JPS6119343B2 - - Google Patents

Info

Publication number
JPS6119343B2
JPS6119343B2 JP8976580A JP8976580A JPS6119343B2 JP S6119343 B2 JPS6119343 B2 JP S6119343B2 JP 8976580 A JP8976580 A JP 8976580A JP 8976580 A JP8976580 A JP 8976580A JP S6119343 B2 JPS6119343 B2 JP S6119343B2
Authority
JP
Japan
Prior art keywords
welding
line
speed
bogie
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8976580A
Other languages
Japanese (ja)
Other versions
JPS5714472A (en
Inventor
Kenichiro Hashimoto
Kenichi Akahori
Kazunobu Kojo
Noryuki Fujimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8976580A priority Critical patent/JPS5714472A/en
Publication of JPS5714472A publication Critical patent/JPS5714472A/en
Publication of JPS6119343B2 publication Critical patent/JPS6119343B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Machine Tool Copy Controls (AREA)

Description

【発明の詳細な説明】 本発明は、溶接台車走行線と溶接線が全面的又
は部分的に非平行である溶接線を倣い溶接する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of copying and welding a welding line in which the welding carriage traveling line and the welding line are entirely or partially non-parallel.

第1図はこの様な溶接部を上側から見た平面図
であつて、平板1上に立板2が立設され、隅肉溶
接線Wが形成される。又平板1上にほぼ直線状の
レール3が敷設され、溶接台車が矢印T方向に進
む。従つて溶接台車走行線と溶接線は全面的又は
部分的に非平行である。溶接台車4にはスライド
ベース8が固定され、溶接トーチ5と倣いローラ
6を取り付けたスライドアーム7が、矢印Tに対
してほぼ直交する方向Aに進退し、溶接線Wとレ
ール3との距離変動に追従するから、一応は正確
な倣い溶接が実施できる。
FIG. 1 is a plan view of such a welded part viewed from above, in which a standing plate 2 is erected on a flat plate 1, and a fillet weld line W is formed. Further, a substantially straight rail 3 is laid on the flat plate 1, and the welding cart moves in the direction of arrow T. Therefore, the welding carriage traveling line and the welding line are completely or partially non-parallel. A slide base 8 is fixed to the welding cart 4, and a slide arm 7 to which a welding torch 5 and a copying roller 6 are attached moves forward and backward in a direction A that is substantially perpendicular to the arrow T, thereby adjusting the distance between the welding line W and the rail 3. Since it follows fluctuations, it is possible to perform accurate copy welding.

しかるに溶接条件は被溶接材の種類や溶接部の
状況に応じて適宜選択されるものであるから、例
えば溶接線Wから見て定速で溶接する場合には溶
接台車4の走行速度をそれに応じて調節する必要
があり、又その他各種の要因によつて溶接台車4
の走行速度は変り得るものである。例えば第2図
において、溶接台車走行方向Tと溶接線Wが角θ
で交差する場合を考えた場合、溶接台車の走行速
度をaとすると、溶接線Wに倣う為には、スライ
ドアーム7を矢印A方向にatanθの速度で進出さ
せていく必要がある。そして溶接台車の走行速度
が途中からbに低下する場合は、上記進出速度を
btanθに落し、又溶接台車の走行速度が早くなつ
てcになる場合は、スライドアームの進出速度を
c tanθに高めなければならない。スライドア
ーム進出速度のこの様な調節を怠ると、前者の場
合は倣い速度が早過ぎてハンチングを繰り返し、
後者の場合は倣いが追いつかず、アークが溶接線
Wに届かなくなる。従つて倣い精度を高めるに
は、溶接台車の走行速度に応じて倣い方向への進
退速度(以下倣い速度)を変更しなければならな
い。
However, the welding conditions are selected appropriately depending on the type of material to be welded and the situation of the welded part. For example, when welding is performed at a constant speed when viewed from the welding line W, the traveling speed of the welding cart 4 is adjusted accordingly. It is necessary to adjust the welding cart 4 depending on various other factors.
The running speed of can vary. For example, in Fig. 2, the traveling direction T of the welding cart and the welding line W are at an angle θ
If we consider the case where the welding cart intersects at , and the traveling speed of the welding cart is a, in order to follow the welding line W, it is necessary to advance the slide arm 7 in the direction of arrow A at a speed of atan θ. If the traveling speed of the welding cart decreases to b midway through, the above advancement speed should be changed to
If the traveling speed of the welding cart increases to c, the advancing speed of the slide arm must be increased to c tan θ. If you neglect to adjust the slide arm advance speed in this way, in the former case, the tracing speed will be too fast and hunting will occur repeatedly.
In the latter case, the tracing will not catch up and the arc will not reach the welding line W. Therefore, in order to improve the scanning accuracy, it is necessary to change the forward and backward movement speed in the scanning direction (hereinafter referred to as scanning speed) in accordance with the traveling speed of the welding cart.

又第3図に示す様に、台車走行方向Tと溶接線
Wとの成す角度が例えばθ,θ,θと変化
していく状況を考えると、倣い速度も夫々e,
f,gと変更しなければならないが、今台車走行
速度をaとすると、e=a tanθ,f=a
tanθ,g=a tanθとなる。そしてθ
θと角度が変化する場合も、同様にスライドア
ームの進出速度を高めなければならないことは言
うまでもない。倣い精度を向上させる為には上記
の様な問題があるだけでなく、倣いを行なう為の
検出器においても次の様な問題がある。
Furthermore, as shown in Fig. 3, if we consider a situation in which the angle formed by the bogie running direction T and the welding line W changes, for example, θ 1 , θ 2 , and θ 3 , the tracing speeds also become e, respectively.
It is necessary to change f and g, but if the running speed of the bogie is a, then e=a tanθ 1 , f=a
tanθ 2 , g=a tanθ 3 . And θ 1
It goes without saying that when the angle changes to θ 3 , the advancing speed of the slide arm must be similarly increased. In addition to the above-mentioned problems in improving the scanning accuracy, there are also the following problems in the detector used for scanning.

例えば第4,5図は接点式のON−OFF型検出
器についての説明図であるが、今溶接線の角度が
30度、検出器の精度が±0.25mm、溶接速度を60
cm/min(10mm/sec)と考える。尚LS1とLS2
いずれもリミツトスイツチ、9は検出器ユニツト
である。溶接台車が0点にあり、且つ検出器ユニ
ツト9におけるストライカー10が中央部に在る
状態でスタートし、右へ0.43mm移動してS点に来
ると、検知ローラ6′が丁度0.25mm前進し、スト
ライカー10がリミツトスイツチLS1に至る。こ
の信号によつて、トーチ及び検出器ユニツト9等
を一体的に取り付けているスライドアーム7が前
進し、例えば倣いローラ6が立板2に当接する
と、検知ローラ6′が押し戻される。そしてスト
ライカー10がリミツトスイツチLS1から離れて
OFFになるとスライドアーム7の前進を停止す
る信号が出力される。この時スライドアームの慣
性により、ストライカー10はLS1とLS2のほぼ
中間の位置まで押し戻された位置で停止する。と
ころがこれら一連の作動において、台車が0.43mm
移動するのに要する時間は43ミリsecであり、こ
の時間内に倣いモータを起動させ又停止させると
いうことは非常に困難であり、実際的には不可能
である。このことを換言すると、倣いの精度を保
つことはできないと言うことであり、又モータに
とつても、起動と停止が繰り返されることにな
り、容量的にも極めて大きなものが必要である。
For example, Figures 4 and 5 are explanatory diagrams of a contact type ON-OFF type detector, and the angle of the weld line is
30 degrees, detector accuracy ±0.25mm, welding speed 60
Consider cm/min (10mm/sec). Note that LS 1 and LS 2 are both limit switches, and 9 is a detector unit. Starting with the welding cart at point 0 and the striker 10 in the detector unit 9 in the center, when it moves 0.43mm to the right and reaches point S, the detection roller 6' moves forward by exactly 0.25mm. , Striker 10 reaches limit switch LS 1 . In response to this signal, the slide arm 7 to which the torch, detector unit 9, etc. are integrally attached moves forward, and when, for example, the copying roller 6 comes into contact with the upright plate 2, the detection roller 6' is pushed back. And Striker 10 separates from Limit Switch LS 1 .
When turned OFF, a signal to stop the forward movement of the slide arm 7 is output. At this time, due to the inertia of the slide arm, the striker 10 is pushed back to a position approximately halfway between LS 1 and LS 2 and stops. However, during these series of operations, the trolley was 0.43mm
The time required for movement is 43 milliseconds, and it is extremely difficult and practically impossible to start and stop the copying motor within this time. In other words, it is not possible to maintain the accuracy of copying, and the motor has to be started and stopped repeatedly, requiring an extremely large capacity.

これに対し、例えば差動トランスを倣い検出器
として利用し、台車走行線と溶接線の変位量をリ
ニアに把握する方法がある。すなわち第7図に示
す様に差動トランスで検知した変位量に比例した
倣い速度をスライドアームに与える方法である。
今仮に第6図で示す様に角度θ、台車走行速度a
での倣いを考えると倣い速度はa tanθのまま
で前進を継続しなければならない。この出力をだ
すには台車走行線と溶接線との変位量が第7図に
示す様にxでなければならない。従つてその分だ
け倣い精度が低下する。
On the other hand, there is a method in which, for example, a differential transformer is used as a tracing detector to linearly detect the amount of displacement between the bogie travel line and the weld line. That is, as shown in FIG. 7, this is a method of giving the slide arm a tracing speed proportional to the amount of displacement detected by a differential transformer.
Now, as shown in Fig. 6, the angle θ, the bogie traveling speed a
Considering the scanning at , the scanning speed must remain at a tan θ and the movement must continue. In order to produce this output, the amount of displacement between the bogie running line and the welding line must be x as shown in FIG. Therefore, the tracing accuracy is reduced accordingly.

又第8図に示す如く溶接線Wが湾曲している
と、変曲点Pを境として角度θが負の値に変る
が、この場合第6図の様な差動トランス型検出器
を用いていると第7図に示すように変位置と倣い
速度との関係で応答ずれが生じるので、倣い軌跡
は鎖線で示す様に遅れを見せるという問題があ
る。
Furthermore, if the weld line W is curved as shown in Fig. 8, the angle θ changes to a negative value at the inflection point P, but in this case, a differential transformer type detector as shown in Fig. 6 is used. If this happens, as shown in FIG. 7, a response deviation occurs due to the relationship between the displacement position and the scanning speed, so there is a problem that the scanning trajectory shows a delay as shown by the chain line.

本発明はこれらの事情に着目してなされたもの
であつて、溶接線の変動にかかわらず、常に高精
度の倣いを発揮する様な倣い溶接方法を提供しよ
うとするものである。しかして本発明は、溶接台
車の走行線と溶接線との成す角度を検出する角度
検出器によつて得られる信号と、溶接台車走行速
度検出器によつて得られる信号から、倣い装置及
び溶接ヘツドの溶接台車走行線と垂直方向の移動
速度に比例した指令信号を演算し、溶接線に対す
る倣い検知器の信号と上記指令信号を比較するこ
とによつて上記指令信号を倣い検知器の信号に対
応する様に修正し、倣い装置及び溶接ヘツドを移
動させるものである。即ち台車走行線と垂直方向
の移動速度を演算することによつて、台車走行線
と溶接線の関係を平行状態である様に擬制し、こ
れからはずれた分を倣い検知器からの信号によつ
て補正するというものである。例えば台車走行線
と溶接線が実際上平行であるときは台車走行線と
垂直方向の移動速度が零であり、倣い検知器の信
号のみで溶接ヘツド等を移動させればよい。又第
2図の如く角度がθだけでずれているときで台車
走行速度がaのときは、台車走行線と垂直方向の
移動速度はa tanθであり、これによつて溶接
線を平行関係とし、更に倣い検知器の信号を加え
て補正するものである。
The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a copy welding method that always exhibits highly accurate copying regardless of fluctuations in the weld line. Therefore, the present invention detects a copying device and a welding device based on a signal obtained by an angle detector that detects the angle formed by a traveling line of a welding cart and a welding line, and a signal obtained by a welding cart traveling speed detector. A command signal proportional to the moving speed of the head in the direction perpendicular to the traveling line of the welding cart is calculated, and by comparing the above command signal with the signal of the scanning detector for the welding line, the above command signal is converted into the signal of the scanning detector. Corresponding modifications are made and the copying device and welding head are moved. That is, by calculating the moving speed in the direction perpendicular to the bogie running line, the relationship between the bogie running line and the welding line is simulated to be in a parallel state, and the deviation from this is traced and the signal from the detector is used. It is meant to be corrected. For example, when the carriage running line and the welding line are practically parallel, the moving speed in the direction perpendicular to the carriage running line is zero, and it is sufficient to move the welding head etc. only by the signal from the tracing detector. Also, as shown in Figure 2, when the angle is deviated by θ and the bogie running speed is a, the moving speed in the direction perpendicular to the bogie running line is a tanθ, which makes the welding line parallel. , the signal from the scanning detector is further added for correction.

次に油圧シヨベルにおける曲りブームの倣い溶
接を例にとつて本発明の構成及び作用効果を説明
する。第9図は油圧シヨベルの溶接線Wを倣い溶
接する場合で、台車走行方向は、Tp(右向き)
及びTq(左向き)で示す如く往復溶接である。
従つて台車がTp方向に進むときは、溶接ヘツド
等はまず矢印Ap方向に進出しながら倣い、変曲
点Pを過ぎると矢印A′p方向に後退しながら倣
う。又台車がTq方向に帰つてくるときは、溶接
ヘツド等はまず矢印Aq方向に進出しながら倣
い、変曲点Pを過ぎると矢印A′q方向に後退しな
がら倣う。即ち溶接ヘツド等の進行方向は、台車
の進行方向に応じて切り替える必要があるが、こ
の様な検知及び応答は、台車走行方向を指示する
押ボタン等のスイツチと連動して作動させるか、
又は該押ボタンによつて動作するリレー接点を利
用して行なうか、更には台車走行モータの端子電
圧若しくは電流の極性を取り出すことによつて行
なえばよい。
Next, the configuration and effects of the present invention will be explained using copy welding of a bending boom in a hydraulic excavator as an example. Figure 9 shows the case of welding following the welding line W of the hydraulic excavator, and the bogie running direction is Tp (towards the right).
This is reciprocating welding as shown by and Tq (towards the left).
Therefore, when the truck moves in the direction Tp, the welding head etc. first moves forward and follows in the direction of arrow Ap, and after passing the inflection point P, moves backward in the direction of arrow A'p. When the truck returns in the Tq direction, the welding head etc. first moves forward in the direction of the arrow Aq and follows the track, and after passing the inflection point P, moves backward in the direction of the arrow A'q. That is, the traveling direction of the welding head etc. needs to be switched according to the traveling direction of the truck, but such detection and response should be operated in conjunction with a switch such as a push button that indicates the traveling direction of the truck.
Alternatively, it may be carried out by using a relay contact operated by the push button, or by extracting the terminal voltage or current polarity of the bogie traveling motor.

次に前記溶接台車走行線と垂直方向の移動速度
を演算する為に必要な台車走行速度の検出手段
は、如何なる方式に基づくものであつてもよい
が、代表的なものを説明すると、駆動モータに取
り付けたタコジネレータによる方法、直流モータ
を使用する場合において電機子電圧から取り出す
方法、台車標準速度時における設定電圧若しくは
2連ボリユームによる台車走行速度設定電圧との
対比によつて取り出す方法等が例示される。
Next, the means for detecting the moving speed of the welding cart in the direction perpendicular to the welding cart running line may be based on any system, but a typical one is a drive motor. Examples include a method using a tachogenerator attached to the motor, a method of extracting it from the armature voltage when using a DC motor, a method of extracting it by comparing it with the set voltage at the standard speed of the bogie or the set voltage of the bogie traveling speed using a double volume. Ru.

又台車走行線と垂直方向の移動速度を演算する
為に必要な溶接線との交差角度についても任意の
手段で検出されるが、例えば弥次郎兵衛人形の様
に1対のローラを振り分け、該ローラを溶接線に
押し当てることによつて支持アームを傾斜させ、
その傾斜角度をポテンシヨメータやエンコーダ等
によつて検出する方法が好ましい。
Also, the intersection angle between the bogie running line and the welding line necessary to calculate the vertical movement speed can be detected by any means, but for example, a pair of rollers can be distributed like the Yajirobei doll, tilting the support arm by pressing the roller against the weld line;
It is preferable to detect the angle of inclination using a potentiometer, an encoder, or the like.

上記2つの信号によつて倣いについての台車走
行線と垂直方向の移動速度が演算されるが、これ
を修正すべき倣い検知器についてもその検出手段
についての制限は存在せず、前に述べた様な接点
式のON−OFF型検知器や差動トランスを用いる
検知器等が利用できる。
The above two signals calculate the traveling speed of the bogie in the vertical direction for scanning, but there are no restrictions on the detection means for the scanning detector that should correct this, as mentioned above. Various types of contact-type ON-OFF type detectors and detectors using differential transformers can be used.

第10図は本発明実施のフロー図であり、まず
走行速度検出部11において台車走行速度S1に比
例した電圧Vs1が検出され、方向切替リレー接点
等を備えた走行方向判別部14よつて(+)又は
(−)の判別が行なわれ、演算部15に入力され
る。他方角度検出部12において溶接線と台車走
行線との成す角度θが検出され、この信号も演算
部に入力され、ここで溶接ヘツド等の溶接台車と
垂直方向の移動速度S2に比例した速度指令電圧
Vs2が演算される。
FIG. 10 is a flowchart for carrying out the present invention. First, a voltage Vs 1 proportional to the bogie running speed S 1 is detected in the running speed detecting section 11, and then the running direction determining section 14 equipped with a direction switching relay contact etc. A determination is made as to whether it is (+) or (-), and the result is input to the arithmetic unit 15. On the other hand, the angle θ between the welding line and the trolley running line is detected in the angle detection section 12, and this signal is also input to the calculation section, where the welding head or the like is detected at a speed proportional to the moving speed S2 in the vertical direction with respect to the welding trolley. Command voltage
Vs 2 is calculated.

Vs2=±Vs1・Tanθ 演雑結果は加算器16に入力され、他方倣い検
知器13からの信号電圧VDも加算器16に入力
され、前記速度指令電圧Vs2と信号電圧Vpが比較
される。即ち、倣い検知器13が、角度θ、移動
速度s2に対し行き過ぎている場合はその量に比例
して信号電圧−VDを出力し、行き足りない場合
は信号電圧+VDを出力し、前者に対しては移動
速度を遅くする様に(Vs2−VD)、後者に対して
は移動速度を早くする様に(Vs2+VD)加算器
16にて修正する。この様にして前記演算結果が
修正され、モータドライブ17に速度指令が出さ
れるので、倣いモータMが指令に応じた速度で回
転する。尚tanθがθに応じてほぼ1次函数的に
増大する角度領域においては、Vs2+Vs1・θと
して台車走行線と垂直方向の移動速度を算出して
もかまわない。又ON−OFF型の倣い検知器によ
る信号電圧VD,θ=0のときに±20cm/min程
度になる様に調整しておくことが推奨される。
Vs 2 = ±Vs 1・Tanθ The calculation result is input to the adder 16, and the signal voltage V D from the scanning detector 13 is also input to the adder 16, and the speed command voltage Vs 2 and the signal voltage Vp are compared. be done. That is, when the scanning detector 13 has gone too far with respect to the angle θ and the moving speed s 2 , it outputs a signal voltage -V D in proportion to the amount, and when it has gone insufficiently, it outputs a signal voltage +V D , The adder 16 corrects the former to slow down the moving speed (Vs 2 -V D ), and the latter to increase the moving speed (Vs 2 +V D ). In this way, the calculation result is corrected and a speed command is issued to the motor drive 17, so that the copying motor M rotates at a speed according to the command. Note that in an angular range where tan θ increases almost linearly with θ, the moving speed in the direction perpendicular to the bogie running line may be calculated as Vs 2 +Vs 1 ·θ. It is also recommended to adjust the signal voltage V D from the ON-OFF type scanning detector so that it is about ±20 cm/min when θ=0.

本発明の構成、特に演算結果の修正に関する部
分を具体的な数値によつて更に詳述する。条件を
下記の様に想定する。
The configuration of the present invention, particularly the portion related to modification of calculation results, will be explained in more detail using specific numerical values. Assume the conditions as follows.

台車走行速度S1:0〜100cm/min 走行速度S1に比例した電圧Vs1:0〜10V 溶接線と台車走行線との成す角度;θ 速度指令電圧Vs2:0〜±10V 移動速度:0〜±100cm/min 第10図を参照しつつ説明する。今走行速度s1
を50cm/minとすると、走行速度検出部11によ
つて検出される電圧Vs1は5Vである。走行方向判
別部14によつて(+)の判別が行われると、+
5V出力する。次に角度θが10゜であるとする
と、θ=10゜が角度検出器12から演算部15に
入力され、下記の様な演算が行なわれる。
Bogie running speed S 1 : 0 to 100 cm/min Voltage proportional to running speed S 1 : 0 to 10 V Angle between welding line and bogie running line; θ Speed command voltage Vs 2 : 0 to ±10 V Traveling speed: 0 to ±100 cm/min This will be explained with reference to FIG. Current running speed s 1
When Vs 1 is 50 cm/min, the voltage Vs 1 detected by the traveling speed detection section 11 is 5V. When the traveling direction determining unit 14 determines (+), +
Outputs 5V. Next, assuming that the angle θ is 10°, θ=10° is input from the angle detector 12 to the calculating section 15, and the following calculations are performed.

tan10゜=0.18 Vs2=±Vs1tanθ =(+5V)×0.18 =0.9(演算結果) 即ち、0.9Vが移動用の速度指令信号になる電
圧値であり、10Vで100cm/minの割合で移動する
ので溶接ヘツド等の移動速度は9cm/minであ
る。論理的には角度θが10゜傾斜した溶接線を倣
えばよい訳であるが、ワークの歪み、検出誤差等
があり倣い検出器13を使用し、下記の様に倣い
信号にて補正する。
tan10゜=0.18 Vs 2 = ±Vs 1 tanθ = (+5V) x 0.18 = 0.9 (calculation result) In other words, 0.9V is the voltage value that becomes the speed command signal for movement, and at 10V it moves at a rate of 100cm/min. Therefore, the moving speed of the welding head etc. is 9 cm/min. Logically, it would be sufficient to trace a welding line inclined at an angle θ of 10°, but due to distortion of the workpiece, detection error, etc., a tracing detector 13 is used and correction is made using a tracing signal as described below.

倣い検知器13からの補正電圧VDをαVとす
ると、加算器16で上記演算結果による信号と補
正電圧αVが加算される。
When the correction voltage V D from the scanning detector 13 is αV, the adder 16 adds the signal resulting from the above calculation and the correction voltage αV.

Vs2+VD=0.9V+αV ここで10mmずれると1V出力する倣い検知器を
用いているとすると、倣いで0.1mmずれたときに
は0.1V(=αV)出力する。即ちVs2+VD
0.9V+0.1V=1.0Vとなり+0.1mmのずれによつて
モータの速度は9cm/minから10cm/minに修正
される。逆に−0.1mm手前にずれていると、0.9V
+(−0.1V)=0.8Vとなり9cm/minから8cm/
minに修正される。
Vs 2 +V D =0.9V+αV Here, if we use a scanning detector that outputs 1V when there is a deviation of 10 mm, it will output 0.1V (=αV) when there is a deviation of 0.1 mm during scanning. That is, Vs 2 +V D =
0.9V + 0.1V = 1.0V, and the motor speed is corrected from 9cm/min to 10cm/min by a +0.1mm deviation. On the other hand, if it is shifted towards you by -0.1mm, it will be 0.9V.
+(-0.1V) = 0.8V, from 9cm/min to 8cm/min
Corrected to min.

以上の様にして演算結果が修正されつつ倣いが
行なわれる。
As described above, copying is performed while the calculation results are corrected.

本発明は上記の如く構成されるので、台車走行
線と溶接線が非平行である場合における倣い精度
を極めて高いものにすることができた。
Since the present invention is configured as described above, it is possible to achieve extremely high tracing accuracy when the bogie running line and the welding line are non-parallel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接部の平面図、第2〜7図に倣い方
式の説明図、第8図は溶接部の平面図、第9図は
油圧シヨベルの倣いを示す説明図、第10図はフ
ロー図である。 11……走行速度検出部、12……角度検出
部、13……倣い検知器、15……演算部、16
……加算器、17……モータドライブ。
Figure 1 is a plan view of the welded part, Figures 2 to 7 are explanatory diagrams of the copying method, Figure 8 is a plan view of the welded part, Figure 9 is an explanatory diagram showing the copying method of the hydraulic excavator, and Figure 10 is the flow. It is a diagram. 11... Traveling speed detection unit, 12... Angle detection unit, 13... Copying detector, 15... Calculation unit, 16
...Adder, 17...Motor drive.

Claims (1)

【特許請求の範囲】[Claims] 1 ほぼ直線状の溶接台車走行線に対して全面的
又は部分的に非平行である溶接線を倣い溶接する
方法であつて、直進する溶接台車には台車走行線
に対してほぼ直交する方向に移動する倣い装置及
び溶接ヘツドを塔載し、前記台車走行線と溶接線
との成す角度を検出する角度検出器と、溶接台車
走行検出器によつて夫々得られる信号から、倣い
装置及び溶接ヘツドの前記台車走行線と垂直方向
の移動速度に比例した指令信号を演算し、溶接線
に対する倣い検知器の信号と上記指令信号を比較
することによつて上記指令信号を倣い検知器の信
号に対応する様に修正し、倣い装置及び溶接ヘツ
ドを移動させることを特徴とする倣い溶接方法。
1 A method of welding by copying a welding line that is completely or partially non-parallel to the almost straight welding bogie running line, where the welding bogie moving straight has a welding line that is approximately perpendicular to the bogie running line. The moving copying device and welding head are mounted on a tower, and the copying device and welding head are detected from the signals obtained by the angle detector that detects the angle formed between the bogie running line and the welding line, and the welding bogie running detector, respectively. A command signal proportional to the traveling speed of the bogie in the direction perpendicular to the running line of the dolly is calculated, and by comparing the command signal with the signal of the tracing detector for the welding line, the command signal corresponds to the signal of the tracing detector. A copying welding method characterized by modifying the welding part so that the welding part is moved and moving a copying device and a welding head.
JP8976580A 1980-06-30 1980-06-30 Copying welding method Granted JPS5714472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8976580A JPS5714472A (en) 1980-06-30 1980-06-30 Copying welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8976580A JPS5714472A (en) 1980-06-30 1980-06-30 Copying welding method

Publications (2)

Publication Number Publication Date
JPS5714472A JPS5714472A (en) 1982-01-25
JPS6119343B2 true JPS6119343B2 (en) 1986-05-16

Family

ID=13979790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8976580A Granted JPS5714472A (en) 1980-06-30 1980-06-30 Copying welding method

Country Status (1)

Country Link
JP (1) JPS5714472A (en)

Also Published As

Publication number Publication date
JPS5714472A (en) 1982-01-25

Similar Documents

Publication Publication Date Title
JPS60255271A (en) Controlling method of multi-layer welding
JP2921390B2 (en) Masume welding robot
JPS6119343B2 (en)
JPH0390283A (en) Method for detecting rear groove information of one-side automatic welding
JPS6326275A (en) Four-electrode fillet automatic welding equipment
EP0367850B1 (en) Apparatus for automatically fillet-welding object to be welded comprising rectangular bottom plate and four side plates tack-welded substantially vertically to said bottom plate
JP4475603B2 (en) Copy welding equipment
EP0367861B1 (en) Apparatus for automatically fillet-welding object to be welded comprising rectangular bottom plate and four side plates tack-welded substantially vertically to said bottom plate
JPH0263684A (en) Method for profiling weld line
JP3203998B2 (en) Rough tracking control method for traveling by arc sensor
JPS59209483A (en) Detecting and controlling method of groove width
JPS6255476B2 (en)
JP3115206B2 (en) Arc sensor device
JPS5881572A (en) Copying device for butt welding
JPH0335024B2 (en)
JPS61100805A (en) Device for correcting positional deviation of robot
JPH0117423Y2 (en)
JPS61229476A (en) Weld line automatic profiling method
JPH0613151B2 (en) Groove seam copying method
JP2000317632A (en) Weld line tracking device
JPH06297147A (en) Automatic welding equipment
JPS605388B2 (en) automatic welding method
JPS6234674A (en) Weld line following-up control device
JPS6033870A (en) Profiling control method of weld line
JPH0438511B2 (en)