JPS61193412A - Gas insulated electric device - Google Patents

Gas insulated electric device

Info

Publication number
JPS61193412A
JPS61193412A JP3378485A JP3378485A JPS61193412A JP S61193412 A JPS61193412 A JP S61193412A JP 3378485 A JP3378485 A JP 3378485A JP 3378485 A JP3378485 A JP 3378485A JP S61193412 A JPS61193412 A JP S61193412A
Authority
JP
Japan
Prior art keywords
insulating
surge voltage
dielectric constant
tanks
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3378485A
Other languages
Japanese (ja)
Inventor
Hiroshi Maekawa
前川 洋
Genya Taniguchi
谷口 源弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3378485A priority Critical patent/JPS61193412A/en
Publication of JPS61193412A publication Critical patent/JPS61193412A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To improve the reliability of the title electric device by a method wherein opposingly positioned tanks are connected by a material having a high dielectric constant which suppresses a high frequency surge voltage, thereby enabling to prevent the creeping dielectric breakdown and the penetrating breakdown generated between flange parts of the tanks. CONSTITUTION:Insulating collars 100 are composed of the material having high dielectric constant such as titanium oxide, barium titanate and the like, for example. When surge overvoltage is generated on a center conductor 6, the surge voltage corresponding to the center conductor is generated on the outer cover. The valve of said surge voltage is greatly changed by the capacity between the terminals of an insulating mounting part. At this point, when an insulating spacer of high dielectric constant is provided at the insulating mounting part, it works as the low impedance for a high frequency surge voltage, and the outer cover surge voltage can be reduced. Accordingly, the creeping dielectric breakdown and the penetrating breakdown generated between the flanges of the opposing tanks can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は発変電所等の電気所のガス絶縁電気装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to gas-insulated electrical equipment for electrical stations such as power generation and substations.

[・従来の技術] 電気所の構成は、従来、気中絶縁方式が主流であったが
、近年、小形化、高電圧化を達成するためにGIS (
Gas Insulating System)方式が
多用されている。
[Conventional technology] Conventionally, the air insulation method was the mainstream for the configuration of electrical stations, but in recent years, GIS (
Gas Insulating System) method is often used.

この方式によれば、高耐電圧特性のSF6ガスを絶縁奴
体として使用しているため、小形化、高電圧化を容易に
実現することができる。
According to this method, since SF6 gas having high withstand voltage characteristics is used as the insulating body, miniaturization and high voltage can be easily realized.

従来のガス絶縁電気装置を図面に基づいて説明する。第
4図は従来のガス絶縁電気装置の断面図、第5図は第4
図の点線(C)部分の詳細拡大図、第6図は第4図の■
f” −n線断面図、第7図は絶縁カラーの斜視図であ
る。
A conventional gas insulated electrical device will be explained based on the drawings. Figure 4 is a cross-sectional view of a conventional gas-insulated electrical device, and Figure 5 is a cross-sectional view of a conventional gas-insulated electrical device.
Detailed enlarged view of the dotted line (C) in the figure, Figure 6 is the ■■ of Figure 4.
FIG. 7 is a perspective view of the insulating collar.

図において(1)、(2)、(3)はそれぞれの端部に
フランジ部(la)、(2a)、(’2b)、(3b)
が形成され、□内部にSF6ガスが充填されfタンク、
m、(!i)はフランジ部(la)、(2a仁及び(2
b) 、(3b)によりそれぞれ両側から挾持゛された
円板状の絶縁スペーサ、(8)はタンク(1)、(2)
、(3)内で絶縁スペニサ(0゜(5)め中央部を貫通
し′て支持され、タンク(1)。
In the figure, (1), (2), and (3) have flange parts (la), (2a), ('2b), and (3b) at their respective ends.
is formed, □F tank is filled with SF6 gas,
m, (!i) are the flange parts (la), (2a) and (2
b) Disc-shaped insulating spacers held from both sides by (3b) and (8) are tanks (1) and (2), respectively.
, (3) is supported within the insulating spanner (0° (5) through the central part of the tank (1).

(2)、(3)と電気的に゛絶縁されている中心導体、
(7) 、(8)はフランジ部(la)、(2a)を絶
縁スペーサ(1)を介して機械的に締結するボルト及び
ナツト、(8)はタンク(1)、(2)を電気的に絶縁
するための中空でボルト状の絶縁カラー、(lO)は接
地バー、(11)は接地メツシュである。
(2), a center conductor electrically insulated from (3),
(7) and (8) are bolts and nuts that mechanically fasten the flanges (la) and (2a) via the insulating spacer (1), and (8) are the bolts and nuts that connect the tanks (1) and (2) electrically. (lO) is a ground bar, and (11) is a ground mesh.

従来のカス絶縁電気装置は、上記のように構成されてお
り、中心導体(8)に流れる電流(i6)によってタン
ク(+)、(2)、(3)に発生する誘電電流(i+)
、(i2)、(i3)は、それぞれのタンク(1)、(
2)。
The conventional gas-insulated electrical device is configured as described above, and the dielectric current (i+) generated in the tanks (+), (2), and (3) by the current (i6) flowing through the center conductor (8).
, (i2), (i3) are the respective tanks (1), (
2).

(3)の長さが絶縁カラー(8)によって絶縁区分され
ることにより抑制されている。また接地バ−(lO)は
、タンク(2)の電位が上がらないように、変電所の接
地メツシュ(11)とタンク(2)を低インピータンス
で電気的に結合している。通常、タンク(2)に誘導電
流(12)が流れるのを防止するため接地パー(10)
はタンク(2)の一点のみに接続されている。
The length of (3) is suppressed by being insulated and sectioned by insulating collars (8). Further, the grounding bar (lO) electrically connects the grounding mesh (11) of the substation and the tank (2) with low impedance so that the potential of the tank (2) does not rise. Usually, a grounding hole (10) is used to prevent induced current (12) from flowing into the tank (2).
is connected to only one point of the tank (2).

[発明が解決しようとする問題点] 通常、商用周波数の電圧が、中心導体(6)に印加され
ている場合は、タンク(1) 、(2) 、(3)のフ
ランジ部(la)、(2a)間及び(2b)、(3b)
間にはほとんど電圧は発生しない。然しなから、中心導
体(8)には商用周波数のような電圧だけが印加される
とは限らず、遮断機、断路器等の開閉器の操作による所
謂開閉サージ、あるいは中心導体(6)と電気的に接続
されている架空送電線(図示せず)への落雷による所謂
雷サージ等のサージ過電圧も印加される。
[Problems to be Solved by the Invention] Normally, when a commercial frequency voltage is applied to the center conductor (6), the flange portions (la) of the tanks (1), (2), (3), (2a) and (2b), (3b)
Almost no voltage is generated between them. However, not only the commercial frequency voltage is applied to the center conductor (8), but also the so-called switching surge caused by the operation of a switch such as a circuit breaker or disconnector, or the center conductor (6). A surge overvoltage such as a so-called lightning surge caused by a lightning strike to an electrically connected overhead power transmission line (not shown) is also applied.

このようなサージ過電圧が、ガス絶縁電気装置に侵入し
て、中心導体をほぼ光の速度で主構する際にタンク(1
) 、 (2) 、 (3)にも中心導体(6)のサー
ジ過電圧Vに対応したサージ電圧(マ)が発生し、同じ
くほぼ光の速度で主構する。しかし、タンク(1) 、
 (2) 、 (3)間には前述の誘導電流を抑制する
ための絶縁カラー(9)が存在するために、タンク(2
)を主構してきたサージ電圧(v)が絶縁カラー(9)
で遮られ、このために、フランジ部(2b) 。
Such surge overvoltages can enter gas-insulated electrical equipment and cause the tank (1
), (2), and (3) also generate a surge voltage (ma) corresponding to the surge overvoltage V of the center conductor (6), which also occurs at approximately the speed of light. However, tank (1),
(2) and (3) Because there is an insulating collar (9) between them to suppress the induced current, the tank (2)
) The surge voltage (v) that has been the main cause of the insulating collar (9)
For this purpose, the flange part (2b).

(3b)間でサージ過電圧(Vs )が発生する。この
サージ過電圧(vs)は、研究結果によれば、最大が中
心導体(6)のサージ過電圧Vの約20%で周波数は5
0ないし、10メガヘルツ(MHz )であるが、絶縁
カラー(9)の沿面破壊や貫通破壊を招くという問題が
あった。
A surge overvoltage (Vs) occurs between (3b) and (3b). According to research results, this surge overvoltage (vs) has a maximum of about 20% of the surge overvoltage V of the center conductor (6) and a frequency of 5.
0 to 10 megahertz (MHz), but there was a problem in that it caused creepage failure and through-hole failure of the insulating collar (9).

この発明は上記のような問題点を解決するためになされ
たもので、フランジ部間に介在する絶縁カラーに発生す
るサージ過電圧を抑制して信頼性の高いガス絶縁電気装
置を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a highly reliable gas-insulated electrical device by suppressing the surge overvoltage generated in the insulating collar interposed between the flanges. shall be.

[問題点を解決するための手段] この発明に係るガス絶縁電気装置は、隣接タンク間を締
結させる絶縁取付部材を高誘電率材料で構成したもので
ある。
[Means for Solving the Problems] In a gas insulated electrical device according to the present invention, an insulating mounting member for connecting adjacent tanks is made of a high dielectric constant material.

[作用] この発明においては、相対向するフランジ部間に接続さ
れた絶縁取付部材が高誘電率材料からなり、高周波にお
いては、低インピーダンスとして作用するため、高周波
のサージ電圧がフランジ部間を主構、通過する際、その
間の電圧を低減させ、絶縁スペーサ等の沿面絶縁破壊や
貫通破壊を防止することができ、また通常の商用周波電
圧のみか、中心導体に印加されている場合は、高インピ
ータンスとなり、従来の絶縁カラーと同様外被を絶縁す
ることができる。
[Function] In this invention, the insulating mounting member connected between the opposing flange parts is made of a high dielectric constant material and acts as a low impedance at high frequencies, so high frequency surge voltage is mainly applied between the flange parts. When passing through the structure, it is possible to reduce the voltage between them and prevent creepage breakdown or penetration breakdown of insulating spacers, etc. Also, if only normal commercial frequency voltage is applied or if it is applied to the center conductor, high It becomes an impedance and can insulate the outer jacket like a conventional insulating collar.

[実施例] 以下、この発明の実施例を従来例と同一部分には同符号
を以って示す第1図ないし第3図に基づいて説明する。
[Embodiment] Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 3, in which the same parts as those of the conventional example are denoted by the same reference numerals.

第1図は従来の第5図に相当し、第3図は従来の第6図
に相当するもので、第2図は絶縁取付部端子間容量と外
被サージ電圧との関係を示したグラフである。
Figure 1 corresponds to the conventional Figure 5, Figure 3 corresponds to the conventional Figure 6, and Figure 2 is a graph showing the relationship between the capacitance between the terminals of the insulation mounting part and the jacket surge voltage. It is.

図中、タンク(1)、(2) 、フランジ部(la) 
In the figure, tanks (1), (2), flange part (la)
.

(2a)、絶縁スペーサ(1)、ボルト(7)、ナツト
(8)は、第4図ないし第7図における従来のものと同
様である。然して、(100)は、例えば酸化チタン、
チタン酸バリウム等の高誘電率材料で構成された絶縁カ
ラーである。
(2a), the insulating spacer (1), the bolt (7), and the nut (8) are the same as the conventional ones shown in FIGS. 4 to 7. Therefore, (100) is, for example, titanium oxide,
This is an insulating collar made of a high dielectric constant material such as barium titanate.

上記構成において、サージ過電圧が中心導体(6)に発
生した時、外被にも中心導体に対応したサージ電圧が発
生するが、その値は絶縁取付部端子間容量により大きく
変わる。この状態は第2図に示すとおりである。そこで
絶縁取付部に高誘電率の絶縁スペーサを設けると、高周
波のサージ電圧に対して低インピータンスとして作用し
、外被サージ電圧を低減することができ、したがって相
対向するタンクのフランジ部間に沿面絶縁破壊や貫通破
壊が生じるのを未然に防止することができる。
In the above configuration, when a surge overvoltage occurs in the center conductor (6), a surge voltage corresponding to the center conductor is also generated in the outer cover, but its value varies greatly depending on the capacitance between the terminals of the insulating mounting portion. This state is as shown in FIG. Therefore, if an insulating spacer with a high dielectric constant is provided at the insulating mounting part, it will act as a low impedance against high-frequency surge voltages and reduce the jacket surge voltage. Creeping dielectric breakdown and penetration breakdown can be prevented from occurring.

なお、絶縁カラー(100)は、従来の絶縁カラー(8
)に比べ機械的強度に弱い特性であるが、一部を上記の
高誘電率の絶縁カラーとし、残りを従来の絶縁カラー(
8)のままとして、ガス絶縁電気装置全体を、十分な機
械的強度に保持させることができる。
Note that the insulating collar (100) is different from the conventional insulating collar (8).
), but part of it is made of the above-mentioned high dielectric constant insulating collar, and the rest is made of the conventional insulating collar (
8), the entire gas insulated electrical device can be maintained with sufficient mechanical strength.

なお、上記実施例では、絶縁カラー(100)が高誘電
率材料のもので説明したが、ボルト(7)、ナツト(8
)に高誘電率材料のものを使ってもよく、タンクの外部
に上記材料のものをフランジ部間に取付けてもよい。
In the above embodiment, the insulating collar (100) is made of a high dielectric constant material, but the bolt (7) and nut (8)
) may be made of a high dielectric constant material, or a material made of the above material may be attached between the flanges on the outside of the tank.

[発明の効果] この発明は以上説明したように、相対向するタンク間を
、高周波のサージ電圧を抑制する高誘電率部材で接続す
るようにしたので、タンクのフランジ部間の沿面絶縁破
壊や貫通破壊を防止して装置の信頼性を向」ニすること
ができるという効果がある。
[Effects of the Invention] As explained above, this invention connects opposing tanks with a high dielectric constant member that suppresses high frequency surge voltage, thereby preventing creeping dielectric breakdown between the flanges of the tanks. This has the effect of preventing penetration failure and improving the reliability of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による絶縁取付部を示す断
面図、第2図は絶縁取付部端子間容量−外被サージ電圧
特性を示すグラフ、第3図は第1図に示す絶縁取付部の
横断面図、第4図は従来のガス絶縁電気装置の断面図、
第5図は第4図の絶縁取付部を拡大して示す断面図、第
6図はその横断面図、第7図は絶縁カラーの斜視図であ
る。 図において、 (1)、(2) 、(3)はタンク、 (la)、(2a)、(2b)、(3b)はフランジ部
、(1)、(5)は絶縁スペーサ、 (6)は中心導体、 (9) 、(100)は絶縁カラーである。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a cross-sectional view showing an insulation mounting part according to an embodiment of the present invention, Fig. 2 is a graph showing the capacitance between terminals of the insulation mounting part and jacket surge voltage characteristics, and Fig. 3 is a graph showing the insulation mounting part shown in Fig. 1. Figure 4 is a cross-sectional view of a conventional gas-insulated electrical device;
FIG. 5 is an enlarged cross-sectional view of the insulating mounting portion shown in FIG. 4, FIG. 6 is a cross-sectional view thereof, and FIG. 7 is a perspective view of the insulating collar. In the figure, (1), (2), (3) are tanks, (la), (2a), (2b), (3b) are flange parts, (1), (5) are insulating spacers, (6) is the center conductor, and (9) and (100) are insulating collars. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)端部にフランジ部が形成された円筒状タンクと、
相対向する各フランジ部間に絶縁スペーサを挟着介在さ
せて隣接タンク間を締結させる絶縁取付手段と、上記絶
縁スペーサに支持されて充填ガスによりタンクと電気的
に絶縁された中心導体とを備え、上記絶縁取付手段は高
誘電率材料の部材からなることを特徴とするガス絶縁電
気装置。
(1) A cylindrical tank with a flange formed at the end;
Insulating mounting means for connecting adjacent tanks by interposing an insulating spacer between opposing flange portions, and a center conductor supported by the insulating spacer and electrically insulated from the tank by filling gas. . A gas insulated electrical device, wherein the insulating mounting means is made of a high dielectric constant material.
(2)絶縁取付手段がボルトナットとこれらの間に挿着
された高誘電率材料の絶縁カラーとよりなることを特徴
とする特許請求の範囲第1項記載のガス絶縁電気装置。
(2) A gas insulated electrical device according to claim 1, wherein the insulating mounting means comprises bolts and nuts and an insulating collar made of a high dielectric constant material inserted between them.
JP3378485A 1985-02-21 1985-02-21 Gas insulated electric device Pending JPS61193412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3378485A JPS61193412A (en) 1985-02-21 1985-02-21 Gas insulated electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3378485A JPS61193412A (en) 1985-02-21 1985-02-21 Gas insulated electric device

Publications (1)

Publication Number Publication Date
JPS61193412A true JPS61193412A (en) 1986-08-27

Family

ID=12396090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3378485A Pending JPS61193412A (en) 1985-02-21 1985-02-21 Gas insulated electric device

Country Status (1)

Country Link
JP (1) JPS61193412A (en)

Similar Documents

Publication Publication Date Title
US3842318A (en) Shielded metal enclosed electrical equipment
JPS61193412A (en) Gas insulated electric device
US5959823A (en) Tank-type surge arrester
JPS6036969Y2 (en) gas insulated electrical equipment
JPH0622420A (en) Switchgear
JP4130249B2 (en) DC surge arrester
CN116845910A (en) Coupling capacitor protector and application thereof
JPH01309303A (en) Tank type arrester and gas insulated switchgear utilizing same arrester
JPS6241532Y2 (en)
JPS61254011A (en) Gas insulated switchgear
JP2933747B2 (en) Gas insulated switchgear
JPS6029284Y2 (en) conduit electrical equipment
JPS61167314A (en) Gas insulating electric device
JPH03155320A (en) Insulator supporter
JPH0819135A (en) Gas insulated switch
JPH02132721A (en) Gas insulating switch
JPH11220816A (en) Insulation switching device
JP2002159126A (en) Gas insulation device
JP2002051439A (en) High-voltage apparatus
JPH0470568A (en) Surge voltage sensor
JP2002017009A (en) Stationary induction electrical apparatus
JPS628415A (en) Compound type switchgear
JPH1186658A (en) Capacitor bushing
JPS6260408A (en) Gas insulated switching device
JPS5915444B2 (en) Surge bypass device for conduit-type electrical equipment