JPS61192324A - 圧縮ガス除湿装置 - Google Patents
圧縮ガス除湿装置Info
- Publication number
- JPS61192324A JPS61192324A JP60033547A JP3354785A JPS61192324A JP S61192324 A JPS61192324 A JP S61192324A JP 60033547 A JP60033547 A JP 60033547A JP 3354785 A JP3354785 A JP 3354785A JP S61192324 A JPS61192324 A JP S61192324A
- Authority
- JP
- Japan
- Prior art keywords
- desiccant
- compressed gas
- cylinder
- gas
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/16—Filtration; Moisture separation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
- Drying Of Gases (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔概要〕
圧縮ガスを除湿する装置において、乾燥剤(例えば活性
アルミナ、シリカゲル、モレキュラシーブス等)と冷凍
機を組み合わせることによって、ランニングコストが安
く、しかも低露点(−40℃以下)が得られる圧縮ガス
除湿装置を実現するものである。
アルミナ、シリカゲル、モレキュラシーブス等)と冷凍
機を組み合わせることによって、ランニングコストが安
く、しかも低露点(−40℃以下)が得られる圧縮ガス
除湿装置を実現するものである。
空気圧機器を駆動するための圧縮空気などの圧縮ガスは
、湿度が高いと空気圧機器を劣化させるなどの問題があ
るので、除湿を行なってから、空気圧機器に供給するこ
とが行なわれている。本発明は、このように圧縮ガスの
除湿乾燥を行う装置に関する。
、湿度が高いと空気圧機器を劣化させるなどの問題があ
るので、除湿を行なってから、空気圧機器に供給するこ
とが行なわれている。本発明は、このように圧縮ガスの
除湿乾燥を行う装置に関する。
圧縮ガスの除湿装置には、乾燥剤(例えば活性アルミナ
、シリカゲル、モレキュラシーブス等)を利用した乾燥
剤式除湿装置、冷凍機を利用した冷凍式除湿装置、吸収
剤を利用した吸収式除湿装置、潮解剤を利用した潮解式
除湿装置等がある。
、シリカゲル、モレキュラシーブス等)を利用した乾燥
剤式除湿装置、冷凍機を利用した冷凍式除湿装置、吸収
剤を利用した吸収式除湿装置、潮解剤を利用した潮解式
除湿装置等がある。
これらは、圧縮ガスの除湿の程度によってそれぞれ使い
分けされてきている。
分けされてきている。
その中でも、乾燥剤式は乾燥剤に水分を吸着させること
によって低露点(−40℃以下)の圧縮ガスを得るため
に使用されるが、その乾燥剤は再生する必要がある。再
生方法は、処理されたガスの一部を使用する方法、ある
いは処理されたガスの一部とヒータの熱を合わせて使用
する方法などがある。しかしいずれの方法も、ランニン
グコストは他の方式に比べて高い。
によって低露点(−40℃以下)の圧縮ガスを得るため
に使用されるが、その乾燥剤は再生する必要がある。再
生方法は、処理されたガスの一部を使用する方法、ある
いは処理されたガスの一部とヒータの熱を合わせて使用
する方法などがある。しかしいずれの方法も、ランニン
グコストは他の方式に比べて高い。
冷凍式は圧縮ガスを冷やして除湿する方法であるが、水
分が凍結しないような温度までしか冷やすことができな
い。一般には加圧露点で5〜10℃までである。
分が凍結しないような温度までしか冷やすことができな
い。一般には加圧露点で5〜10℃までである。
本発明の技術的課題は、従来の乾燥剤式除湿装置の低露
点が得られ易いという特長を失うことなく、冷凍機を組
合せることにより、ランニングコストを安くできるよう
にすることにある。
点が得られ易いという特長を失うことなく、冷凍機を組
合せることにより、ランニングコストを安くできるよう
にすることにある。
〔問題点を解決するための手段〕
この問題点を解決するために講じた本発明による技術的
手段は、高温多湿の圧縮ガスを冷媒で冷却を行う冷却器
と、冷媒の高温ガスで、冷却・除湿後の圧縮ガスを加熱
する再熱器との間に、2組の乾燥剤室(筒)を並列に配
管接続し、冷凍用圧縮機と前記再熱器との間に、2つの
乾燥剤筒中に配設されたそれぞれの加熱管を接続すると
共に、冷凍用圧縮機を2つの加熱管に交互に切り換える
切換弁を配設し、 片方の乾燥剤筒で除湿を行なっている間に、他方の乾燥
剤筒では高温冷媒ガスによって乾燥剤の加熱再生を行う
という処理を、交互に行なえるように管路を選択する弁
手段を備えている構成を採っている。
手段は、高温多湿の圧縮ガスを冷媒で冷却を行う冷却器
と、冷媒の高温ガスで、冷却・除湿後の圧縮ガスを加熱
する再熱器との間に、2組の乾燥剤室(筒)を並列に配
管接続し、冷凍用圧縮機と前記再熱器との間に、2つの
乾燥剤筒中に配設されたそれぞれの加熱管を接続すると
共に、冷凍用圧縮機を2つの加熱管に交互に切り換える
切換弁を配設し、 片方の乾燥剤筒で除湿を行なっている間に、他方の乾燥
剤筒では高温冷媒ガスによって乾燥剤の加熱再生を行う
という処理を、交互に行なえるように管路を選択する弁
手段を備えている構成を採っている。
この技術的手段によれば、2つの乾燥剤筒を用意し、切
換弁によって交互に切換え、片方の乾燥剤筒で圧縮ガス
の除湿を行なっている間に、他方の乾燥剤筒では乾燥剤
の再生が行なわれる。
換弁によって交互に切換え、片方の乾燥剤筒で圧縮ガス
の除湿を行なっている間に、他方の乾燥剤筒では乾燥剤
の再生が行なわれる。
すなわち冷凍用圧縮機で加圧された高温冷媒ガスは、そ
れぞれの乾燥剤筒中の加熱管を経由して、除湿後の低温
圧縮ガスを加熱する再熱器に供給され、該再熱器で凝縮
した冷媒は、膨張弁で冷媒ガスとなって、流入口から流
入した高温多湿の圧縮ガスを冷却器で冷却する。冷却器
で気化した冷媒ガスは、冷凍用圧縮機によって再び加圧
され、乾燥剤筒中の乾燥剤の再生に供される。ただしそ
れぞれの加熱管には、弁手段によって、交互に高温冷媒
ガスが供給され、圧縮ガスの除湿を行なっていない乾燥
剤筒のみ再生が行なわれる。
れぞれの乾燥剤筒中の加熱管を経由して、除湿後の低温
圧縮ガスを加熱する再熱器に供給され、該再熱器で凝縮
した冷媒は、膨張弁で冷媒ガスとなって、流入口から流
入した高温多湿の圧縮ガスを冷却器で冷却する。冷却器
で気化した冷媒ガスは、冷凍用圧縮機によって再び加圧
され、乾燥剤筒中の乾燥剤の再生に供される。ただしそ
れぞれの加熱管には、弁手段によって、交互に高温冷媒
ガスが供給され、圧縮ガスの除湿を行なっていない乾燥
剤筒のみ再生が行なわれる。
冷却器で冷却された低温の圧縮ガスは、片方の乾燥剤筒
を通過することで、乾燥剤に更に水分が吸着され除湿さ
れる。除湿された低温圧縮ガスは、再熱器で加熱されて
から、流出口から流出する。
を通過することで、乾燥剤に更に水分が吸着され除湿さ
れる。除湿された低温圧縮ガスは、再熱器で加熱されて
から、流出口から流出する。
このとき他方の乾燥剤筒は、乾燥剤の再生が行なわれる
。すなわち他方の乾燥剤筒と冷却器との間は切換弁が閉
じて遮断され、該乾燥剤筒中の加熱管に、冷凍用圧縮機
から高温冷媒ガスが供給され、前工程における除湿で湿
った乾燥剤が乾燥され、再生が行なわれる。
。すなわち他方の乾燥剤筒と冷却器との間は切換弁が閉
じて遮断され、該乾燥剤筒中の加熱管に、冷凍用圧縮機
から高温冷媒ガスが供給され、前工程における除湿で湿
った乾燥剤が乾燥され、再生が行なわれる。
この工程で再生が終了すると、弁手段が自動的に動作し
て、再生が終了した乾燥剤筒で圧縮ガスの除湿が開始し
、他方の乾燥剤筒中の除湿工程によって湿った乾燥剤の
再生が開始する。
て、再生が終了した乾燥剤筒で圧縮ガスの除湿が開始し
、他方の乾燥剤筒中の除湿工程によって湿った乾燥剤の
再生が開始する。
次に本発明による圧縮ガス除湿装置が実際上どのように
具体化されるかを実施例で説明する。第1図は本発明に
よる圧縮ガス除湿装置の実施例を示す配管図、第2図は
同装置における各工程を示すタイムチャートである。1
は圧縮ガスの流入口、2は流出口であり、流入口1には
、圧縮機から高温多湿の圧縮ガスが供給され、流出口2
から除湿後の低温圧縮ガスが空気圧機器に供給される。
具体化されるかを実施例で説明する。第1図は本発明に
よる圧縮ガス除湿装置の実施例を示す配管図、第2図は
同装置における各工程を示すタイムチャートである。1
は圧縮ガスの流入口、2は流出口であり、流入口1には
、圧縮機から高温多湿の圧縮ガスが供給され、流出口2
から除湿後の低温圧縮ガスが空気圧機器に供給される。
流入口1に流入した高温多湿の圧縮ガスは、冷却器16
で冷媒によって冷却され、発生したドレンはドレン分離
器20で分離除去される。ドレン分離器20と流出口2
側の再熱器14との間には、乾燥剤=6− 筒A、Bが配設され、配管接続されている。ドレン分離
器20と乾燥剤筒A、B間には、切換弁3.4が配設さ
れ、乾燥剤筒A、Bと消音器10との間には、切換弁5
.6が配設されている。
で冷媒によって冷却され、発生したドレンはドレン分離
器20で分離除去される。ドレン分離器20と流出口2
側の再熱器14との間には、乾燥剤=6− 筒A、Bが配設され、配管接続されている。ドレン分離
器20と乾燥剤筒A、B間には、切換弁3.4が配設さ
れ、乾燥剤筒A、Bと消音器10との間には、切換弁5
.6が配設されている。
再熱器14は、除湿後の圧縮ガスを再熱するためのもの
で、冷凍機圧縮機11で圧縮された高温冷媒で加熱され
る。この再熱器14と乾燥剤筒A、Bとの間に、逆止弁
7.8が配設され、また乾燥剤筒Aと8間は、オリフィ
ス板9を介して接続されている。
で、冷凍機圧縮機11で圧縮された高温冷媒で加熱され
る。この再熱器14と乾燥剤筒A、Bとの間に、逆止弁
7.8が配設され、また乾燥剤筒Aと8間は、オリフィ
ス板9を介して接続されている。
以上は圧縮ガス回路であり、各配管において、2本線の
矢印は水分の吸着工程、実線矢印は加熱再生工程、破線
矢印は冷却工程をそれぞれ示している。
矢印は水分の吸着工程、実線矢印は加熱再生工程、破線
矢印は冷却工程をそれぞれ示している。
冷媒回路は、冷凍用圧縮IJIIII−切換弁17−再
熱器14−膨張弁15−冷却器16−冷凍用圧縮tJ3
111、の循環回路と成っている。ただし冷凍用圧縮機
11の出口側は、切換弁18.19とも接続されており
、該切換弁18.19を開閉することで、乾燥剤筒A、
B中の加熱管12.13にも高温冷媒ガスが供給される
。
熱器14−膨張弁15−冷却器16−冷凍用圧縮tJ3
111、の循環回路と成っている。ただし冷凍用圧縮機
11の出口側は、切換弁18.19とも接続されており
、該切換弁18.19を開閉することで、乾燥剤筒A、
B中の加熱管12.13にも高温冷媒ガスが供給される
。
したがって冷凍用圧縮tallで加圧された高温冷媒ガ
スが、加熱管12または13を通過することで、乾燥剤
筒A、B中の乾燥剤を加熱乾燥さセた後、再熱器14に
おいて、除湿後の低温圧縮ガスを加熱して、除湿圧縮ガ
スを再熱する。またこのとき除湿圧縮ガスで冷媒が冷却
されて凝縮し、膨張弁15に供給される。膨張弁15を
通過した低温冷媒ガスが冷却器16に供給されて、流入
口1から流入した高温多湿の圧縮ガスを冷却する。これ
によって気化した冷媒ガスは、冷凍用圧縮機11に戻さ
れて再び加圧される。
スが、加熱管12または13を通過することで、乾燥剤
筒A、B中の乾燥剤を加熱乾燥さセた後、再熱器14に
おいて、除湿後の低温圧縮ガスを加熱して、除湿圧縮ガ
スを再熱する。またこのとき除湿圧縮ガスで冷媒が冷却
されて凝縮し、膨張弁15に供給される。膨張弁15を
通過した低温冷媒ガスが冷却器16に供給されて、流入
口1から流入した高温多湿の圧縮ガスを冷却する。これ
によって気化した冷媒ガスは、冷凍用圧縮機11に戻さ
れて再び加圧される。
この装置は、第2図に示すように、乾燥剤筒Aで圧縮ガ
スの除湿処理をしている間に、乾燥剤筒Bでは乾燥剤の
加熱再生と、冷却が行なわれ、次いで乾燥剤筒Bで圧縮
ガスの除湿処理をしている間に、乾燥剤筒Aでは乾燥剤
の加熱再生と、冷却が行なわれる。
スの除湿処理をしている間に、乾燥剤筒Bでは乾燥剤の
加熱再生と、冷却が行なわれ、次いで乾燥剤筒Bで圧縮
ガスの除湿処理をしている間に、乾燥剤筒Aでは乾燥剤
の加熱再生と、冷却が行なわれる。
+11乾燥剤筒Aの吸着工程、乾燥剤筒Bの加熱再生工
程 切換弁3.6.19を開、切換弁4.5.17.18を
閉とすることにより、乾燥剤筒Aにおいて圧縮ガスの除
湿が行なわれている間に、他方の乾燥剤筒Bでは、乾燥
剤の加熱再生が行なわれる。
程 切換弁3.6.19を開、切換弁4.5.17.18を
閉とすることにより、乾燥剤筒Aにおいて圧縮ガスの除
湿が行なわれている間に、他方の乾燥剤筒Bでは、乾燥
剤の加熱再生が行なわれる。
いま流入口1から入ってきた高温多湿の圧縮ガスは、冷
却器16の中で、膨張弁15から供給された低温冷媒ガ
スにより5〜10℃まで冷却され、低温の圧縮ガスとな
る。次いでドレン分離器20で水滴が除去されて、切換
弁3を通り、乾燥剤筒Aの中に入り、そこで乾燥剤が圧
縮ガス中の水分を吸着し、低露点となった圧縮ガスは逆
止弁7を通って再熱器14に入り、冷媒回路の高温冷媒
ガスにより加熱され、流出口2へと出ていく。
却器16の中で、膨張弁15から供給された低温冷媒ガ
スにより5〜10℃まで冷却され、低温の圧縮ガスとな
る。次いでドレン分離器20で水滴が除去されて、切換
弁3を通り、乾燥剤筒Aの中に入り、そこで乾燥剤が圧
縮ガス中の水分を吸着し、低露点となった圧縮ガスは逆
止弁7を通って再熱器14に入り、冷媒回路の高温冷媒
ガスにより加熱され、流出口2へと出ていく。
また乾燥剤筒Aを出た低露点となった圧縮ガスの一部は
オリフィス板9を通り減圧されて、他方の乾燥剤筒Bへ
入り、前工程における吸着作用で湿っている乾燥剤から
水分を取って乾燥剤を再生した後、切換弁6、消音器1
0を通って系外へ排出される。乾燥剤筒B中の加熱管1
2は、冷媒回路の切換弁19が開いているために、冷凍
用圧縮機11から吐出された高温冷媒ガスで加熱されて
いる。その結果乾燥剤及び再生のための減圧ガスが加熱
され、再生効率を上げている。
オリフィス板9を通り減圧されて、他方の乾燥剤筒Bへ
入り、前工程における吸着作用で湿っている乾燥剤から
水分を取って乾燥剤を再生した後、切換弁6、消音器1
0を通って系外へ排出される。乾燥剤筒B中の加熱管1
2は、冷媒回路の切換弁19が開いているために、冷凍
用圧縮機11から吐出された高温冷媒ガスで加熱されて
いる。その結果乾燥剤及び再生のための減圧ガスが加熱
され、再生効率を上げている。
この工程における冷媒回路の冷媒の流れは、冷凍用圧縮
機11→切換弁19−加熱管12−再熱器14−膨張弁
15−冷却器16の順となり、乾燥剤筒B中の乾燥剤の
加熱再生が行なわれる。
機11→切換弁19−加熱管12−再熱器14−膨張弁
15−冷却器16の順となり、乾燥剤筒B中の乾燥剤の
加熱再生が行なわれる。
また冷却器16は、高温多湿の圧縮ガスを冷すことによ
り乾燥剤筒Aへ入る水分量を少なくすると共に、乾燥吸
着効率をあげている。再熱器14は、除湿後の低温圧縮
ガスの温度を上げることにより、相対湿度を更に下げ、
かつ空気圧機器に給気する配管の外周に結露を起こさせ
ないようにしている。
り乾燥剤筒Aへ入る水分量を少なくすると共に、乾燥吸
着効率をあげている。再熱器14は、除湿後の低温圧縮
ガスの温度を上げることにより、相対湿度を更に下げ、
かつ空気圧機器に給気する配管の外周に結露を起こさせ
ないようにしている。
(2)乾燥剤筒Aの吸着工程、乾燥剤筒Bの冷却再生工
程 前記のように乾燥剤筒Aで吸着除湿が、乾燥剤筒Bで加
熱再生が行なわれている間に、ある時間経過すると、自
動的に冷媒回路の切換弁19を閉じて、切換弁17を開
くことで、冷凍用圧縮tallから=10− 吐出した高温圧縮ガスは、加熱管12を通過しなくなる
。これによって乾燥剤筒B中の乾燥剤の加熱が中断され
、乾燥剤の冷却が行なわれる。このように、次の吸着工
程に入る前に、予め乾燥剤を冷却することにより、次の
工程における吸着効率が上がる。この工程における冷媒
回路の冷媒の流れは、冷凍用圧縮機11−切換弁17−
再熱器14−膨張弁15−1冷却器16である。
程 前記のように乾燥剤筒Aで吸着除湿が、乾燥剤筒Bで加
熱再生が行なわれている間に、ある時間経過すると、自
動的に冷媒回路の切換弁19を閉じて、切換弁17を開
くことで、冷凍用圧縮tallから=10− 吐出した高温圧縮ガスは、加熱管12を通過しなくなる
。これによって乾燥剤筒B中の乾燥剤の加熱が中断され
、乾燥剤の冷却が行なわれる。このように、次の吸着工
程に入る前に、予め乾燥剤を冷却することにより、次の
工程における吸着効率が上がる。この工程における冷媒
回路の冷媒の流れは、冷凍用圧縮機11−切換弁17−
再熱器14−膨張弁15−1冷却器16である。
(3)乾燥剤筒Bの吸着工程、乾燥剤筒Aの加熱再生工
程 乾燥剤筒Bにおける再生・冷却が終了し、乾燥剤筒Bに
よって除湿可能となると、今度は乾燥剤筒Bによって圧
縮ガスの除湿が行なわれ、乾燥剤筒A中の乾燥剤の再生
が行なわれる。そのために、前記(1)の工程とは全く
逆に、切換弁3.6.17.19が閉、切換弁4.5.
18が開に切り換わる。その結果、圧縮ガスの流れは流
入口1−冷却器16−ドレン分離器20→切換弁4→乾
燥剤筒B−逆止弁8−再熱器14となり、乾燥剤筒Bで
除湿された高温の圧縮ガスが流出口2がら空気圧機器に
供給される。
程 乾燥剤筒Bにおける再生・冷却が終了し、乾燥剤筒Bに
よって除湿可能となると、今度は乾燥剤筒Bによって圧
縮ガスの除湿が行なわれ、乾燥剤筒A中の乾燥剤の再生
が行なわれる。そのために、前記(1)の工程とは全く
逆に、切換弁3.6.17.19が閉、切換弁4.5.
18が開に切り換わる。その結果、圧縮ガスの流れは流
入口1−冷却器16−ドレン分離器20→切換弁4→乾
燥剤筒B−逆止弁8−再熱器14となり、乾燥剤筒Bで
除湿された高温の圧縮ガスが流出口2がら空気圧機器に
供給される。
乾燥剤筒Bを出て低露点となったガスの一部は、乾燥剤
筒B−オリフィス板9−乾燥剤筒A−切換弁5−消音器
1〇−系外の順に流れ、乾燥剤筒へにおける乾燥剤の再
生が行なわれる。冷媒回路の冷媒の流れは、冷凍用圧縮
機11−切換弁18−加熱管13−再熱器14−膨張弁
15−冷却器16−冷凍用圧縮機11の順に循環する。
筒B−オリフィス板9−乾燥剤筒A−切換弁5−消音器
1〇−系外の順に流れ、乾燥剤筒へにおける乾燥剤の再
生が行なわれる。冷媒回路の冷媒の流れは、冷凍用圧縮
機11−切換弁18−加熱管13−再熱器14−膨張弁
15−冷却器16−冷凍用圧縮機11の順に循環する。
その結果、冷凍用圧縮機11から吐出した高温冷媒ガス
で、乾燥剤筒A中の加熱管13が加熱されて、乾燥剤が
加熱再生される。
で、乾燥剤筒A中の加熱管13が加熱されて、乾燥剤が
加熱再生される。
(4)乾燥剤筒Bの吸着工程、乾燥剤筒Aの冷却工程
乾燥剤筒への加熱再生が終了すると、切換弁18を閉じ
て、切換弁17を開くことで、冷媒回路は再び、冷凍用
圧縮機11−切換弁17−1再熱器14−膨張弁15−
冷却器16−冷凍用圧縮tJ3111、の循環回路と成
って、高温冷媒ガスによる加熱管13の加熱は終了し、
冷却が行なわれる。そしてこの冷却が終了し、乾燥剤筒
Aが除湿可能となることで、両乾燥剤筒A、Bによる圧
縮ガスの除湿および乾燥剤の加熱再生、冷却の1サイク
ルが終了する。
て、切換弁17を開くことで、冷媒回路は再び、冷凍用
圧縮機11−切換弁17−1再熱器14−膨張弁15−
冷却器16−冷凍用圧縮tJ3111、の循環回路と成
って、高温冷媒ガスによる加熱管13の加熱は終了し、
冷却が行なわれる。そしてこの冷却が終了し、乾燥剤筒
Aが除湿可能となることで、両乾燥剤筒A、Bによる圧
縮ガスの除湿および乾燥剤の加熱再生、冷却の1サイク
ルが終了する。
そして再び(1)の工程にもどって、乾燥剤筒Bの加熱
再生動作に切り換わり、流入口1から流入した圧縮ガス
の除湿は、乾燥剤筒Aで行なわれる。
再生動作に切り換わり、流入口1から流入した圧縮ガス
の除湿は、乾燥剤筒Aで行なわれる。
なお加熱管12.13をヒートポンプとすることにより
、加熱、冷却を行なってもよい。これにより吸着効率は
一層向上する。
、加熱、冷却を行なってもよい。これにより吸着効率は
一層向上する。
以上のように本発明によれば、冷却器16により高温多
湿の圧縮ガスを冷却してから、乾燥剤筒に供給するため
、乾燥剤の必要量が従来の乾燥剤方式に比べて少なくな
り、大幅なコストダウンが可能となる。また冷凍機を組
合せることにより、乾燥剤の再生は、乾燥ガス(処理ガ
ス)のみを使用する場合の約1/3〜1/4倍のコスト
で済む。
湿の圧縮ガスを冷却してから、乾燥剤筒に供給するため
、乾燥剤の必要量が従来の乾燥剤方式に比べて少なくな
り、大幅なコストダウンが可能となる。また冷凍機を組
合せることにより、乾燥剤の再生は、乾燥ガス(処理ガ
ス)のみを使用する場合の約1/3〜1/4倍のコスト
で済む。
乾、環ガスとヒータ等の熱を併用する場合に比べると、
ヒータ等の熱源が不要で、乾燥剤の劣化も少なく、冷凍
機のランニングコストを加えても、装置としては従来以
下のランニングコストとなる。
ヒータ等の熱源が不要で、乾燥剤の劣化も少なく、冷凍
機のランニングコストを加えても、装置としては従来以
下のランニングコストとなる。
第1図は本発明による圧縮ガス除湿装置の実施例を示す
回路図、第2図は同装置の動作を示ずタイムチャートで
ある。 図において、A、Bは乾燥剤筒、11は冷凍用圧縮機、
12.13は加熱管、14は再熱器、15は膨張弁、1
6は冷却器、20はドレン分離器をそれぞれ示す。 特許出願人 シーケーデイ精機株式会社代理人 弁
理士 福 島 康 文 −14=
回路図、第2図は同装置の動作を示ずタイムチャートで
ある。 図において、A、Bは乾燥剤筒、11は冷凍用圧縮機、
12.13は加熱管、14は再熱器、15は膨張弁、1
6は冷却器、20はドレン分離器をそれぞれ示す。 特許出願人 シーケーデイ精機株式会社代理人 弁
理士 福 島 康 文 −14=
Claims (1)
- 【特許請求の範囲】 高温多湿の圧縮ガスを冷媒で冷却を行う冷却器と、冷媒
の高温ガスで、冷却・除湿後の圧縮ガスを加熱する再熱
器との間に、2組の乾燥剤室を並列に配管接続し、 冷凍用圧縮機と前記再熱器との間に、2つの乾燥剤室中
に配設されたそれぞれの加熱管を接続すると共に、冷凍
用圧縮機を2つの加熱管に交互に切り換える切換弁を配
設し、 片方の乾燥剤室で除湿を行なっている間に、他方の乾燥
剤室では高温冷媒ガスによって乾燥剤の加熱再生を行う
という処理を、交互に行なえるように管路を選択する弁
手段を備えていること、を特徴とする圧縮ガス除湿装置
。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60033547A JPS61192324A (ja) | 1985-02-21 | 1985-02-21 | 圧縮ガス除湿装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60033547A JPS61192324A (ja) | 1985-02-21 | 1985-02-21 | 圧縮ガス除湿装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61192324A true JPS61192324A (ja) | 1986-08-26 |
Family
ID=12389588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60033547A Pending JPS61192324A (ja) | 1985-02-21 | 1985-02-21 | 圧縮ガス除湿装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61192324A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61212313A (ja) * | 1985-03-19 | 1986-09-20 | Mitsubishi Heavy Ind Ltd | 除湿装置 |
JPS61230719A (ja) * | 1985-04-04 | 1986-10-15 | Mitsubishi Heavy Ind Ltd | 除湿装置 |
US4881958A (en) * | 1987-09-03 | 1989-11-21 | Siemens Aktiengesellschaft | Adsorption device for gas separation |
JP2012011343A (ja) * | 2010-07-02 | 2012-01-19 | Shinwa Controls Co Ltd | 低露点空気発生装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245762A (en) * | 1975-10-08 | 1977-04-11 | Orion Mach Co Ltd | Dehumidifying drier |
JPS5647728B2 (ja) * | 1974-02-01 | 1981-11-11 |
-
1985
- 1985-02-21 JP JP60033547A patent/JPS61192324A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5647728B2 (ja) * | 1974-02-01 | 1981-11-11 | ||
JPS5245762A (en) * | 1975-10-08 | 1977-04-11 | Orion Mach Co Ltd | Dehumidifying drier |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61212313A (ja) * | 1985-03-19 | 1986-09-20 | Mitsubishi Heavy Ind Ltd | 除湿装置 |
JPS61230719A (ja) * | 1985-04-04 | 1986-10-15 | Mitsubishi Heavy Ind Ltd | 除湿装置 |
US4881958A (en) * | 1987-09-03 | 1989-11-21 | Siemens Aktiengesellschaft | Adsorption device for gas separation |
JP2012011343A (ja) * | 2010-07-02 | 2012-01-19 | Shinwa Controls Co Ltd | 低露点空気発生装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2057920C (en) | Desiccant gas drying system | |
US6221130B1 (en) | Method of compressing and drying a gas and apparatus for use therein | |
KR100510774B1 (ko) | 복합식 제습냉방시스템 | |
KR100943285B1 (ko) | 하이브리드 데시칸트 제습 장치 및 그 제어방법 | |
CN105143779A (zh) | 除湿装置 | |
JPH1028832A (ja) | コンプレッサにより圧搾されたガスの乾燥方法及び装置 | |
KR100793980B1 (ko) | 압축열을 이용한 퍼지 방식 및 넌 퍼지 방식 겸용 흡착식제습시스템 | |
CN208626969U (zh) | 一种冷冻-微热再生吸附式组合干燥装置 | |
JPH08141353A (ja) | 除湿装置 | |
JP7442984B2 (ja) | 除湿装置 | |
JPS61192324A (ja) | 圧縮ガス除湿装置 | |
JP2011177632A (ja) | 圧縮気体の除湿方法及びその装置 | |
CN114719459A (zh) | 复叠热泵驱动的深度除湿系统及应用 | |
KR101466059B1 (ko) | 압축기 폐열원을 이용한 대용량 에어 드라이어의 진공재생장치 | |
JP3560004B2 (ja) | 水分・炭酸ガスの除去方法及び装置 | |
JP2002257376A (ja) | 除湿装置 | |
JPS61212313A (ja) | 除湿装置 | |
JP2004294023A (ja) | 冷媒ヒートポンプと吸着式ヒートポンプを組み合わせたハイブリッド空調システム | |
JPS61238323A (ja) | 吸着式圧縮空気除湿装置 | |
JPH0127770B2 (ja) | ||
JPS6271512A (ja) | 吸着ないし吸収装置 | |
JPH09122432A (ja) | 圧力スイング吸着法によるガス分離装置 | |
JPS61238321A (ja) | 吸着式圧縮空気除湿装置 | |
JPS61230719A (ja) | 除湿装置 | |
SU1690826A1 (ru) | Установка адсорбционной осушки газов |