chemical or electrostatic stabilization is required. It is necessary to use them together. In order to increase the cooling rate, it is necessary to select a medium that removes heat from the molten metal fluid. Recently, a method has been developed in which a jet stream is ejected onto the surface of a metal roll that rotates at high speed and has high thermal conductivity to rapidly cool it (roll method).
, as well as a submerged spinning method in which a jet stream is ejected into the original medium (coolant) typified by water to rapidly cool the medium.

ロール法は冷却速度が108〜10・deg/sと大き
hためリボン状の高品質の金属繊維、すなわち、微細結
晶質、あるいは、非晶質金属繊維が安定に得られる。し
かし、回転している金属ロール上で金属溶融流体を凝固
させるため、必らず偏平な断面形状となシ丸い線は得ら
れず、繊維軸と垂直方向に対して方向性があるため使用
上の不具合が生じる欠点がアシ、特殊な用途以外には用
いられない。
Since the roll method has a high cooling rate of 108 to 10 deg/s, ribbon-shaped high-quality metal fibers, that is, fine crystalline or amorphous metal fibers can be stably obtained. However, since the metal molten fluid is solidified on a rotating metal roll, it is not always possible to obtain a flat cross-sectional shape, and a round line cannot be obtained. However, it is not used for anything other than special purposes.

液中紡糸法は円形!#?面、もしくは、それに近い細線
が得られる方法で、なかでも特開昭55−64948号
公報の回転液中紡糸法は冷却液体が遠椿力で安定し、冷
却速度が速いため円形な断面をもつ金属フィラメントを
小量製造するのに適している。これはノズルから噴出し
た溶融金属を冷却液を含む回転体中に導いて冷却固化さ
せる方法である。しかし、この方法では遠心力で冷却液
体層を回転円筒内に維持し、しかも、冷却固化した金属
1線を回転円筒内壁に連続して集積巻取るため、冷却液
体層の深さ、捲取速度、冷却液体の温度等が変化し、一
定品質の金属細線を連続的に多量に製造するには多くの
問題を含んでいる。また、回転円筒の大きさ、巾には制
限があるため、必らずパッチ運転となシ、工業化規模で
の連続生産運転は難しい。
The submerged spinning method is circular! #? It is a method that can obtain a thin wire with a flat surface or a thin wire close to it, and among them, the rotating liquid spinning method disclosed in Japanese Patent Application Laid-Open No. 55-64948 has a circular cross section because the cooling liquid is stabilized by a long distance force and the cooling rate is fast. Suitable for manufacturing small quantities of metal filaments. This is a method in which molten metal ejected from a nozzle is guided into a rotating body containing a cooling liquid and cooled and solidified. However, in this method, the cooling liquid layer is maintained in the rotating cylinder by centrifugal force, and the cooled and solidified metal wire is continuously collected and wound on the inner wall of the rotating cylinder, so the depth of the cooling liquid layer and the winding speed are , the temperature of the cooling liquid changes, and there are many problems involved in continuously manufacturing large quantities of thin metal wires of constant quality. Furthermore, since there are restrictions on the size and width of the rotating cylinder, patch operation is always required and continuous production operation on an industrial scale is difficult.

一方、特公昭59−26685号公報には円形断面の金
属細線を得るため、溶融金属流を原状媒体からなる急冷
区域に通して固化する方法が提案されている。これは■
急冷区域でノズルから噴出された時の溶融金属ジェット
流と冷却原状媒体とが並流であシ、■急冷区域でノズル
から噴出された溶融金属と冷却原状媒体との速度が同速
であり、冷却原状媒体の速度はそれ自身の自重落下速度
を利用するものである。この方法は循環的に冷却水が溶
融金属を急冷凝固して細線を連続的に製造できるため、
回収は比較的容易で量産性が高い。
On the other hand, Japanese Patent Publication No. 59-26685 proposes a method of solidifying a molten metal stream by passing it through a quenching zone made of a raw medium in order to obtain a thin metal wire with a circular cross section. This is ■
The molten metal jet flow ejected from the nozzle in the quenching zone and the cooling raw medium are cocurrent, and the velocities of the molten metal jetted from the nozzle and the cooling raw medium in the quenching zone are the same; The velocity of the original cooling medium is determined by the rate of fall of its own weight. This method uses circulating cooling water to rapidly solidify the molten metal, making it possible to continuously manufacture thin wires.
Recovery is relatively easy and mass production is high.

しかし、冷却水の流速はそれ自身の自重落下現象を利用
するため最高3m/8程度にしか高められず、冷却速度
が不十分で、そのため、運動エネルギが小さく、噴出さ
れた溶融金属と冷却水の衝突、冷却水の沸鴫、蒸発、対
流によシ冷却水、あるいは、この液面が乱れ、円形断面
の高品質な微細結晶、あるいは、非晶質の金属綱線が得
られない。
However, the flow velocity of the cooling water can only be increased to a maximum of about 3 m/8 because it utilizes the falling phenomenon of its own weight, and the cooling rate is insufficient, so the kinetic energy is small, and the molten metal and cooling water Collision of the cooling water, boiling of the cooling water, evaporation, and convection cause the cooling water or the liquid surface to be disturbed, making it impossible to obtain high-quality fine crystals with a circular cross section or amorphous metal wire.

〔発明の目的〕[Purpose of the invention]

本発明の目的は非晶質形成能をもち金属又は微細結晶質
形成能をもつ金属の溶融物から、円形断面で、高品質の
金11EMfil線を直接に経済的な工業規模で連続的
に製造する方法を提供することにある。
The object of the present invention is to produce high quality gold 11EMfil wires with a circular cross section directly and continuously on an economical industrial scale from a melt of a metal with the ability to form an amorphous state or a metal with the ability to form a microcrystalline state. The goal is to provide a way to do so.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、原状媒体を加速する手段を急冷区域の
途中に設は九ことにある。
A feature of the present invention is that a means for accelerating the raw medium is provided in the middle of the quenching zone.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の横断面図である。FIG. 1 is a cross-sectional view of one embodiment of the present invention.

坩堝2の中に入れた金11i!1は高周波誘導コイル3
、あるいは、他の適当な方法で加熱溶融される。所定の
温度まで加熱された金属1は加圧装置(図示せず)によ
り、紡糸ノズル4から糸状に噴出される。加圧装置は水
素ガス、アルゴンガス等の不活性ガス、又は、還元性ガ
スを用いる。ノズル4の径は所望の細線の直径と同等か
、やや太くする。
Gold 11i put in crucible 2! 1 is a high frequency induction coil 3
or by heating and melting by other suitable methods. The metal 1 heated to a predetermined temperature is ejected in the form of a thread from the spinning nozzle 4 by a pressurizing device (not shown). The pressurizing device uses an inert gas such as hydrogen gas or argon gas, or a reducing gas. The diameter of the nozzle 4 is made equal to or slightly larger than the diameter of the desired thin wire.

溶融金Is1のジェット流はノズル4の直下に位置する
冷却装置6の急冷区域へ導入される。急冷区域は冷却パ
イプ7とジェットポンプ9、及び冷却媒体8かふ構成さ
れ、冷却パイプの中を冷却媒体8が流れている。溶融金
属1のジェット流の流速は加圧装置の加圧条件により決
まる。冷却パイプ7の中の冷却媒体の流速ジェットポン
プ9の噴出条件に決められる。11はジェットポンプ9
を作動させるポンプである。ジェットポンプ9から噴出
する高圧水に加速されて冷却パイプ7の中の冷却媒体の
流速はlQm/s以上に達し、溶融金属1のジェット流
は急速に冷却され凝固し、細線5となる。12は冷却媒
体の循環経路で10は冷却媒体を冷却する冷却器であり
、冷やされた冷却媒体はフィルタ13を通って冷却装置
6に戻る。
The jet stream of molten gold Is1 is introduced into the quench zone of the cooling device 6 located directly below the nozzle 4. The quenching zone is composed of a cooling pipe 7, a jet pump 9, and a cooling medium 8, and the cooling medium 8 flows through the cooling pipe. The flow rate of the jet stream of molten metal 1 is determined by the pressurizing conditions of the pressurizing device. The flow rate of the cooling medium in the cooling pipe 7 is determined by the ejection conditions of the jet pump 9. 11 is jet pump 9
It is a pump that operates the Accelerated by the high-pressure water ejected from the jet pump 9, the flow rate of the cooling medium in the cooling pipe 7 reaches 1Qm/s or more, and the jet stream of the molten metal 1 is rapidly cooled and solidified to become the thin wire 5. 12 is a circulation path for the cooling medium, 10 is a cooler for cooling the cooling medium, and the cooled cooling medium passes through the filter 13 and returns to the cooling device 6.

溶融金属lの冷却速度はジェットの速度と冷却媒体との
熱伝達率で決まる。ジェット速度を高めるほど、また、
熱伝達率が高いほど、冷却速度を高められる。しかし、
冷却媒体の速度が遅いと溶融金属が凝固する以前に形が
乱され、くびれが生じたシ破断に至る。そのため、冷却
媒体の速度をジェット流速度と同等、もしくは、若干早
目に設定する必要がある。特公昭59−26685号公
報では冷却媒体の自重落下速度を利用しているため、せ
いぜい3 m / @程度しか高められないが、本発明
では金属ジェット流の速度に見合った冷却媒体の流速を
ジェットポンプ9により設定できる。そのため安定に連
続して金属細線を溶融紡糸法により製造できる。溶融金
属と冷却媒体との熱伝達率は冷却媒体の温度、組成を選
択することにより高められるが、ここでは詳細な説明は
省略する。一般的には水を利用する。
The cooling rate of the molten metal l is determined by the jet speed and the heat transfer coefficient with the cooling medium. The higher the jet speed, the more
The higher the heat transfer coefficient, the higher the cooling rate. but,
If the speed of the cooling medium is slow, the shape of the molten metal will be disturbed before it solidifies, leading to constriction and fracture. Therefore, it is necessary to set the speed of the cooling medium to be equal to or slightly faster than the jet flow speed. In Japanese Patent Publication No. 59-26685, since the falling speed of the coolant due to its own weight is used, the increase can only be increased by about 3 m/@ at most, but in the present invention, the flow rate of the coolant is adjusted to match the speed of the metal jet stream. It can be set using the pump 9. Therefore, fine metal wires can be stably and continuously produced by the melt spinning method. The heat transfer coefficient between the molten metal and the cooling medium can be increased by selecting the temperature and composition of the cooling medium, but a detailed explanation will be omitted here. Generally, water is used.

第2図は本発明の他の実施例を示す。冷却媒体と流れて
き711線5は冷却パイプ7から高速で噴出され回転車
15に捕えられる。回転車15は、第3図に示すように
、細線を遠心力で回収するゲート14、冷却媒体の流体
力により回転力を生み出す羽根14a、軸15aから成
っており、冷却媒体と細線はこの装置により分離され細
線が連続的に回収できる。本発明ではジェットポンプ9
により冷却媒体が加速され冷却パイプ7の中での流速を
高めるばかりでなく冷却媒体に運動エネルギを付与し、
流路抵抗に打ち勝つと共に、回収装置15を1駆動し回
収装置における遠心力で細線はゲート14に捕捉、冷却
媒体は運動エネルギを回収装置に吸収され下方に落下、
冷却媒体回収装置(図示せず)によシ回収、循環される
FIG. 2 shows another embodiment of the invention. The cooling medium and flowing wire 711 are jetted out from the cooling pipe 7 at high speed and captured by the rotating wheel 15. As shown in FIG. 3, the rotary wheel 15 consists of a gate 14 that collects the thin wire by centrifugal force, blades 14a that generate rotational force by the fluid force of the cooling medium, and a shaft 15a. The fine wires can be continuously collected. In the present invention, the jet pump 9
The cooling medium is accelerated by not only increasing the flow velocity in the cooling pipe 7 but also imparting kinetic energy to the cooling medium,
While overcoming the flow path resistance, the collection device 15 is driven once, and the centrifugal force in the collection device traps the thin wire in the gate 14. The kinetic energy of the cooling medium is absorbed by the collection device and it falls downward.
The coolant is recovered and circulated by a cooling medium recovery device (not shown).

なお、ゲート14は軸方向に二分割でき、回収された細
線を効率よく取り出せる。
Note that the gate 14 can be divided into two parts in the axial direction, and the collected fine wire can be efficiently taken out.

第4図は冷却パイプ7にうず発生防止器7at−形成さ
せた実施例を示す。管中を高速で流れる液体はさまざま
な乱れを生じ易い。溶融紡糸法では溶融金属が凝固完了
するまではマクロな乱れはきわめて有害である。冷却パ
イプ7中では渦が最も発生し易く、渦が発生すると溶融
金属がねじれ屈曲され、形状が円形でなくなシ満足な細
線が得られない。渦はパイプ中の冷却媒体が回転成分を
持つことによシ発生するので、これを防止する有効な手
段はパイプの軸心に向かって第4図のように長手方向に
連続する突起を設けることである。このうず発生防止器
7aは冷却パイプ7の溶融金属が凝固する部分に適用す
る場合が最も効果的であるが、ジェットポンプ9の高圧
冷却媒体が噴出する位置に適用しても有効である。渦の
発生は高圧流体の運動エネルギの浪費につながり、冷却
媒体の加速に作用する割合が減少し、効率が下がる。
FIG. 4 shows an embodiment in which the cooling pipe 7 is formed with a vortex preventer 7at. Liquid flowing at high speed through a pipe is susceptible to various turbulences. In the melt spinning method, macroscopic disturbances are extremely harmful until the molten metal has completely solidified. Vortices are most likely to occur in the cooling pipe 7, and when these vortices occur, the molten metal is twisted and bent, and the shape is no longer circular, making it impossible to obtain a satisfactory thin wire. Since vortices are generated when the cooling medium in the pipe has a rotational component, an effective means to prevent this is to provide a continuous protrusion in the longitudinal direction toward the axis of the pipe as shown in Figure 4. It is. The vortex generation preventer 7a is most effective when applied to the portion of the cooling pipe 7 where molten metal solidifies, but it is also effective when applied to the position of the jet pump 9 where the high-pressure cooling medium is jetted. The generation of vortices leads to the waste of kinetic energy of the high-pressure fluid, which reduces the rate at which it acts on the acceleration of the cooling medium, reducing efficiency.

うず発生防止器はこの現象を防止してジェットポンプに
より加速される冷却パイプ7中め冷却媒体の流速を高め
る効果がある。
The vortex generation preventer has the effect of preventing this phenomenon and increasing the flow velocity of the cooling medium in the cooling pipe 7, which is accelerated by the jet pump.

第5図は本発明の他の実施例を示す。冷却パイプ7の内
側から外側に貫通し、かつ冷却媒体の流れの方向に傾斜
した複数個の小孔7bを設けている。管中の流れは流速
が早くなると層流から乱流となり、流速が早くなるほど
乱れが大きくなる。
FIG. 5 shows another embodiment of the invention. A plurality of small holes 7b are provided that penetrate the cooling pipe 7 from the inside to the outside and are inclined in the direction of the flow of the cooling medium. As the flow velocity increases, the flow in the pipe changes from laminar to turbulent, and as the flow velocity increases, the turbulence increases.

この乱れは既述のように、溶融金属の凝固に対して有害
である。管中に流れがある場合、管の入口近傍で境界層
が発生し、内部に入るに従って境界層は成長し、厚くな
る。境界層内部では流速速度分布があり、境界層が厚い
部分では中心部の流速が速くなる。これは管内の平均流
速は管径が一定であれば一定でなければならないためで
、第6図のコ占J−)%占−I@卑僑需オ針蛇1八 憧
蒐噛肉黙では第6図に示すような速度分布があり、境界
層が厚い5点では中心部のu6hはIQ、より速い。こ
のように管内の一所面で、中心部から管壁に向かって流
速が異なったり、長手方向に対してu(、とu6.とで
流速が異なると、溶融金属の凝固中に冷却媒体が溶融金
属ジェットに乱れを与え、良質な細線が得られなくなる
。すなわち、ノズルから噴出した溶融金属ジェットが冷
却パイプ中の冷却媒体中に進入し冷却され、速度が降下
し凝固する間は冷却媒体の流速は冷却パイプ中のどの点
でも同一でなくてはならない。この条件が満たされるこ
とにより、細線の形状が一定で良質な細線が得られる。
As mentioned above, this turbulence is detrimental to the solidification of the molten metal. When there is a flow in a pipe, a boundary layer is generated near the entrance of the pipe, and the boundary layer grows and becomes thicker as it goes inside. There is a flow velocity distribution inside the boundary layer, and where the boundary layer is thick, the flow velocity is faster in the center. This is because the average flow velocity in the pipe must be constant if the pipe diameter is constant. There is a velocity distribution as shown in FIG. 6, and at the five points where the boundary layer is thick, u6h at the center is faster than IQ. In this way, if the flow velocity differs from the center toward the pipe wall at one point in the tube, or if the flow velocity differs in the longitudinal direction at u(, u6.), the cooling medium will This disturbs the molten metal jet, making it impossible to obtain a fine wire.In other words, the molten metal jet ejected from the nozzle enters the cooling medium in the cooling pipe and is cooled, and the cooling medium is cooled while the jet slows down and solidifies. The flow velocity must be the same at every point in the cooling pipe. By satisfying this condition, fine wires with a constant shape and high quality can be obtained.

第5図で、冷却パイプ7に設けた小孔7bは微量な冷却
媒体を流入し、冷却パイプ中に成長し始める境界層の厚
さを薄くする効果を発揮し、流速をほとんどの点で同一
とする。
In Fig. 5, the small holes 7b provided in the cooling pipe 7 allow a small amount of cooling medium to flow in, which has the effect of reducing the thickness of the boundary layer that begins to grow in the cooling pipe, and keeps the flow velocity constant at most points. shall be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば溶融紡糸法で、円形断面をもち、高品質
の金属細線を直接に工業規模で連続的に製造できる。
According to the present invention, high-quality thin metal wires having a circular cross section can be produced directly and continuously on an industrial scale using the melt spinning method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は回収装置
付近の部分断面図、第3図は回収装置の斜視図、第4図
及び第5図は冷却パイプの部分断面図、第6図は管中の
流れに発生する境界層の説明図である。 1・・・溶融金属、2・・・坩堝、3・・・加熱器、4
・・・紡糸ノズル、5・・・細線、6・・・冷却装置、
7・・・冷却パイプ、8・・・冷却媒体、9・・・ジェ
ットポンプ、10・・・冷却器、11・・・ポンプ、1
2・・・冷却媒体の循環経路、13・・・フィルタ、1
5・・・細線回収装置。
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a partial sectional view of the vicinity of the recovery device, Fig. 3 is a perspective view of the recovery device, and Figs. 4 and 5 are partial sectional views of the cooling pipe. , FIG. 6 is an explanatory diagram of a boundary layer generated in a flow in a pipe. 1... Molten metal, 2... Crucible, 3... Heater, 4
... Spinning nozzle, 5... Thin wire, 6... Cooling device,
7... Cooling pipe, 8... Cooling medium, 9... Jet pump, 10... Cooler, 11... Pump, 1
2...Cooling medium circulation path, 13...Filter, 1
5... Thin wire collection device.

Claims (1)

【特許請求の範囲】 1、溶融金属を紡糸ノズルより噴出して溶融繊維を形成
し、この溶融繊維を液状急冷区域へ通し、この急冷区域
はその中に導入される繊維と並流する液状媒体から成り
、固化した繊維を回収する金属繊維の製造方法において
、 前記急冷区域の途中で前記液状媒体を加速することを特
徴とする金属繊維の製造方法。 2、特許請求の範囲第1項において、前記液状急冷区域
はその中が前記液状媒体の流れで満たされ、前記液状急
冷区域の途中に前記繊維と並流する前記液状媒体と同種
で高速の駆動原状媒体を前記液状媒体と同方向に噴出さ
せることを特徴とする金属繊維の製造方法。 3、前記固化した繊維はこの繊維とともに流出する前記
液状媒体により駆動され、回収されることを特徴とする
特許請求の範囲第1項または第2項記載の金属繊維の製
造方法。 4、前記液状急冷区域の複数個所で流速を監視し、前記
液状媒体の駆動力を制御することを特徴とする特許請求
の範囲第1項記載の金属繊維の製造方法。 5、前記液状急冷区域の前記溶融繊維が流入する部位、
およびあるいは前記駆動液状媒体が噴出する部位で前記
液状媒体の回転成分を防止することを特徴とする特許請
求の範囲第1項記載の金属繊維の製造方法。 6、前記液状急冷区域の前記溶融繊維が流入する部位で
前記液状急冷媒体の均一流を得るために流速を落すこと
を特徴とする特許請求の範囲第1項記載の金属繊維の製
造方法。
[Claims] 1. Molten metal is ejected from a spinning nozzle to form molten fibers, and the molten fibers are passed through a liquid quenching zone, which quenches a liquid medium cocurrent with the fibers introduced therein. A method for producing metal fibers comprising recovering solidified fibers, characterized in that the liquid medium is accelerated in the middle of the quenching zone. 2. In claim 1, the liquid quenching zone is filled with a flow of the liquid medium, and in the middle of the liquid quenching zone there is a high-speed drive of the same type as the liquid medium flowing in parallel with the fibers. A method for producing metal fibers, comprising ejecting a raw medium in the same direction as the liquid medium. 3. The method for producing metal fibers according to claim 1 or 2, characterized in that the solidified fibers are driven and recovered by the liquid medium flowing out together with the solidified fibers. 4. The method for producing metal fibers according to claim 1, wherein the flow velocity is monitored at a plurality of locations in the liquid quenching zone to control the driving force of the liquid medium. 5. A portion of the liquid quenching zone into which the molten fibers flow;
2. The method for producing metal fibers according to claim 1, further comprising: preventing rotational components of the liquid medium at a portion where the driving liquid medium is ejected. 6. The method for producing metal fibers according to claim 1, wherein the flow rate is reduced in order to obtain a uniform flow of the liquid quenching medium at a portion of the liquid quenching zone into which the molten fibers flow.
JP3270885A 1985-02-22 1985-02-22 Production of metallic filament Pending JPS61194222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270885A JPS61194222A (en) 1985-02-22 1985-02-22 Production of metallic filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270885A JPS61194222A (en) 1985-02-22 1985-02-22 Production of metallic filament

Publications (1)

Publication Number Publication Date
JPS61194222A true JPS61194222A (en) 1986-08-28

Family

ID=12366339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270885A Pending JPS61194222A (en) 1985-02-22 1985-02-22 Production of metallic filament

Country Status (1)

Country Link
JP (1) JPS61194222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468416U (en) * 1990-10-23 1992-06-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468416U (en) * 1990-10-23 1992-06-17

Similar Documents

Publication Publication Date Title
US3845805A (en) Liquid quenching of free jet spun metal filaments
US5605870A (en) Ceramic fibers, and methods, machines and compositions of matter for making same
US3838185A (en) Formation of filaments directly from molten material
US3896203A (en) Centrifugal method of forming filaments from an unconfined source of molten material
US4527614A (en) Amorphous Co-based metal filaments and process for production of the same
US3881542A (en) Method of continuous casting metal filament on interior groove of chill roll
US3881540A (en) Method of forming metallic filament cast on interior surface of inclined annular quench roll
US4930565A (en) Melt overflow system for producing filamentary and film products directly from molten materials
US3939900A (en) Apparatus for continuous casting metal filament on interior of chill roll
US4290993A (en) Method and apparatus for making nodule filament fibers
JPS6238066B2 (en)
JPS61194222A (en) Production of metallic filament
US3960200A (en) Apparatus for liquid quenching of free jet spun metal
JPS649906B2 (en)
Rosen et al. Centrifuge melt spinning
EP0183220A2 (en) Method of forming disordered filamentary materials
JPS6133738A (en) Quick cooling device for liquid
US4060430A (en) Production of filaments of hexagonal close-packed metals and alloys thereof
JPH0260752B2 (en)
CA1274394A (en) Non-circular mineral fibers and method and apparatus for making
JPS6119818A (en) Formation of disorder material filament and melt spinning system
JPS5825536B2 (en) Seizouhouhou
JPS61119354A (en) Method and device for production of fine metallic wire
EP3944914A1 (en) Nozzle and method for forming microdroplets
JPS649907B2 (en)