JPS61192345A - Preparation of carbide catalyst - Google Patents
Preparation of carbide catalystInfo
- Publication number
- JPS61192345A JPS61192345A JP60032643A JP3264385A JPS61192345A JP S61192345 A JPS61192345 A JP S61192345A JP 60032643 A JP60032643 A JP 60032643A JP 3264385 A JP3264385 A JP 3264385A JP S61192345 A JPS61192345 A JP S61192345A
- Authority
- JP
- Japan
- Prior art keywords
- carbide
- surface area
- specific surface
- powder
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は炭化物触媒の製造方法に係り、特に比表面積が
大きく触媒活性の高い炭化物触媒を製造する方法を提供
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing a carbide catalyst, and particularly provides a method for producing a carbide catalyst with a large specific surface area and high catalytic activity.
タングステンおよびモリブデンの炭化物の製造法は多く
の方法が知られているが、これらの炭化物を触媒として
使用する目的に適した比表面積の大きい炭化物を製造す
る方法としては英国特許第1347534号に記載のよ
うに」1記金属の酸化物を一酸化炭素ガスで炭化する方
法が提案されていた。Many methods are known for producing carbides of tungsten and molybdenum, but a method for producing carbides with a large specific surface area suitable for using these carbides as catalysts is the one described in British Patent No. 1347534. A method was proposed in which the oxides of the metals listed in No. 1 were carbonized using carbon monoxide gas.
本発明の目的は、比表面積が大きく、従って触媒活性の
高いタングステンおよび/またはモリブデンの炭化物の
製造方法を提供することにある。An object of the present invention is to provide a method for producing carbides of tungsten and/or molybdenum that have a large specific surface area and therefore a high catalytic activity.
タングステンまたはモリブデンをベース原子とし、リン
、ケイ素などをへテロ原子として含む多種のへトロポリ
酸が知られている。また炭素をヘテロ原子とするヘテロ
ポリ酸で見いだされている(特願昭59−104553
)。これらの物質は多量の結晶水あるいは水和水を含ん
でいるが、乾燥雰囲気に置かれて」1記の水分を失って
も分子構造は破壊されずに安定に保持する性質をもって
いる。このため水分を失った後は非常に微細な細孔を有
するようになり比表面積も増加する。ヘテロポリ酸のこ
のような性質に着目し、炭化物触媒の出発原料として用
いることにより比表面積が大きい上記触媒が調製できる
ことを見いだした。Various types of heteropolyacids are known which have tungsten or molybdenum as a base atom and contain phosphorus, silicon, etc. as heteroatoms. It has also been found in heteropolyacids having carbon as a heteroatom (Japanese Patent Application No. 104553/1989).
). Although these substances contain a large amount of crystal water or hydration water, they have the property of stably maintaining their molecular structure without being destroyed even if they lose water when placed in a dry atmosphere. Therefore, after losing water, it begins to have very fine pores and its specific surface area also increases. Focusing on these properties of heteropolyacids, the inventors have discovered that the above-mentioned catalysts having a large specific surface area can be prepared by using them as starting materials for carbide catalysts.
実施例1
炭化タングステン(WC)の粉末8gをビー力にとり、
これに1,5%のH2O2水溶液50m<1.を加える
と、H、、O,はWCの触媒作用により02を発生しな
がら分解し、同時にWCも分解しつつ溶解した。約15
時間でWCは完全に溶解し、前記特願昭59−1045
53記載の如く、ヘテロポリ酸の一種である。12タン
グスト炭酸の溶液が得られた。Example 1 8 g of tungsten carbide (WC) powder was taken as a beer force,
Add to this 50 m of 1.5% aqueous H2O2 solution <1. When added, H,,O, decomposed while generating 02 due to the catalytic action of WC, and at the same time, WC was also decomposed and dissolved. Approximately 15
The WC was completely dissolved in time, and
As described in No. 53, it is a type of heteropolyacid. A solution of 12 tungsten carbonate was obtained.
この溶液を90〜100℃に加熱しつつ乾燥すると褐色
の粉末が得られた。この粉末の比表面積をKrの吸着を
用いたBET法で測定したところ0.6m2 / gで
あった。上記粉末を電気炉中でCOガスを流しながら8
00 ℃に加熱してWC粉末を得た。When this solution was dried while heating at 90 to 100°C, a brown powder was obtained. The specific surface area of this powder was measured by the BET method using Kr adsorption and was found to be 0.6 m2/g. The above powder was heated in an electric furnace while flowing CO gas.
WC powder was obtained by heating to 00°C.
このWC粉末の比表面積は27m2/gであった。The specific surface area of this WC powder was 27 m2/g.
従来技術であるWO3をCOガスで炭化する方法(英特
許1347534号)、タングステン酸のアンモニウム
塩をCOガスで炭化する方法(特願昭57−55324
)はいずれも出発原料粉末の比表面積はそれぞれ0.7
,1.2m27 gと本発明のものに比べ高い値であっ
たが、800°Cで炭化して得られたWCの比表面積は
、WO3から出発したもので5.3rrr/g、アンモ
ニウム塩から出発したもので6.7rr?/gであった
。以−にの結果からも本発明によって得られたWCは従
来法に比べ極めて大きい比表面積を有することがわかる
。比表面積の増加に伴う触媒活性の変化を調べるため、
上記3種のWCを100■用いてテフロン結合法により
大きさ1dの電極を作製して、水の電解を行った。上記
WC電極を負荷とし、大きさ1−の白金板を正極として
希硫酸の電解を行ったところ、セル電圧1.6vにおい
て流れた電流は、本発明のWCで20mAに対し従来技
術のWCでは6mAの電流であった。これらの結果から
本発明によるWCは比表面積が増加した結果、触媒活性
が向上したことがわかる。Conventional techniques include a method of carbonizing WO3 with CO gas (British Patent No. 1347534) and a method of carbonizing ammonium salt of tungstic acid with CO gas (Japanese Patent Application No. 57-55324).
), the specific surface area of the starting raw material powder is 0.7.
, 1.2 m27 g, which is higher than that of the present invention, but the specific surface area of WC obtained by carbonization at 800°C was 5.3 rrr/g starting from WO3, and 5.3 rrr/g starting from ammonium salt. 6.7rr for the departure? /g. It can be seen from the above results that the WC obtained by the present invention has an extremely large specific surface area compared to the conventional method. To investigate the change in catalytic activity as the specific surface area increases,
An electrode having a size of 1 d was prepared using 100 μm of the above three types of WC by the Teflon bonding method, and water electrolysis was performed using the electrode. When dilute sulfuric acid was electrolyzed using the above WC electrode as a load and a platinum plate of size 1 as the positive electrode, the current flowing at a cell voltage of 1.6 V was 20 mA in the WC of the present invention, whereas in the conventional WC. The current was 6 mA. From these results, it can be seen that the WC according to the present invention has an increased specific surface area and as a result has improved catalytic activity.
実施例2
Mo2Cの粉末にH2O2溶液を加えると、実施例1に
示したWCの場合と同様に溶解した。Example 2 When a H2O2 solution was added to the Mo2C powder, it dissolved similarly to the case of WC shown in Example 1.
MO2CおよびWCを溶解したそれぞれの溶液を混合し
、WとMOを原子比で1=1の割合で含む溶液とした。The respective solutions in which MO2C and WC were dissolved were mixed to form a solution containing W and MO in an atomic ratio of 1=1.
この溶液を実施例1と同様の方法で乾燥しCO気流中8
00℃で炭化し、複炭化物Wo 、、、M o o 、
s Cを得た。この比表面積は1!1rrr/gであっ
た。This solution was dried in the same manner as in Example 1 for 8 hours in a CO stream.
Carbonized at 00°C to form double carbide Wo , , Mo o ,
I got sC. The specific surface area was 1!1rrr/g.
上記複炭化物の微粉末を得る従来法としてタングステン
酸およびモリブデン酸のアンモニア水溶液を凍結乾燥し
て得られたアンモニウム塩の粉末をCO気流中800℃
で炭化して得られた複炭化物W。、、Mo。、5Cの比
表面積は6.1nf/gであった。As a conventional method for obtaining fine powder of the double carbide mentioned above, ammonium salt powder obtained by freeze-drying an ammonia aqueous solution of tungstic acid and molybdic acid was heated at 800°C in a CO gas stream.
Double carbide W obtained by carbonization. ,,Mo. , 5C had a specific surface area of 6.1 nf/g.
これらの炭化物200mgを用いて実施例1と同様の方
法で1dの電極を作製し、メタノールの電解酸化に対す
る活性の比較を行なった。測定に用いた電解液はIMH
,SO2とIMCH,OHを含む50℃の水溶液で、電
極電位0.5V (対可逆水素電極)における電流値を
測定した。その結果は、本発明の触媒を用いた電極で6
mAのメタノール酸化電流が得られた。アンモニウム塩
から出発した触媒を用いた電極では2mAであったので
、これと比較して触媒活性が3倍向」ニした。これは上
記のように触媒粉末の比表面積が3倍に向上したためで
ある。A 1d electrode was prepared using 200 mg of these carbides in the same manner as in Example 1, and the activity for electrolytic oxidation of methanol was compared. The electrolyte used in the measurement was IMH
, SO2 and IMCH, OH at 50° C., the current value at an electrode potential of 0.5 V (vs. reversible hydrogen electrode) was measured. The results showed that the electrode using the catalyst of the present invention
A methanol oxidation current of mA was obtained. Compared to an electrode using a catalyst starting from an ammonium salt, which had a current of 2 mA, the catalytic activity was increased by three times. This is because the specific surface area of the catalyst powder was increased three times as described above.
実施例3
12タングストリン酸および12モリブドリン酸の水溶
液を混合して、原子比で1:1のWとMoを含む溶液と
した。以下実施例2と同様の方法で複炭化物W。、、M
oo、5Gを得た。しの炭化物の比表面面積は1.8r
rr/gで、実施例2とほぼ同等の値が得られた。メタ
ノールの電解酸化に対しても実施例2と同様の測定を行
い、従来法に比べ3倍高い6mAの酸化電流が得られた
。Example 3 Aqueous solutions of 12-tungstophosphoric acid and 12-molybdophosphoric acid were mixed to form a solution containing W and Mo in an atomic ratio of 1:1. Double carbide W was then prepared in the same manner as in Example 2. ,,M
oo, we got 5G. The specific surface area of the carbide is 1.8r
Almost the same value as in Example 2 was obtained in rr/g. The same measurements as in Example 2 were performed for electrolytic oxidation of methanol, and an oxidation current of 6 mA, three times higher than that of the conventional method, was obtained.
以上に述べたように本発明によれば、比表面積の大きい
炭化物粉末を得ることができ、これら炭化物の触媒活性
を高めることができる。炭化物触媒は白金に替る触媒と
して燃料電池の電極触媒、光電気化学反応触媒、有機合
成反応触媒等に使用されており、その工業的価値は極め
て大きい。As described above, according to the present invention, carbide powder with a large specific surface area can be obtained, and the catalytic activity of these carbides can be increased. Carbide catalysts are used as catalysts to replace platinum in fuel cell electrode catalysts, photoelectrochemical reaction catalysts, organic synthesis reaction catalysts, etc., and their industrial value is extremely large.
Claims (1)
ポリ酸を出発物質とし、CO、CH_4などの炭化剤で
炭化することを特徴とする炭化物触媒の製造方法。 2、上記ヘテロポリ酸は炭素をヘテロ原子とするヘテロ
ポリ酸であることを特徴とする第1項記載の炭化物触媒
の製造方法。[Claims] 1. A method for producing a carbide catalyst, which uses a tungsten and/or molybdenum heteropolyacid as a starting material and carbonizes it with a carbonizing agent such as CO or CH_4. 2. The method for producing a carbide catalyst according to item 1, wherein the heteropolyacid is a heteropolyacid having carbon as a heteroatom.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60032643A JPS61192345A (en) | 1985-02-22 | 1985-02-22 | Preparation of carbide catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60032643A JPS61192345A (en) | 1985-02-22 | 1985-02-22 | Preparation of carbide catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61192345A true JPS61192345A (en) | 1986-08-26 |
Family
ID=12364529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60032643A Pending JPS61192345A (en) | 1985-02-22 | 1985-02-22 | Preparation of carbide catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61192345A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5246685A (en) * | 1992-08-21 | 1993-09-21 | Akzo N.V. | Group VIB metal carbides from metal salicylate precursors |
WO2004045009A1 (en) * | 2002-11-13 | 2004-05-27 | National Institute Of Advanced Industrial Science And Technology | Catalyst for fuel cell and electrode using the same |
CN104368370A (en) * | 2014-09-30 | 2015-02-25 | 西北有色金属研究院 | Preparation method of supported molybdenum carbide catalyst |
-
1985
- 1985-02-22 JP JP60032643A patent/JPS61192345A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5246685A (en) * | 1992-08-21 | 1993-09-21 | Akzo N.V. | Group VIB metal carbides from metal salicylate precursors |
WO2004045009A1 (en) * | 2002-11-13 | 2004-05-27 | National Institute Of Advanced Industrial Science And Technology | Catalyst for fuel cell and electrode using the same |
CN104368370A (en) * | 2014-09-30 | 2015-02-25 | 西北有色金属研究院 | Preparation method of supported molybdenum carbide catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Efficient and durable N 2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst | |
Xu et al. | Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies | |
Shiraishi et al. | Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency | |
Li et al. | 3D hollow Co–Fe–P nanoframes immobilized on N, P-doped CNT as an efficient electrocatalyst for overall water splitting | |
Fang et al. | Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst | |
Zhao et al. | An oxygen vacancy-rich two-dimensional Au/TiO 2 hybrid for synergistically enhanced electrochemical N 2 activation and reduction | |
EP2959970B1 (en) | Carbon material for catalyst support use | |
Devadas et al. | Tailoring of RuO2 nanoparticles by microwave assisted “Instant method” for energy storage applications | |
Šljukić et al. | An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes | |
Chen et al. | Modulating oxygen vacancies of TiO2 nanospheres by Mn-doping to boost electrocatalytic N2 reduction | |
Fang et al. | Hydrophilic engineering of VO x-based nanosheets for ambient electrochemical ammonia synthesis at neutral pH | |
KR102129274B1 (en) | Method for Preparing Metal Composite Oxides Using Deep Eutectic Solvent | |
Ahmad et al. | Hydrothermally grown novel pyramids of the CaTiO 3 perovskite as an efficient electrode modifier for sensing applications | |
Ding et al. | Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor | |
Wondimu et al. | High catalytic activity of oxygen-vacancy-rich tungsten oxide nanowires supported by nitrogen-doped reduced graphene oxide for the hydrogen evolution reaction | |
Wan et al. | Advanced hematite nanomaterials for newly emerging applications | |
WO2020115758A1 (en) | Fe/Fe3C ENCAPSULATED N-CNT ELECTRODE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD OF PREPARATION THEREOF | |
Wiesener | The electrochemical oxidation of sulphur dioxide at porous catalysed carbon electrodes in sulphuric acid | |
CN102257182B (en) | Electrochemical method for reducing molecular oxygen | |
Qi et al. | Fabrication and characterization of the porous Ti4O7 reactive electrochemical membrane | |
Castaño et al. | Synthesis and Electrochemical Applications of Carbon Nano-onions | |
Chowdhury et al. | A simple template-free bioinspired route of 1D Bi2S3 nanorods synthesis for electrochemical CO2 reduction to formate | |
JP2000273351A (en) | Preparation of graphitized carbon black | |
US3943005A (en) | Process for the manufacture of an electrode material containing silver and tungsten carbide | |
JPS61192345A (en) | Preparation of carbide catalyst |