JPS61193710A - Method for monitoring roll driving - Google Patents
Method for monitoring roll drivingInfo
- Publication number
- JPS61193710A JPS61193710A JP60033485A JP3348585A JPS61193710A JP S61193710 A JPS61193710 A JP S61193710A JP 60033485 A JP60033485 A JP 60033485A JP 3348585 A JP3348585 A JP 3348585A JP S61193710 A JPS61193710 A JP S61193710A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- speed
- spindle
- torsion angle
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/46—Roll speed or drive motor control
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、圧延機に代表されるロール駆動系のロール速
度、スピンドル捩り角、及び外乱負荷トルクなどの状態
を監視する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for monitoring the conditions of a roll drive system, typically a rolling mill, such as roll speed, spindle torsion angle, and disturbance load torque.
鉄鋼業では近年益々、品質向上、歩留向上を図って種々
の対策を立て、実行している。鋼板製造工程では圧延機
によって必要な鋼板の板厚を作っているが、該圧延機の
ロール駆動系の速度設定精度及び応答性の良否は直接鋼
板の品質、歩留りに影響するので種々改良が図られてい
る。近年のデジタル技術に代表される技術進歩によりロ
ール駆動系の速度設定精度ははり満足できる状態になっ
たが、応答性については以下述べる理由によりまだ不十
分な状況にある。In recent years, the steel industry has been increasingly formulating and implementing various measures to improve quality and yield. In the steel plate manufacturing process, a rolling mill is used to create the required thickness of the steel plate, but the speed setting accuracy and responsiveness of the rolling mill's roll drive system directly affect the quality and yield of the steel plate, so various improvements are being made. It is being Due to recent technological advances represented by digital technology, the speed setting accuracy of the roll drive system has become quite satisfactory, but the responsiveness is still insufficient for the reasons described below.
圧延機に代表されるロール駆動系は、駆動電動機、減(
増)速機、ロール、及びこれらを連結するスピンドルか
らなるが、これらは全て質量およびバネ性を有するから
振動系を構成する。そして慣性モーメント及び軸捩り剛
性係数で決定されるこの振動系の軸捩り共振点は高性能
の速度制御装置を用いたロール駆動系では速度制御周波
数領域にあるので、速度制御系の利得を充分上げること
ができず(上げると、ボード線図で言って該共振点での
ゲインが1以上になり、自動振動となって歯車を切損し
たりする恐れがある)、ひいては応答性を充分高めるこ
とができない。The roll drive system, typified by rolling mills, consists of a drive motor, a
It consists of a speed machine, a roll, and a spindle that connects them, all of which have mass and spring properties, so they constitute a vibration system. The axial torsional resonance point of this vibration system, which is determined by the moment of inertia and the axial torsional stiffness coefficient, is in the speed control frequency region in a roll drive system using a high-performance speed control device, so the gain of the speed control system can be sufficiently increased. (If it is raised, the gain at the resonance point in the Bode diagram will become more than 1, which may lead to automatic vibration and breakage of the gear), and furthermore, it will not be possible to sufficiently increase the response. Can not.
応答性が不十分であると例えばロールに鋼板が噛み込ん
だときのインパクトドロップが大になり、オフゲージが
多量に発生する。そこで歩留向上にはロール駆動系の応
答性の改善が不可欠であり、これには自動速度制御系の
利得は上げ、これにより発生し易くなる軸捩り振動は歪
ゲージなどにより検出して帰還し抑制することが考えら
れる。しかし歪ゲージでは電源を必要とし、スピンドル
などの回転体に取付けるには厄介である。また電源を電
池としたのでは消耗が激しく、常時監視は困難である。If the responsiveness is insufficient, for example, when a steel plate is caught in a roll, the impact drop will be large and a large amount of off-gauge will occur. Therefore, to improve yield, it is essential to improve the responsiveness of the roll drive system, and to do this, the gain of the automatic speed control system is increased, and the axial torsional vibration that is likely to occur due to this is detected by strain gauges and fed back. It is possible to suppress it. However, strain gauges require a power source and are difficult to install on a rotating body such as a spindle. In addition, if a battery is used as a power source, it consumes a lot of energy, making constant monitoring difficult.
そこで本発明者はロール駆動系を駆動電動機とロールの
2質点系で近似し、測定容易な駆動電動機速度及び同電
機子電流から演算式を用いてスピンドル捩り角、ロール
速度および外乱負荷トルクを推定する監視装置を開発し
、先に提案した(特願昭59−34037)。この監視
装置を製作し、実機で試験した結果、上記3信号のおよ
その傾向はこの監視装置で得られるが、細かな変化は得
られず、応答性向上などにはなお不満であることが分っ
た。Therefore, the present inventor approximated the roll drive system with a two-mass system of the drive motor and the roll, and estimated the spindle torsion angle, roll speed, and disturbance load torque using calculation formulas from the drive motor speed and armature current, which are easy to measure. A monitoring device was developed and proposed earlier (Japanese Patent Application No. 59-34037). As a result of manufacturing this monitoring device and testing it on an actual machine, it was found that although the general trends of the three signals mentioned above can be obtained with this monitoring device, detailed changes cannot be obtained, and improvements in response are still unsatisfactory. It was.
ロール駆動系は、駆動電動機及びロールの他に減(増)
速製を加えれば3質点系であり、更に細分すれば4質点
系、5質点系にもなる。2質点系では共振点は1つであ
り、多質点系であるロール駆動系のおよその傾向を示す
だけである。多質点系で扱えば共振点は多数となり、細
かな変化が得られるが、監視装置の構成が複雑になる。Roll drive systems decreased (increased) in addition to drive motors and rolls.
If quick production is added, it becomes a 3-mass point system, and if further subdivided, it becomes a 4-mass point system or a 5-mass point system. In a two-mass system, there is one resonance point, and this only shows the approximate tendency of the roll drive system, which is a multi-mass system. If it is treated as a multi-mass point system, there will be many resonance points and fine changes can be obtained, but the configuration of the monitoring device will be complicated.
そこでロール駆動系を3質点系で近似し、監視装置を構
成したところ上記3信号につき、およその傾向だけでな
く細かな変化も得られ、応答性向上などに充分利用でき
ることが分った。Therefore, by approximating the roll drive system with a three-material point system and configuring a monitoring device, it was found that not only general trends but also minute changes could be obtained for the three signals mentioned above, which could be fully utilized for improving responsiveness.
本発明のロール駆動監視方法は、ロール駆動系を駆動電
動機、減(増)速製、ロール、及びこれらを連結するス
ピンドルからなる3質点系で近似し、実測した駆動電動
機の速度及び電機子電流から減(増)速機速度、ロール
速度、スピンドル捩り角、及び外乱負荷トルクを推定す
る観測器を用い、該観測器の出力によりロール駆動系の
状態を監視することを特徴とするものである。In the roll drive monitoring method of the present invention, the roll drive system is approximated by a three-material system consisting of a drive motor, a speed reducer, a roll, and a spindle that connects these, and the speed and armature current of the drive motor are actually measured. The present invention is characterized in that an observation device is used to estimate the reduced (increased) aircraft speed, roll speed, spindle torsion angle, and disturbance load torque, and the state of the roll drive system is monitored based on the output of the observation device. .
“ 本発明ではロール駆動系を第1図に示すように駆
動電動機10、減速機又は増速機12、ロール14、こ
れらを連結するスピンドル16.18からなる3質点系
で表わす。ω1.ω2.ω3は電動機10.減(増)速
製12、ロール14の速度、Jl、J2.J3は同慣性
モーメント、θl、θ2はスピンドル16.18の捩り
角である。駆動直流電動機10の電機子電流をIa、電
機子抵抗をRa、電機子リアクタンスをLa、トルク係
数をKT、電圧係数をKe、印加電圧をVaとし、また
スピンドル16.18の捩り剛性係数をに+。In the present invention, the roll drive system is represented by a three-mass system consisting of a drive motor 10, a speed reducer or speed increaser 12, a roll 14, and a spindle 16, 18 that connects these, as shown in FIG. 1. ω1.ω2. ω3 is the speed of the motor 10. Decreasing (increasing) speed 12, the speed of the roll 14, Jl, J2, J3 are the moments of inertia, θl, θ2 are the torsion angles of the spindle 16, 18. Armature current of the drive DC motor 10 Ia is the armature resistance, Ra is the armature reactance, La is the armature reactance, KT is the torque coefficient, Ke is the voltage coefficient, Va is the applied voltage, and the torsional rigidity coefficient of the spindle 16.18 is +.
k2とすると下式が成立する。When k2 is set, the following formula holds true.
θ1=ω!−ω2 l θ2;ω2−ω3J2ん2−
に1θ1−に2θ2゜
J 3 ふ り =に2 θ 2TLKT Ia=J
+a11+に+θI
Va=La I a+Ra I a+Keω1これらを
行列式で表わすと次の如くなる。θ1=ω! -ω2 l θ2; ω2-ω3J2n2-
to 1θ1- to 2θ2゜J 3 pretend = to 2θ 2TLKT Ia=J
+a11++θI Va=La I a+Ra I a+Keω1 These can be expressed as a determinant as follows.
・・・・・・(1)
これらの(1)式、(2)式において、次の(3)式の
仮定をおく。(1) In these equations (1) and (2), the following equation (3) is assumed.
TL=0 ・・・・・・
(3)これらの式においてVa、Ia、 ω1は容易に
測定できるから、これらより残りのθ1.θ2.ω2ω
3.TLを推定することを考えるに、これは次の(4)
式が成立すれば推定可能であり、そして(4)式は成立
する。TL=0...
(3) Since Va, Ia, and ω1 can be easily measured in these equations, the remaining θ1. θ2. ω2ω
3. Considering estimating TL, this is the following (4)
If the formula holds, estimation is possible, and the formula (4) holds.
・・・・・・(6)
θ1.θ2.ω2.ω3.TLを推定する演算式は既知
の方法で求めることができ、その結果を(7)〜(14
)式に示す。......(6) θ1. θ2. ω2. ω3. The calculation formula for estimating TL can be obtained using a known method, and the results can be expressed as (7) to (14)
) is shown in the formula.
k=大−Z + 、# y 、”
−(71X=1.C+Dy
・・・・・・(8)Z=(Z+ Z2 Z3 Z
4 Z5) ・・・(91・・・・・・ (12)
・・・・・・ (13)
・・・・・・ (14)
上記の推定回路(観測器20)のブロック図を第2図に
示す。k=large−Z+, #y,”
-(71X=1.C+Dy
・・・・・・(8) Z=(Z+ Z2 Z3 Z
4 Z5) ...(91... (12) ...... (13) ...... (14) The block diagram of the above estimation circuit (observer 20) is shown in the second block diagram. As shown in the figure.
例えば(8) QO)α1)04式からTL=ZI+a
Q++、 θ1−Z2+bωl、 θ2=Z3+C
ωh・・・・・・であるが第2図でもそのようになって
おり、またZlは+7) (9) U (1式からZ
l =a12 Z 2 +b11 Q) + +b12
Taであるが第2図でもそのようになっている。For example, from formula (8) QO) α1) 04, TL=ZI+a
Q++, θ1-Z2+bωl, θ2=Z3+C
ωh..., but it is also like that in Figure 2, and Zl is +7) (9) U (From equation 1, Z
l =a12 Z 2 +b11 Q) + +b12
This is also the case in Fig. 2 for Ta.
以下これに準する。The following shall apply accordingly.
この第2図に示す構成の観測器20に実測した電機子電
流1a及び電動機速度ω1を入力してTL。TL is performed by inputting the actually measured armature current 1a and motor speed ω1 to the observation device 20 having the configuration shown in FIG.
θ1.θ2.ω2.ω3を出力させ、これらによりロー
ル駆動系の状態を監視し、更には制御を行なう。例えば
スピンドル捩り共振を防止するにはθI、θ2を監視し
、これらが予定値以上になれば、又はその微分値が周期
的変化を示すようになれば速度制御系に信号を送って電
動機トルクを減少させる。これによりスピンドル捩り共
振を防止できるから常時は制御系のゲインを高くし、応
答性を改善することができる。θ1. θ2. ω2. By outputting ω3, the state of the roll drive system is monitored and further controlled. For example, in order to prevent spindle torsional resonance, θI and θ2 are monitored, and if these exceed predetermined values or their differential values show periodic changes, a signal is sent to the speed control system to increase the motor torque. reduce As a result, spindle torsional resonance can be prevented, so the gain of the control system can be increased at all times, and responsiveness can be improved.
本発明ではロール駆動系を3質点系で近似して軸捩り角
などを推定するので、微細な変化も推定することができ
、軸捩り共振などを確実に検出しこれを抑制することが
できる。In the present invention, since the roll drive system is approximated by a three-mass point system to estimate the shaft torsion angle, even minute changes can be estimated, and shaft torsion resonance etc. can be reliably detected and suppressed.
第1図は本発明の詳細な説明する図、第2図は観測器の
構成を示すブロック図である。
図面で10は駆動電動機、12は減(増)幅器、14は
ロール、16.18はスピンドルである。FIG. 1 is a diagram explaining the present invention in detail, and FIG. 2 is a block diagram showing the configuration of an observation device. In the drawing, 10 is a drive motor, 12 is an amplifier, 14 is a roll, and 16.18 is a spindle.
Claims (1)
びこれらを連結するスピンドルからなる3質点系で近似
し、実測した駆動電動機の速度及び電機子電流から減(
増)速機速度、ロール速度、スピンドル捩り角、及び外
乱負荷トルクを推定する観測器を用い、該観測器の出力
によりロール駆動系の状態を監視することを特徴とする
ロール駆動監視方法。The roll drive system is approximated by a three-mass system consisting of a drive motor, a speed reducer, a roll, and a spindle that connects these, and the reduction (
(b) A roll drive monitoring method characterized by using an observation device for estimating machine speed, roll speed, spindle torsion angle, and disturbance load torque, and monitoring the state of the roll drive system based on the output of the observation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60033485A JPS61193710A (en) | 1985-02-21 | 1985-02-21 | Method for monitoring roll driving |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60033485A JPS61193710A (en) | 1985-02-21 | 1985-02-21 | Method for monitoring roll driving |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61193710A true JPS61193710A (en) | 1986-08-28 |
Family
ID=12387853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60033485A Pending JPS61193710A (en) | 1985-02-21 | 1985-02-21 | Method for monitoring roll driving |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61193710A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01144840U (en) * | 1988-03-30 | 1989-10-04 | ||
US5735154A (en) * | 1995-07-31 | 1998-04-07 | Gfm Gmbh | Method of controlling the passage of rolling stock through a continuous mill train |
-
1985
- 1985-02-21 JP JP60033485A patent/JPS61193710A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01144840U (en) * | 1988-03-30 | 1989-10-04 | ||
JP2503420Y2 (en) * | 1988-03-30 | 1996-07-03 | 株式会社明電舎 | Vehicle power transmission test equipment |
US5735154A (en) * | 1995-07-31 | 1998-04-07 | Gfm Gmbh | Method of controlling the passage of rolling stock through a continuous mill train |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6461897B2 (en) | Torsion test equipment | |
JPH01281807A (en) | Controlling method for drill | |
WO2012077996A2 (en) | Real-time servo motor controller based on a load weight | |
JPH04145886A (en) | Speed control method and apparatus for motor | |
CN113799136B (en) | Robot joint high-precision control system and method based on full-state feedback | |
CN115091262B (en) | Cutter wear monitoring method based on multi-class signal feature fusion | |
CN111525844A (en) | Multi-motor rotating speed and torque double-synchronization control method based on double-deviation coupling structure | |
JPS61193710A (en) | Method for monitoring roll driving | |
JP2001137921A (en) | Thickness controller for rolling mill | |
JP3479922B2 (en) | Load constant measurement method for motor drive system | |
JP2552552B2 (en) | Disturbance torque compensator | |
CN113977579A (en) | Joint friction modeling method for improving tracking precision of robot track | |
JP3423090B2 (en) | Operating force detector | |
JPH0230766B2 (en) | ||
JP3242803B2 (en) | Rolling mill | |
SU389856A1 (en) | METHOD FOR AUTOMATIC CONTROL OF DRIVE MILL DRIVE MILL | |
JPS60177906A (en) | Roll driving equipment | |
JPH01143708A (en) | Detection of backlash in rolling mill driving system | |
JPH0775362A (en) | Roll driver | |
JPS6188776A (en) | Roll drive monitor | |
JPS6188775A (en) | Monitor for roll drive system | |
SU139133A1 (en) | Load Gauge with Chart Apparatus to Static Testing Machines | |
TAKESHITA et al. | Estimation of Impact Input Torque in Rolling Mill Drive System when Material enters the rolls | |
JPS5928892A (en) | Load balance controller for different speed rolling | |
JPS6213210A (en) | Tension calculating method |