JPS6119310A - Foam molding process - Google Patents

Foam molding process

Info

Publication number
JPS6119310A
JPS6119310A JP59138027A JP13802784A JPS6119310A JP S6119310 A JPS6119310 A JP S6119310A JP 59138027 A JP59138027 A JP 59138027A JP 13802784 A JP13802784 A JP 13802784A JP S6119310 A JPS6119310 A JP S6119310A
Authority
JP
Japan
Prior art keywords
raw material
foam
solid raw
mixer
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138027A
Other languages
Japanese (ja)
Inventor
Hidehiko Shiraishi
英彦 白石
Akira Mori
朗 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP59138027A priority Critical patent/JPS6119310A/en
Publication of JPS6119310A publication Critical patent/JPS6119310A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/912Radial flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2711Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with intermeshing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To contrive to mold easily a uniform foam by a method in which after the liquid raw material for a foam and solid raw material have been supplied onto the rotary member with the projected pieces of a mixer and dispersion-mixed, while said mixture is taken out of the mixer and foamed. CONSTITUTION:In a raw material feeding chamber 1, each component of raw material is continuously fed to each annular liquid tank 11, 21, 31 through each sprue 10, 20, 30 from each liquid tank at the rate of foaming compounding, and it overflows from each edge 12, 22, 32 of the annular liquid tanks, whereby it flows down continuously on each inner wall surface 13, 23, 33 of the annular liquid tanks in the state of thin films. The raw materials which are to react one another are separately kept not to be in contact mutually, until they reach the rotary member 41 of a mixer 2. When liquid raw material for a foam and solid raw material drop in the center of the rotary member 41, as the rotary member 41 is rotated at 500- 5,000rpm, said materials are mixed and agitated with shearing action by centrifugal force and projected pieces 42 and further are mixed due to the discharging resistance by blades 44. Said mixture is continuously discharged from a discharging port 47. The mixture which is sent out, while distributing the solid raw material uniformly, is foam-molded. From the point of view of molding operation, the mixed raw material for the foam is necessary to be taken out at unfoaming state, and therefore in general, its keeping time is equal to or less than 30 seconds. Thus, the product has no void and has fine cells, especially solid raw material is uniformly dispersed therein. Each characteristic corresponding to each solid raw material may be sufficiently displayed.

Description

【発明の詳細な説明】 本発明は発泡体用液状原料と粉粒体や短繊維類の固体原
料を均一に分散した発泡体を連続的に成形する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously molding a foam in which a liquid raw material for foam and a solid raw material such as powder or short fibers are uniformly dispersed.

〔従来技術及びその問題点〕[Prior art and its problems]

従来、発泡体の製造に際して、最終製品に種々の特性を
与えたり、コストダウン等の目的のために種々の添加物
が併用されている。例えば、強度や耐火性を高めるため
に、ガラス繊維、炭素繊維又は他の繊維状物質や硅酸、
珪酸の金属塩、硼酸、硼酸の金属塩、酢酸亜鉛、硫酸ナ
トリウム等の無機物が用いられたり、腐蝕防止のために
防錆剤、中和剤が用いられたりする。コストダウンのた
めの添加物としては、石灰、石コウ、セメント、硫酸バ
リウム等、又は発泡体廃棄物から成る発泡体粉末のよう
な充填材が用いられる。
Conventionally, various additives have been used in the production of foams in order to impart various properties to the final product or to reduce costs. For example, to increase strength and fire resistance, glass fiber, carbon fiber or other fibrous materials, silicic acid, etc.
Inorganic substances such as metal salts of silicic acid, boric acid, metal salts of boric acid, zinc acetate, and sodium sulfate are used, and rust preventives and neutralizing agents are used to prevent corrosion. Additives used to reduce costs include fillers such as lime, gypsum, cement, barium sulfate, etc., or foam powders made from foam waste.

このような添加物の反応混合物内への導入は既に種々の
形式で試みられている。例えば、添加物を予め原料成分
に混合し原料タンクへ供給する、原料タンク内で添加物
と混合する、原料タンクからミキシングヘッドへ供給途
中で予備混合する、添加物と発泡体用液状原料をミキシ
ングヘッド部分で同時混合する、反応混合物へ添加物を
吹き付ける、面材や金型へ添加物を散布等の#&混合す
る等があげられるが、それぞれ問題点がある。即ち、予
備混合の場合は原料タンクや配管途中で高粘度化したり
、ゲル化、沈殿が生じたりする。同時混合では多量に添
加物を混合するのが困難である。後混合の場合は大がか
りな機械が必要であり、又、均一分散が困難で、多量の
空気を巻き込みやすくボイドの原因になりやすい等の問
題がある。
The introduction of such additives into the reaction mixture has already been attempted in various ways. For example, additives are mixed with raw materials in advance and supplied to the raw material tank, mixed with additives in the raw material tank, premixed during supply from the raw material tank to the mixing head, and mixed with additives and liquid raw materials for foam. Methods include simultaneous mixing at the head, spraying the additive onto the reaction mixture, and #&mixing, such as spraying the additive onto the face material or mold, but each method has its own problems. That is, in the case of premixing, the viscosity increases, gelation, and precipitation occur in the raw material tank or in the middle of piping. It is difficult to mix a large amount of additives in simultaneous mixing. In the case of post-mixing, a large-scale machine is required, and there are also problems such as difficulty in uniform dispersion and the tendency to entrain a large amount of air, which tends to cause voids.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はミキシングヘッド部分での同時混合の一つとし
て粉粒体や短繊維類などの固体原料を均一に分散した均
質な発泡体を容易に成形する方法を提供するものである
The present invention provides a method for easily molding a homogeneous foam in which solid raw materials such as powder and short fibers are uniformly dispersed as part of simultaneous mixing in a mixing head.

即ち、本発明は発泡体用液状原料及び固体原料を混合機
の突片を有する回転体上に供給し、均一に分散混合した
後、混合機外に混合物を取り出して発泡せしめることを
特徴とする発泡成形方法を提供する。
That is, the present invention is characterized in that a liquid raw material for foaming and a solid raw material are supplied onto a rotating body having protrusions of a mixer, and after uniformly dispersed and mixed, the mixture is taken out of the mixer and foamed. A foam molding method is provided.

本発明で用いられる混合機は、発泡体用液状原料及び固
体原料を均一に混合できる突片が設けられた回転体を有
しているものであればよく、例えば第1〜4図に示され
るものが用いられる。
The mixer used in the present invention may be one having a rotating body provided with protrusions that can uniformly mix the liquid raw material for foam and the solid raw material, for example, as shown in FIGS. 1 to 4. things are used.

第1図で示される混合機は発泡体用液状原料供給室1、
混合部2、固体原料供給管3等によって形成される。該
原料供給室1では、原料各成分が各原料タンクから定N
ポンプ等を用いて発泡配合の割合で連続的に液状原料成
分口10.20.30からそれぞれの環状液槽11.2
1.31に供給されて環状液槽縁12.22.32より
オーバーフローして環状液槽内壁面13.23.33を
連続的に薄膜状となって流下する。薄膜形成はできるだ
け表面積を犬にして各成分の混合および固体の均一分散
を容易にするものである。
The mixer shown in FIG. 1 includes a foam liquid raw material supply chamber 1,
It is formed by a mixing section 2, a solid raw material supply pipe 3, and the like. In the raw material supply chamber 1, each raw material component is supplied from each raw material tank at a constant N.
Using a pump etc., each annular liquid tank 11.2 is continuously pumped from the liquid raw material component port 10.20.30 at the foaming rate.
1.31, overflows from the edge 12.22.32 of the annular liquid tank, and continuously flows down the inner wall surface 13.23.33 of the annular liquid tank in the form of a thin film. Thin film formation is intended to minimize the surface area to facilitate mixing of the components and uniform dispersion of solids.

液状原料成分数に応じた数の環状液槽を使用する必要は
なく、例えば環状液槽を必要に応じて第2図のよ、うに
仕切り板48を用いていくつかに分割して一槽を多成分
に使用することもできる。仕切り板48を設ける場合、
仕切り数は限定されるものではなく、例えば2〜10の
仕切りが可能で、2〜4の仕切りが好ましい。
It is not necessary to use the number of annular liquid tanks according to the number of liquid raw material components; for example, the annular liquid tank can be divided into several parts using partition plates 48 as shown in FIG. It can also be used for multiple components. When providing the partition plate 48,
The number of partitions is not limited; for example, 2 to 10 partitions are possible, and 2 to 4 partitions are preferred.

固体原料だけでなく発泡体成分以外の液状原料も固体原
料供給管3からの供給で容易に添加できる。
Not only solid raw materials but also liquid raw materials other than foam components can be easily added through the solid raw material supply pipe 3.

液状原料成分の供給を環状液槽を使用することなく、第
3図のように原料供給室1の上部又は側面に各原料成分
の配合割合に応じて連続的に供給可能な注入口51を取
り付けることdよっても実施される。また第4図のよう
に1成分について複数の注入口を使用することにより供
給効率を良くすることもできる。
As shown in FIG. 3, an injection port 51 is installed at the top or side of the raw material supply chamber 1 that can continuously supply liquid raw material components according to the blending ratio of each raw material component, without using an annular liquid tank. It is also implemented by d. Furthermore, as shown in FIG. 4, supply efficiency can be improved by using a plurality of injection ports for one component.

原料成分、特に液状原料の供給手段によって製品の品質
が左右され、原料各成分の混合状態、固体原料の均一分
散性、発泡倍率、セルの大きさ、発泡硬化時間などに影
響を及ぼすことになる。いずれの原料供給方法を用いる
にしても反応する原料同士は混合部2の回転体41に到
着するまでに接触しないように配慮することが好ましい
The quality of the product is influenced by the raw material components, especially the means of supplying the liquid raw materials, which affects the mixing state of each raw material component, uniform dispersion of solid raw materials, expansion ratio, cell size, foam curing time, etc. . Regardless of which raw material supply method is used, it is preferable to ensure that the reacting raw materials do not come into contact with each other before reaching the rotating body 41 of the mixing section 2.

固体原料供給管3は原料供給室1の上部中央に設けられ
、配合に合せて一定量で粉粒体又は短繊維類の固体原料
が連続的に供給され、混合部2の回転体41上へ落下す
る。固体原料供給管3は複数にすることができ、複数に
することにより固体原料の種類を容易に変更可能で、ま
た複数の固体原料を同時に添加することも可能である。
The solid raw material supply pipe 3 is provided in the upper center of the raw material supply chamber 1, and a fixed amount of solid raw materials such as powder, granules or short fibers is continuously supplied to the rotating body 41 of the mixing section 2 according to the composition. Fall. A plurality of solid raw material supply pipes 3 can be provided, and by using a plurality of pipes, it is possible to easily change the type of solid raw material, and it is also possible to add a plurality of solid raw materials at the same time.

発泡体用液状原料及び固体原料の供給部分は固体原料の
噴き出しや発泡剤の気化による逃げを防止するために密
閉系が好ましい。                 
       ′混合部2はモーター60により高速に
回転する回転体41と回転体41に付設した突片42、
羽根44から成る。羽根44は回転体41に付設された
ものに限らず回転体41と同円心」二で回転する排出用
羽根でも良い。回転体41には混合攪拌室壁番こ付着し
た反応混合物を除去する掻出片45.46が取り付けら
れる。
The supply section for the liquid raw material and solid raw material for foaming is preferably a closed system in order to prevent the solid raw material from spouting out or the foaming agent from evaporating and escaping.
'The mixing section 2 includes a rotating body 41 that is rotated at high speed by a motor 60, a protrusion 42 attached to the rotating body 41,
It consists of blades 44. The blades 44 are not limited to those attached to the rotary body 41, and may be discharge vanes that rotate concentrically with the rotary body 41. Scraping pieces 45 and 46 are attached to the rotating body 41 to remove the reaction mixture adhering to the walls of the mixing and stirring chamber.

発泡体用液状原料と固体原料は回転体41の中央部に落
下すると、回転体41が高速に回転しているために遠心
力と突片42により剪断的に混合攪拌され、回転体41
の下部の羽根44による排出時に排出抵抗すさらに混合
されて排出口47より連続的に排出される。固体原料が
均一に分散されて送り出された混合物は、従来の成形方
法で発泡されて種々の製品とされる。例えば面材や型の
上に混合物が注入されて、さらにその上に面材や型のふ
たを施すことにより両面ラミネートされたパネルやブロ
ックが成形される。面材としては木材板、合板、化粧合
板、織布、不織布;塩ビやポリエチ等の合成樹脂板;ア
ルミニウム、鉄等の金属板;□アスベスト板、石膏ボー
ド、グラスウール、クラフト紙、アスファルト紙、他種
フオームパネル等積々の材料が使用される。
When the liquid raw material for foam and the solid raw material fall into the center of the rotating body 41, since the rotating body 41 is rotating at high speed, they are mixed and agitated in a shearing manner by the centrifugal force and the protrusions 42.
When discharged by the lower blade 44, the discharge resistor is mixed with the discharge resistor and continuously discharged from the discharge port 47. The mixture, in which the solid raw materials are uniformly dispersed, is then foamed into various products using conventional molding methods. For example, a mixture is injected onto a facing material or a mold, and a facing material or mold lid is applied thereon to form a double-sided laminated panel or block. Surface materials include wood boards, plywood, decorative plywood, woven fabrics, non-woven fabrics; synthetic resin boards such as PVC and polyethylene; metal boards such as aluminum and iron; asbestos boards, gypsum boards, glass wool, craft paper, asphalt paper, etc. A wide variety of materials are used, including foam panels.

面材や型をベルトコンベヤー等を使用して連続供給する
ことにより連続生産も可能である。また表面だけでなく
フオーム内部に長繊維や繊維シートを含浸させる成形も
ある。
Continuous production is also possible by continuously supplying face materials and molds using a belt conveyor, etc. There is also molding in which not only the surface but also the inside of the foam is impregnated with long fibers or fiber sheets.

本発明の成形方法は生産工場に限られたものではなく、
施工現場にも利用される。又、発泡体用液状原料によっ
ては得られた発泡体を40〜80℃に加温し、後硬化を
行うこともできる。
The molding method of the present invention is not limited to production factories;
It is also used at construction sites. Further, depending on the liquid raw material for the foam, the obtained foam may be heated to 40 to 80°C to perform post-curing.

尚、混合部2は混合攪拌室の内壁と回転体41との間隔
を大とすることにより多量に原料を混合することが可能
であり、□又、突片42の数と配置箇所を適宜法めるこ
とにより粉粒体の大きさやlhN#mの長さが自由に選
択される。また固体原料だけでなく液状原料の性状、配
合割合によって混合状態が異なるため、混合部2では突
片42の数と配置、回転数、さらに混合攪拌室壁へ突片
43を付設するなど最も好ましい状態を選択するのが望
ましい。
The mixing section 2 can mix a large amount of raw materials by increasing the distance between the inner wall of the mixing and stirring chamber and the rotating body 41, and the number and location of the protrusions 42 can be adjusted as appropriate. The size of the powder and the length of lhN#m can be freely selected by In addition, since the mixing state differs depending on the properties and blending ratio of not only the solid raw materials but also the liquid raw materials, it is most preferable to change the number and arrangement of the protrusions 42, the rotation speed, and the attachment of the protrusions 43 to the wall of the mixing and stirring chamber in the mixing section 2. It is preferable to select the state.

本発明で使用される固体原料としては、例えば発泡体の
強度を高めるためのガラス繊維、炭素繊維又は他の繊維
状物質;耐火性を高める珪酸や硅酸の金属塩、硼酸や硼
酸の金属塩、硼弗化化合物、硫酸の金属塩、塩酸の金属
塩、酢酸亜鉛等の無機物;腐蝕防止のための防錆剤、炭
酸カルシウム、亜鉛末、アルミナ末、アミン化合物等の
中和剤等であり、また増量剤として例えば石灰、石コウ
、セメント、タルク、パーライト、シラスバルーン、発
泡体廃棄物から成る発泡体粉末も利用される。その添加
量は要求される性能に応じて決められ、一般には発泡体
用液状原料に対して5〜100重量%であるが、発泡体
用液状原料及び固体原料の性状により制限されることも
あり、この範囲に限られるものではない。
Solid raw materials used in the invention include, for example, glass fibers, carbon fibers or other fibrous materials to increase the strength of the foam; silicic acid or metal salts of silicic acid, boric acid or metal salts of boric acid to increase fire resistance; , borofluoride compounds, metal salts of sulfuric acid, metal salts of hydrochloric acid, inorganic substances such as zinc acetate; rust inhibitors to prevent corrosion, neutralizing agents such as calcium carbonate, zinc powder, alumina powder, amine compounds, etc. Foam powders, such as lime, gypsum, cement, talc, perlite, shirasu balloons and foam wastes, are also used as fillers. The amount added is determined according to the required performance, and is generally 5 to 100% by weight based on the liquid raw material for foam, but may be limited depending on the properties of the liquid raw material and solid raw material for foam. , but is not limited to this range.

本発明で用、いられる発泡体用液状原料としては重湯で
液状であり、好ましくはフェノールフオーム、ウレタン
フオームを形成する液状原料が挙げられる。
The liquid raw material for the foam used in the present invention includes liquid raw materials that are liquid in heavy water and preferably form phenol foam or urethane foam.

フェノールフオーム用液状原料は通常フェノール樹脂、
整泡剤、発泡剤、硬化酸の4成分から構成される。フェ
ノール樹脂は水酸化ナトリウム、水酸化バリウム、アン
モニア又はアミンのようなアルカリ性触媒の存在下でフ
ェノール、クレゾール、キシレノール、トリメチルフェ
ノール、p−ブチルフェノール、p−シクロヘキシルフ
ェノール1、p−フェニルフェノール、p−フェノキシ
フェノール、p−メトキシフェノール、p−クロルフェ
ノール等のフェノール類とホルムアルデヒド、アセトア
ルデヒド、バラホルムアルデヒド等のアルデヒド類とを
縮合させて得た酸硬化性レゾール型フェノール樹脂であ
り、好ましくは遊離フェノール水分のできるだけ少ない
もので数平均分子量300〜1000、不揮発固型分7
5〜85%、粘度(25℃)500〜10000センチ
ボイスのものである。フェノール樹脂はレゾール型単独
だけでなく、ノボラック型フェノール樹脂等で変性され
たものも使用される。
The liquid raw material for phenol foam is usually phenol resin,
Consists of four components: foam stabilizer, foaming agent, and curing acid. Phenolic resins can be synthesized by phenol, cresol, xylenol, trimethylphenol, p-butylphenol, p-cyclohexylphenol, p-phenylphenol, p-phenoxy in the presence of alkaline catalysts such as sodium hydroxide, barium hydroxide, ammonia or amines. It is an acid-curable resol type phenol resin obtained by condensing phenols such as phenol, p-methoxyphenol, and p-chlorophenol with aldehydes such as formaldehyde, acetaldehyde, and paraformaldehyde, and preferably contains as much free phenol water as possible. The number average molecular weight is 300-1000 and the non-volatile solid content is 7.
5 to 85%, and a viscosity (25°C) of 500 to 10,000 centivoice. The phenol resin used is not only a resol type alone but also one modified with a novolak type phenol resin or the like.

発泡剤は低沸点の化合物、例えば低分子量炭化水素、n
−へブタン、アルコール、石油エーテル、部分的又は完
全にハロゲン化された炭化水素、塩化メチレン、四塩化
炭素、トリクロルフルオルメタン、1,1.2−)リク
ロル−1゜2.2−トリフルオルエタン等があり、これ
らの化合物を単独又は複数の混合物として用いられる。
Blowing agents are compounds with low boiling points, such as low molecular weight hydrocarbons, n
-hebutane, alcohol, petroleum ether, partially or fully halogenated hydrocarbons, methylene chloride, carbon tetrachloride, trichlorofluoromethane, 1,1,2-)lichlor-1°2,2-trifluoro These compounds include ethane and the like, and these compounds can be used alone or as a mixture of two or more.

硬化酸としては強酸性化合物が好ましく、例えば無機酸
としてはルイス酸、塩酸、硫酸、硝酸、リン酸等;有機
酸としてはフェノールスルホン酸、ベンゼンスルホン酸
、トルエンスルホン酸、キシレンスルホン酸等のスルホ
ン化芳香族化合物であり、これらを単独又は2種以上混
合して使用される。
As curing acids, strong acidic compounds are preferable; for example, inorganic acids include Lewis acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc.; organic acids include sulfonic acids such as phenolsulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylene sulfonic acid, etc. These aromatic compounds can be used alone or in combination of two or more.

整泡剤はフオームの細胞の安定化を助けるために添加さ
れるものでアルキレンオキシドとアルキルフェノールと
の縮合生成物、ポリシロキサンとポリオキシアルキレン
共重合体、ソルビタンモノラウレート、ポリエチレン化
グリセリン等から選択され、フェノール樹脂に対しテ0
.1〜5重量%の量で用いられ、一般にフェノール樹脂
と発泡前に混合して使用される。
Foam stabilizers are added to help stabilize foam cells and are selected from condensation products of alkylene oxide and alkylphenol, polysiloxane and polyoxyalkylene copolymers, sorbitan monolaurate, polyethylated glycerin, etc. and TE0 against phenolic resin.
.. It is used in an amount of 1 to 5% by weight, and is generally mixed with a phenolic resin before foaming.

又、ウレタンフオーム用液状原料は、通常ポリイソシア
ネート、活性水素含有化合物、発泡剤、整泡剤、触媒か
ら成る。
Further, liquid raw materials for urethane foam usually consist of polyisocyanate, an active hydrogen-containing compound, a blowing agent, a foam stabilizer, and a catalyst.

ポリイソシアネートは1分子中に少なくとも2個のイソ
シアネート基を有するものであり、例えばトリレンジイ
ソシアネート、ジフェニルメタンジイソシアネート(M
DI)、キシリレンジイソシアネート、ヘキサメチレン
ジイソシアネート、ポリフェニレンポリメチレンポリイ
ソシアネート等であり、それらの単独あるいは2種以上
の混合物として用いられる。
Polyisocyanates have at least two isocyanate groups in one molecule, such as tolylene diisocyanate, diphenylmethane diisocyanate (M
DI), xylylene diisocyanate, hexamethylene diisocyanate, polyphenylene polymethylene polyisocyanate, etc., and these can be used alone or as a mixture of two or more.

活性水素含有化合物は1分子中に少なくとも2個の活性
水素を有する化合物□でポリエーテルポリオール、ポリ
エステルポリオール、例えばプロピレングリコール、グ
リセリン、トリメチロールプロパン、ペンタエリスリト
ール、α−メチルグリコキシド、ソルビトール等のポリ
オール類門ジェタノールアミン、トリエタノールアミン
、トリプロパツールアミン等のアミノアルコール類;エ
チレンジアミン、1.6−ヘキサンジアミン、ジエチレ
ントリアミン、トリエチレンテトラミン等のアミン類;
リン酸、ビロリン酸またはこれらの部分エステル等のリ
ン化合物およびこれらの混合物にエチレンオキシド、プ
ロピレンオキシド、ブチレンオキシドなどを付加して得
られる化合物が使用される。
Active hydrogen-containing compounds are compounds having at least two active hydrogens in one molecule, such as polyether polyols, polyester polyols, such as propylene glycol, glycerin, trimethylolpropane, pentaerythritol, α-methyl glycoxide, sorbitol, and other polyols. Amino alcohols such as jetanolamine, triethanolamine, and tripropaturamine; amines such as ethylenediamine, 1,6-hexanediamine, diethylenetriamine, and triethylenetetramine;
Phosphorus compounds such as phosphoric acid, birophosphoric acid, or partial esters thereof, and compounds obtained by adding ethylene oxide, propylene oxide, butylene oxide, etc. to mixtures thereof are used.

触媒はトリエチレンジアミンとエポキシ化合物と共触媒
、カルボン酸のアルカリ金属塩、アルカリ土類金属塩、
ジアルキルアミンアルキルフェノール、3級アミン、有
機スズ等が使用される。
The catalyst is triethylenediamine, an epoxy compound, a cocatalyst, an alkali metal salt of carboxylic acid, an alkaline earth metal salt,
Dialkylamines, alkylphenols, tertiary amines, organic tins, etc. are used.

発泡剤、整泡剤はフェノールフオームと同様のものが使
用される。
As the foaming agent and foam stabilizer, the same ones as phenol foam are used.

ウレタンフオームは一般に発泡剤、整泡剤、触媒と活性
水素含有化合物を予め混合したものとイソシアネートと
を2成分系で本発明に係る混合機で混合することにより
得られる。
Urethane foams are generally obtained by mixing a two-component system of a premix of a blowing agent, a foam stabilizer, a catalyst and an active hydrogen-containing compound with an isocyanate in a mixer according to the invention.

フェノールフオームを製造する場合には整泡剤の添加さ
れたフェノール樹脂、発泡剤、硬化酸をtoo:s〜2
5:5〜25の重量割合で、ウレタンフオームを製造す
る場合にば整泡剤、発泡剤、触媒の混合されんポリオー
ルとイソシアネートとを一般に50〜too:so〜1
00の重量割合で用いるのが好ましい。
When producing phenol foam, phenol resin with foam stabilizer added, blowing agent, and curing acid are added to too:s~2
When producing urethane foam, the unmixed polyol and isocyanate (foam stabilizer, blowing agent, catalyst) and isocyanate are generally mixed in a weight ratio of 5:5 to 25.
It is preferable to use a weight ratio of 0.00.

本発明で使用される発泡体用液状原料の粘度(25℃)
は通常20000センチポイズ以下、好ましくは500
0センチボイズ以下である。
Viscosity of liquid raw material for foam used in the present invention (25°C)
is usually less than 20,000 centipoise, preferably 500 centipoise
It is less than 0 centivoise.

発泡体用原料の混合機内の滞留時間は、原料の反応性、
粘度、取り比速度等に影響されるが、成形作業の点から
混合された発泡体用原料が未発泡状態で取り出されるこ
とが必要であり、一般には滞留時間は30秒以下である
。又、混合機の回転体は一般の発泡機と同様に500〜
5000rpmの範囲で好ましくは800〜3000 
rpmの回転速度で使用される。尚、混合後の取り比速
度は原料の供給速度と関係しており、特に限定されるも
のでない。勿論、それは混合機の処理能力によるところ
が大であるが、一般的に25〜500kg/hr程度で
ある。
The residence time of the raw material for foam in the mixer depends on the reactivity of the raw material,
Although it is influenced by viscosity, removal specific speed, etc., it is necessary for the mixed foam raw material to be taken out in an unfoamed state from the viewpoint of molding operations, and the residence time is generally 30 seconds or less. In addition, the rotating body of the mixer is 500~
preferably in the range of 5000 rpm, 800 to 3000
Used at a rotation speed of rpm. Incidentally, the specific speed after mixing is related to the feeding speed of the raw materials, and is not particularly limited. Of course, it largely depends on the processing capacity of the mixer, but it is generally about 25 to 500 kg/hr.

本発明に於て、セルが細かく固体原料を均一に充填させ
るためには次の条件を満足することが望まt7い。
In the present invention, it is desirable that the following conditions be satisfied in order for cells to be finely filled with solid raw materials uniformly.

発泡体用液状原料と固体原料の供給部分は固体原料の噴
き出しや発泡剤の気化による逃げを防止するために密閉
系が好ましい。
The supply section for the liquid raw material and solid raw material for foaming is preferably a closed system in order to prevent the solid raw material from spouting out or the blowing agent from evaporating and escaping.

又、回転体41は発泡体原料の混合及び排出を兼ねてい
るため固体原料を添加した際の極度の粘度上昇による回
転数の低下を防ぎ、通常その回転数を約100 Orp
m以上に維持した方が良い。回転数が低下した場合、混
合機内の滞留時間が長くなり、混合機内で発泡が起き、
液状原料によっては硬化も生じて連続生産が不可能とな
る。
In addition, since the rotating body 41 also serves to mix and discharge foam raw materials, it prevents the rotation speed from decreasing due to an extreme increase in viscosity when solid raw materials are added, and usually keeps the rotation speed at about 100 Orp.
It is better to maintain it above m. If the rotation speed decreases, the residence time in the mixer increases, foaming occurs in the mixer, and
Depending on the liquid raw material, hardening may occur, making continuous production impossible.

排出口47は混合部2内で気化した発泡剤の逃げを防止
するためと排出口での空気の巻き込みによるセルあれ、
ボイドの生成を防止するために排出量により排出口がぎ
りぎりふさがるように排出口の口径を調整する必要があ
る。排出量に比べて口径が小さすぎると回転体による排
出に負荷が大きくかかり混合機内の滞留時間も長くなり
好ましくない。
The discharge port 47 is used to prevent the foaming agent vaporized in the mixing section 2 from escaping, and to prevent cells from being drawn in by the discharge port.
In order to prevent the generation of voids, it is necessary to adjust the diameter of the outlet so that the outlet is as close as possible to the amount of discharge. If the diameter is too small compared to the discharge amount, a large load will be placed on the discharge by the rotary body, and the residence time in the mixer will become long, which is not preferable.

〔発明の幼果〕 本発明で成形された発泡体は従来の市販されている専用
の発泡機を使用して固体原料を添加した発泡体と比較し
て、ボイドがな(、セルが細かく特に固体原料が均一に
分散されて固体原料に応じた各特性を十分に発揮できる
ものとなる。
[Young Fruit of the Invention] The foam molded according to the present invention has fewer voids (and smaller cells) than conventional foams made by adding solid raw materials using a commercially available dedicated foaming machine. The solid raw material is uniformly dispersed, and each characteristic corresponding to the solid raw material can be fully exhibited.

本発明の発泡成形方法は特にウレタンフオーム、フェノ
ールフオーム等熱硬化性樹脂フオームの発泡成形時に固
体原料を均一に充填させるのに有効な方法である。
The foam molding method of the present invention is particularly effective for uniformly filling solid raw materials during foam molding of thermosetting resin foams such as urethane foam and phenol foam.

〔実施例〕〔Example〕

実施例1 第1図に示す混合機を用いてウレタンフオームを下記の
如くにして製造した。
Example 1 Urethane foam was manufactured in the following manner using the mixer shown in FIG.

20℃に温度調整したポリオール、発泡剤、触媒、整泡
剤から成る硬質ウレタンフオーム用混合物(ハイブロッ
クスRP4020S、大日本インキ化学工業製)を原料
注入口20.20’より、20℃に温度調整したイソシ
アネート(ハイプロソクス5P299、大日本インキ化
学工業製)を原料注入口30.30’より、パーライト
を固体原料供給管3より同時にそれぞれ供給速度108
 kr/hr、 114 kg/hr、31kg/hr
で連続供給した。ポリオール類、イソシアネートが環状
液槽21.31のそれぞれの縁22.32よりオーバ−
フローしてそれぞれ連続の環状薄膜を形成して流下し、
同時にパーライトが固体原料供給管3から供給されて約
100 Orpmで回転し、突片42か半径4.0 a
m及び7.0 cmの円周上にそれぞれ等間隔に6個づ
つ付設されている回転体41上で約10秒間剪断的に混
合され、排出口47より連続的に排出速度253 、k
g/ hrで排出された。混合物は未発泡液状状態で容
器へ取り出され、次いで室温で発泡成形を行った。出来
上ったウレタンフオームはボイドがなく、セルが微細で
パーライトが均一に分散されているものであり、これを
X線で確認した。
A mixture for hard urethane foam (Hybrox RP4020S, manufactured by Dainippon Ink & Chemicals) consisting of polyol, blowing agent, catalyst, and foam stabilizer whose temperature was adjusted to 20°C was adjusted to 20°C from the raw material injection port 20.20'. Isocyanate (Hyprosox 5P299, manufactured by Dainippon Ink and Chemicals) was fed from the raw material injection port 30.30', and pearlite was simultaneously fed from the solid raw material supply pipe 3 at a rate of 108.
kr/hr, 114 kg/hr, 31 kg/hr
Continuously supplied. Polyols and isocyanates exceed each edge 22.32 of the annular liquid tank 21.31.
Flowing down, each forming a continuous annular thin film,
At the same time, pearlite is supplied from the solid raw material supply pipe 3 and rotates at about 100 Orpm, and the protrusion 42 has a radius of 4.0 a.
The mixture is shear-mixed for about 10 seconds on rotating bodies 41, six of which are attached at equal intervals on the circumferences of m and 7.0 cm, and is continuously discharged from the discharge port 47 at a speed of 253, k.
g/hr. The mixture was taken out into a container in an unfoamed liquid state, and then foam molded at room temperature. The completed urethane foam had no voids, fine cells, and evenly dispersed pearlite, which was confirmed by X-rays.

実施例2 第1図に於て、第2図に示す如き環状液槽31が仕切り
板で分割された混合機を用いてフェノールフオームを製
造した。
Example 2 In FIG. 1, phenol foam was manufactured using a mixer in which the annular liquid tank 31 was divided by partition plates as shown in FIG. 2.

20℃に温度調整したフェノール樹脂(固型分80%、
粘度9000 cps / 20℃)と整泡剤(SH1
93、東しシリコーンgJJ)から成るフェノールフオ
ーム用混合物を原料注入口20.20′より、硬化酸(
67%フェノールスルホン酸水溶液)を2分割した最下
層の一方30より、発泡剤(フレオン11/l 13=
1/1、三井フロロケミカル製〕を2分割した最下層の
他方30′、又ホウ素系難燃剤を固体原料供給管3より
同時にそれぞれ供給速度38 kg/ hr、 4.8
kg/ hr、 8 kg/ hr、 57 kg/ 
hrで連続供給した。フェノール樹脂類、硬化酸、発泡
剤がそれぞれオーバーフローして薄膜を形成して流下し
、同時に難燃剤が固体原料供給管3より供給され、約8
0 Orpmで回転し、突片42が回転体41と半径4
.0cm及び7.0 cmの円周上にそれぞれ等間隔で
3個づつ付設されている回転体41上で約20秒間剪断
的に混合されて排出口47より連続的に排゛出速度56
5 kg/ hrで取り出された。調製物は均一に混合
され未発泡液状状態で取り出され、金型へ注入され60
℃の乾燥機で発泡硬化された。
Phenol resin (solid content 80%, temperature adjusted to 20℃)
Viscosity 9000 cps / 20℃) and foam stabilizer (SH1
93, Toshi silicone gJJ) was added to the curing acid (
A blowing agent (Freon 11/l 13=
1/1, manufactured by Mitsui Fluorochemical Co., Ltd.] was divided into two, the other 30' of the bottom layer, and boron-based flame retardant was simultaneously supplied from the solid raw material supply pipe 3 at a rate of 38 kg/hr, 4.8
kg/hr, 8 kg/hr, 57 kg/hr
It was continuously supplied in hours. Phenolic resins, curing acids, and blowing agents each overflow to form a thin film and flow down, and at the same time, flame retardant is supplied from solid raw material supply pipe 3, and about 8
It rotates at 0 Orpm, and the projecting piece 42 has a radius of 4 with the rotating body 41.
.. The mixture is shear-mixed for about 20 seconds on rotating bodies 41, which are attached at three equal intervals on the circumferences of 0 cm and 7.0 cm, and is continuously discharged from the discharge port 47 at a speed of 56.
It was taken out at 5 kg/hr. The preparation was mixed uniformly, taken out in an unfoamed liquid state, and poured into a mold for 60 minutes.
The foam was cured in a dryer at ℃.

出来上ったフェノールフオームは細かいセルでボイドが
なく、難燃剤が均一に分散されて、JIS  A−13
21の表面試験でN燃2級に合格する性能であった。
The finished phenol foam has fine cells and no voids, and the flame retardant is uniformly dispersed, making it compliant with JIS A-13.
It had a performance that passed the N2 grade 21 surface test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いられる混合機の縦断正面図であり
、第2図は環状液槽11が仕切り板48で分割された第
1図の混合機のA−八′の横断面平面図である。第3図
は第1図の混合機の供給部2と異なる供給部の縦断面図
であり、第4図は第3図でのB−B ’の横断面平面図
である。 1−−−−−一発泡体用液状原料供給室i 2−−−−
−一混合部;3−−−−−−固体原料供給管:10.1
0’ 、20.20’ 、30.30’ −一一一一液
状原料注入口;11.21.31−−−−−一環状液槽
;12.22.32−−−−−一環状液槽縁;13.2
3.33−−−−−−環状液槽内壁面;41−−−−−
一回転体;42.43−−−−−一突片i 44−−−
−−一羽根;45.46−−−−−−掻出片; 4’7
−−−−−−排出口; 48−−−−−一仕切板; 5
1−−−−一注入口i 60−−−−−−モーター。 代理人  弁理士 高  橋  勝  利第10 第30 寓2図
FIG. 1 is a vertical sectional front view of the mixer used in the present invention, and FIG. 2 is a cross-sectional plan view taken along A-8' of the mixer shown in FIG. 1, in which the annular liquid tank 11 is divided by a partition plate 48. It is. 3 is a longitudinal sectional view of a supply section different from the supply section 2 of the mixer in FIG. 1, and FIG. 4 is a cross-sectional plan view taken along line BB' in FIG. 3. 1-----1 Liquid raw material supply chamber i for foam 2-----
-1 mixing part; 3-------Solid raw material supply pipe: 10.1
0', 20.20', 30.30' -1111 Liquid raw material inlet; 11.21.31---Annular liquid tank; 12.22.32---Annular liquid Tank edge; 13.2
3.33----Annular liquid tank inner wall surface; 41------
One rotating body; 42.43----One protruding piece i 44---
--One feather; 45.46----Scraping piece; 4'7
---------Discharge port; 48----Partition plate; 5
1-----One inlet i 60-----Motor. Agent Patent Attorney Katsutoshi Takahashi No. 10 No. 30 Illustration 2

Claims (1)

【特許請求の範囲】[Claims] 発泡体用液状原料及び固体原料を混合機の突片を有する
回転体上に供給し、均一に分散混合した後、混合機外に
混合物を取り出して発泡せしめることを特徴とする発泡
成形方法。
A foam molding method characterized by supplying a liquid raw material and a solid raw material for foam onto a rotating body having protrusions of a mixer, uniformly dispersing and mixing them, and then taking the mixture out of the mixer to cause foaming.
JP59138027A 1984-07-05 1984-07-05 Foam molding process Pending JPS6119310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138027A JPS6119310A (en) 1984-07-05 1984-07-05 Foam molding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138027A JPS6119310A (en) 1984-07-05 1984-07-05 Foam molding process

Publications (1)

Publication Number Publication Date
JPS6119310A true JPS6119310A (en) 1986-01-28

Family

ID=15212332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138027A Pending JPS6119310A (en) 1984-07-05 1984-07-05 Foam molding process

Country Status (1)

Country Link
JP (1) JPS6119310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709131A1 (en) * 1994-10-26 1996-05-01 Societe Des Produits Nestle S.A. Mixing of fluids
US20160288098A1 (en) * 2013-11-01 2016-10-06 Umicore Ag & Co. Kg In-line rotor-stator disperser and reaction process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709131A1 (en) * 1994-10-26 1996-05-01 Societe Des Produits Nestle S.A. Mixing of fluids
US5759604A (en) * 1994-10-26 1998-06-02 Nestec S.A. Mixing of particulate solids and liquid for fluid food preparation
US20160288098A1 (en) * 2013-11-01 2016-10-06 Umicore Ag & Co. Kg In-line rotor-stator disperser and reaction process
US10406506B2 (en) * 2013-11-01 2019-09-10 Umicore Ag & Co. Kg In-line rotor-stator disperser and reaction process

Similar Documents

Publication Publication Date Title
US4097423A (en) Inorganic-organic compositions
CN1404503A (en) Rigid polyurethane foams
US20090053490A1 (en) Highly Filled Composite Materials
PL101872B1 (en) A METHOD OF PRODUCING POLYUREA FOAMED PLASTICS WITH HIGH DEGREE OF FILLING
JPH0527528B2 (en)
CN103154106B (en) Phenol resin foamed plate
JPH03505750A (en) New synthetic foam
US5270348A (en) Process for preparing flexible polyurethane foams
JP3110235B2 (en) Foam curable phenolic resin composition
JPS58104921A (en) Polyurethane urea and coating base material
US4783295A (en) Process for preparing molded microcellular elastomers
US20100101165A1 (en) Low-density filled polyurethane foam
KR101612296B1 (en) Apparatus for Producing Excellent Heat Insulating Polyurethane Foam Board
CN1074007C (en) Method for making insulating rigid polyurethane foams
US6353053B1 (en) Method and device for producing polyurethanes containing filling materials
EP3601395B1 (en) Process for making rigid polyurethane or urethane-modified polyisocyanurate foams
US5514725A (en) Phenolic foam composition and use thereof for "in place" foaming
JPS6119310A (en) Foam molding process
JP6636525B2 (en) Polyurethane foam with aqueous polymer dispersion
JP3463910B2 (en) Method for producing Mannich polyol
US5112878A (en) Catalysts for extending the shelf life of formulations for producing rigid polyurethane foams
JPH04364908A (en) Manufacture of phenol resin foamable body and its application
JP2006249422A (en) Molding resin composition of polyurethane for cutting work
US3280048A (en) Solid heat triggered compositions capable of forming a polyurethane foam
JP5090394B2 (en) MANUFACTURING METHOD AND MANUFACTURING APPARATUS FOR STRING REACTIVE RESIN FOAM MOLDED ARTICLE