JPS61191952A - Absolute humidity output apparatus - Google Patents

Absolute humidity output apparatus

Info

Publication number
JPS61191952A
JPS61191952A JP3213185A JP3213185A JPS61191952A JP S61191952 A JPS61191952 A JP S61191952A JP 3213185 A JP3213185 A JP 3213185A JP 3213185 A JP3213185 A JP 3213185A JP S61191952 A JPS61191952 A JP S61191952A
Authority
JP
Japan
Prior art keywords
temperature
signal
humidity
absolute humidity
relative humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213185A
Other languages
Japanese (ja)
Inventor
Tooru Onouchi
徹 小野内
Keijiro Mori
森 継治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP3213185A priority Critical patent/JPS61191952A/en
Publication of JPS61191952A publication Critical patent/JPS61191952A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers

Abstract

PURPOSE:To elevate the computing speed while simplifying the circuitry of an arithmetic unit, by computing an absolute humidity from a dry bulb temperature and relative humidity by a specified simple formula. CONSTITUTION:A moisture signal voltage output section 1 outputs a voltage represented by a linear function with the relative humidity phi from a humidity signal output section 5 as variable and a temperature signal voltage output section 2 changes the amplication factor based on a resistance represented by a linear function with the dry bulb temperature (t) from a temperature signal output section 6 as variable. A multiplier 3 multiplies a temperature output signal and a relative humidity output signal to output an absolute humidity (x) to an output section 4 as voltage value. Then, the absolute humidity (x) determined by an arithmetic unit A composed of output sections 1, 2 and 4 and multiplier 3 is obtained by computing the function x=atphi+bt+cphi+d expressed by constants (a), (b), (c) and (d), the relative humidity phi and the dry bulb temperature (t). Here, constants a-d can be obtained based on a moist air diagram and a basic formula for computing the absolute humidity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調の計測、制御分野において湿り空気の温
度、および相対湿度から絶対湿度を算出し、信号として
出力する絶対湿度出力装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an absolute humidity output device that calculates absolute humidity from the temperature of humid air and relative humidity and outputs it as a signal in the field of air conditioning measurement and control. .

従来の技術 従来、湿り空気の絶対湿度を計算で求める場合には一般
の空気調和で用いられる乾球温度、圧力の範囲内では次
の(イ)、(ロ)、(ハ)式から求めている。
Conventional technology Conventionally, when calculating the absolute humidity of humid air, within the range of dry bulb temperature and pressure used in general air conditioning, it is calculated from the following formulas (a), (b), and (c). There is.

X=O0622・ψ・h(の/(P−ψh(の    
 −・・・・・・・・−・・(イ)ここで、tは乾球温
度CC〕、ψは相対湿度〔チ〕、Xは絶対湿度〔kg/
/に9′〕、Tcは臨界温度、θは絶対温度と臨界温度
の比(−)、Pは大気圧(1rJH9)、PCは臨界圧
力、kl、9は定数である。すなわち、飽和蒸気圧の計
算式として、実用国際状態式の(ハ)式を(イ)式に代
入して、絶対湿度Xを求めていた。
X=O0622・ψ・h(of/(P−ψh(of
−・・・・・・・・・・(a) Here, t is the dry bulb temperature CC], ψ is the relative humidity [chi], and X is the absolute humidity [kg/
/9'], Tc is the critical temperature, θ is the ratio (-) of the absolute temperature to the critical temperature, P is the atmospheric pressure (1rJH9), PC is the critical pressure, and kl and 9 are constants. That is, as a calculation formula for the saturated vapor pressure, the absolute humidity X was obtained by substituting equation (c) of the practical international equation of state into equation (a).

発明が解決しようとする問題点 しかしながら、従来の方法では、絶対湿度Xを計算する
ために、乾球温度tと他のもう一つの環境要素、たとえ
ば相対湿度ψを測定し、計算の繁雑な実用国際状態式h
(の(ハ)式を用いて、絶対湿度Xを求めていたため、
計算に多大の労力を用していた。
Problems to be Solved by the Invention However, in the conventional method, in order to calculate the absolute humidity international state equation h
Since the absolute humidity X was calculated using the formula (c) of
It took a lot of effort to calculate.

本発明はかかる点に鑑みてなされたもので、環境要素と
して重要で、しかも測定容易な乾球温度Xと相対湿度ψ
とから、(イ)、(ロ)、(ハ)式による従来の複雑な
演算を行なうことなく、実用温度、湿度範囲内で空気線
図による読み取り値より精度の高い絶対湿度信号を出力
する絶対湿度出力装置を提供することを目的とするもの
である。
The present invention has been made in view of the above points, and the dry bulb temperature
Therefore, without performing the conventional complicated calculations using formulas (a), (b), and (c), the absolute The object of the present invention is to provide a humidity output device.

問題点を解決するための手段 この問題点を解決するために本発明は、相対湿度ψを信
号に変換する湿度信号出力部と、乾球温度tを信号に変
換する温度信号出力部と、この温度信号、および湿度信
号を入力とし、絶対湿度Xを定数c、b、c、dと相対
湿度ψと乾球温度tで表わされる関数x=atψ+bt
+cψ+dに基づき演算して信号を出力する演算器を備
えた構成である。
Means for Solving the Problem In order to solve this problem, the present invention provides a humidity signal output section that converts the relative humidity ψ into a signal, a temperature signal output section that converts the dry bulb temperature t into a signal, and a temperature signal output section that converts the dry bulb temperature t into a signal. A function x=atψ+bt with a temperature signal and a humidity signal as input, and absolute humidity X expressed by constants c, b, c, d, relative humidity ψ, and dry bulb temperature t.
The configuration includes an arithmetic unit that performs an arithmetic operation based on +cψ+d and outputs a signal.

作  用 以上の構成により、環境要素として重要で、しかも測定
容易な乾球温度tと相対湿度ψおよび定数c、b、c、
dの加算乗算により絶対湿度Iを簡単に計算することが
できる。
Effect With the above configuration, dry bulb temperature t, relative humidity ψ, and constants c, b, c,
The absolute humidity I can be easily calculated by adding and multiplying d.

実施例 以下本発明の一実施例を第1図〜第8図にもとづき説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 8.

第6図は湿り空気線図(i−X線図)、および絶対湿度
演算の基本式(イ)、(ロ)、(ハ)をもとにして、相
対湿度ψを一定としたときの絶対湿度Xの値を乾球温度
tに対してプロットしたものである。この場合、絶対湿
度Iは乾球温度の一次関数で近似できに)式で表わし得
る。
Figure 6 shows the absolute humidity when the relative humidity ψ is constant, based on the hygrodynamic diagram (i-X diagram) and the basic formulas (a), (b), and (c) for calculating absolute humidity. The value of humidity X is plotted against the dry bulb temperature t. In this case, the absolute humidity I cannot be approximated by a linear function of the dry bulb temperature, but can be expressed by the following equation.

x = mψ+n   ・・・・・・・・・・・・に)
ここでm 、 nは定数である。
x = mψ+n ・・・・・・・・・・・・)
Here, m and n are constants.

次に各温度ごとの係数m 、 nの補正を検討すると、
ある温度範囲t1〜t2において、第7図および第8図
に示すごとく、m 、 nともに温度tの一次関数の近
似式(ホ)、(へ)で表わすことができる。
Next, considering the correction of coefficients m and n for each temperature, we get
In a certain temperature range t1 to t2, as shown in FIGS. 7 and 8, both m and n can be expressed by approximations (E) and (E) of linear functions of temperature t.

m=at+c    ・・・◆・甲・・・・(ホ)n=
bt+d   ・・・・・・・・・・・・(へ)ここで
c、b、c、dは定数である。
m=at+c...◆・A...(E) n=
bt+d ・・・・・・・・・・・・(to) Here, c, b, c, and d are constants.

したがって、(ホ)、(へ)式をに)式に代入すれば、
(ト)式が得られる。
Therefore, by substituting the expressions (e) and (e) into the expression (i), we get
(g) Equation is obtained.

x  =  a  t  ψ+bt+cψ +d   
   ・・・・・・・・・・・・(ト)また、第6図の
t=20’Cの直線の式およびt=30℃の直線の式が
それぞれ !=1.44653X10 9)−9,62541X1
0−5t=20°C x=2.68621X10  ψ−3.25094X1
0−’t =3σC であり、これをt=20〜30’Cの範囲で各々求めて
グラフにしたものが第7図、第8図であるので、m 、
 nはそれぞれ m=1.23968X10 ’t−1.06181X1
0−’n=−2,2884X10”−5t+3゜721
19X10−’となる。
x = a t ψ + bt + c ψ + d
・・・・・・・・・・・・(G) Also, the equation of the straight line at t = 20'C and the equation of the straight line at t = 30°C in Figure 6 are respectively! =1.44653X109)-9,62541X1
0-5t=20°C x=2.68621X10 ψ-3.25094X1
0-'t = 3σC, and Figures 7 and 8 are graphs obtained by calculating this in the range of t = 20 to 30'C, so m,
n is m=1.23968X10 't-1.06181X1, respectively
0-'n=-2,2884X10"-5t+3°721
It becomes 19X10-'.

したがって、a % dの定数は a=1゜23968X10−5 b=−2,2884X10−5 c=−1,06181xlo−’ cl−3.72119X10 ’ となる。Therefore, the constant of a%d is a=1゜23968X10-5 b=-2,2884X10-5 c=-1,06181xlo-' cl-3.72119X10' becomes.

ここで上記定数a % dを(ト)式に代入して求めた
絶対湿度Xと基本式(イ)、(ロ)1(ハ)式による実
用国際状態式に基づく絶対湿度x0とを乾球温度t20
〜30’C1相対湿度ψ20〜100%の全範囲にわた
って比較した結果を表に示す。
Here, the absolute humidity X obtained by substituting the above constants a% d into equation (g) and the absolute humidity temperature t20
~30'C1 The results of comparison over the entire range of relative humidity ψ20 to 100% are shown in the table.

1o’x(kg/lca’) 上記表より絶対湿度XとIoの差は5400X10− 
’ kg/icg’以下となり実用の温度、相対湿度の
範囲内では十分に精度の高いものであることがわかる。
1o'x (kg/lca') From the above table, the difference between absolute humidity X and Io is 5400X10-
It can be seen that the accuracy is sufficiently high within the range of practical temperature and relative humidity as it is less than 'kg/icg'.

また、相対湿度範囲を変更して演算式(ホ))、(へ)
の各係数を求めることにより、演算の対象となる温度範
囲を容易に変更することができる。
Also, change the relative humidity range and use the calculation formula (e)), (f)
By determining each coefficient of , it is possible to easily change the temperature range subject to calculation.

また、(ト)式は x=a(t+p)(ψ+q)+r   −−−−−−−
−=(イ)但し、p==c/c、q=b/c、r=d−
apqで表わすことができる。この式に変形することに
より、回路構成上においては、tとψの一次関数をそれ
ぞれ出力する回路ととれらの出力を乗算する回路と、こ
の乗算した出力に定数を加算する回路を設ければ良くな
り、回路構成が簡単となる。
Also, equation (g) is x=a(t+p)(ψ+q)+r −−−−−−−
-=(a) However, p==c/c, q=b/c, r=d-
It can be expressed as apq. By transforming this equation, we can create a circuit with a circuit that outputs the linear functions of t and ψ, a circuit that multiplies their outputs, and a circuit that adds a constant to the multiplied output. The circuit configuration is simplified.

この演算式(7)で表わされる演算を行なう絶対湿度出
力装置の実施例を第1図〜第5図にもとづいて説明する
An embodiment of an absolute humidity output device that performs the calculation expressed by equation (7) will be described with reference to FIGS. 1 to 5.

第1図は本発明の一実施例の基本構成図で、1は湿度信
号電圧出力部で湿度信号出力部6からの相対湿度ψを変
数とする一次関数で表わされる電圧を出力するもので、
2は温度信号電圧出力部で温度信号出力部6からの乾球
温度tを変数とする一次関数で表わされる抵抗によって
増幅度を変化させるものであり、また3は乗算器で温度
出力信号と相対湿度出力信号との乗算を行なって絶対湿
度Xを電圧値として出力部4に出力する。そして湿度電
圧出力部1.温度信号電圧出力部21乗算器3および出
力部4より演算器Aが構成されている。
FIG. 1 is a basic configuration diagram of an embodiment of the present invention. Reference numeral 1 denotes a humidity signal voltage output section which outputs a voltage expressed by a linear function with the relative humidity ψ from the humidity signal output section 6 as a variable.
2 is a temperature signal voltage output section which changes the degree of amplification by a resistance expressed by a linear function with the dry bulb temperature t from the temperature signal output section 6 as a variable, and 3 is a multiplier that changes the amplification degree relative to the temperature output signal. The absolute humidity X is multiplied by the humidity output signal and outputted to the output section 4 as a voltage value. And humidity voltage output section 1. The temperature signal voltage output section 21, the multiplier 3, and the output section 4 constitute an arithmetic unit A.

さらに具体的な例を第2図において説明する。A more specific example will be explained with reference to FIG.

同図において、7は湿度変化を抵抗変化として検出する
抵抗8より成る湿度センサであり、端子9の電圧値は端
子10にかかる電圧を湿度センサ7および抵抗11の比
率に分割した値で、これにより相対湿度ψの一次関数が
構成され、湿度信号電圧出力となっている。12はオペ
アンプであり、反転入力端子に相対湿度ψの一次関数と
して表わされる電圧を入力すると、抵抗13およびサー
ミスタ14の合成抵抗16によって定まる増幅度に応じ
て電圧が端子16に出力される。ここでサーミスタ14
は温度センサであり、B定数の大なるサーミスタを用い
、温度tを変数とする一次関数で表わされる温度信号電
圧出力となっている。端子16の出力電圧は相対湿度ψ
を変数とする一次関数と、温度を変数とする一次関数の
乗算されたものが出力される。出力部4は近似計算式例
の定数加算部で、オペアンプ17を加算器として用いて
、端子16の電圧と端子18の電圧を加算する。
In the figure, 7 is a humidity sensor consisting of a resistor 8 that detects humidity changes as resistance changes, and the voltage value at terminal 9 is the value obtained by dividing the voltage applied to terminal 10 by the ratio of humidity sensor 7 and resistor 11. A linear function of the relative humidity ψ is constructed, and a humidity signal voltage is output. 12 is an operational amplifier, and when a voltage expressed as a linear function of relative humidity ψ is input to an inverting input terminal, a voltage is outputted to a terminal 16 according to an amplification degree determined by a combined resistance 16 of a resistor 13 and a thermistor 14. Here the thermistor 14
is a temperature sensor, which uses a thermistor with a large B constant and outputs a temperature signal voltage expressed by a linear function with temperature t as a variable. The output voltage at terminal 16 is relative humidity ψ
The product of the linear function with temperature as a variable and the linear function with temperature as a variable is output. The output section 4 is a constant addition section using an example of an approximate calculation formula, and adds the voltage at the terminal 16 and the voltage at the terminal 18 using the operational amplifier 17 as an adder.

その結果、端子19には近似計算式(ト)で表わされる
絶対湿度Xが電圧値として出力される。
As a result, the absolute humidity X expressed by the approximate calculation formula (g) is outputted to the terminal 19 as a voltage value.

第2図は本発明め第2の実施例を示すものであり、図中
B部は相対湿度信号電圧出力部であり、オペアンプ10
6の非反転入力側にコンデンサ107を接続し、負帰還
回路中に抵抗108を接続すると、オペアンプ106の
出力端子109からはコンデンサ107および抵抗1o
8の容量に反比例した一定周波数の方形波を発生する。
FIG. 2 shows a second embodiment of the present invention, and part B in the figure is a relative humidity signal voltage output part, and an operational amplifier 10.
When a capacitor 107 is connected to the non-inverting input side of the operational amplifier 6, and a resistor 108 is connected in the negative feedback circuit, the capacitor 107 and the resistor 108 are connected from the output terminal 109 of the operational amplifier 106.
A square wave with a constant frequency that is inversely proportional to the capacitance of 8 is generated.

端子109の電位が高い時のみトランジスタ110を通
して一定値のコレクタ電流が流れて、相対湿度変化を静
電容量変化として検出するコンデンサ111に充電する
とともに、コンデンサ112を充電および平滑する。一
方、コンデンサ112と電位は相対湿度ψを変数とする
一次関数で表わされる電位となる。
A collector current of a constant value flows through the transistor 110 only when the potential of the terminal 109 is high, charging a capacitor 111 that detects a change in relative humidity as a change in capacitance, and charging and smoothing a capacitor 112. On the other hand, the potential of the capacitor 112 is expressed by a linear function with relative humidity ψ as a variable.

0部は温度信号電圧出力部であり、合成抵抗115は温
度変化を抵抗変化として検出する抵抗116よりなる合
成抵抗で、端子117の電位は電源電圧を合成抵抗11
6と抵抗118との比率に分割した値である。すなわち
、端子117の電位は近似的に、抵抗116すなわち温
度変数の一次関数として表わすことが可能である。
The 0 part is a temperature signal voltage output part, the composite resistor 115 is a composite resistor consisting of a resistor 116 that detects temperature change as a resistance change, and the potential of the terminal 117 is the power supply voltage output part.
6 and the resistance 118. That is, the potential of the terminal 117 can be approximately expressed as a linear function of the resistance 116, that is, the temperature variable.

D部は乗算部で、FET119およびオペアンプ120
からなり、端子114および端子117の入力電圧の乗
算を行ない、抵抗121およびFET119によって定
まる増幅度に応じた電圧に増幅して端子122より出力
する。
The D section is a multiplication section, which includes a FET 119 and an operational amplifier 120.
It multiplies the input voltages at terminals 114 and 117, amplifies it to a voltage according to the amplification degree determined by resistor 121 and FET 119, and outputs it from terminal 122.

E部は加算部で端子122の電圧と電源電圧を抵抗12
3と抵抗124との比率に分割した一定の電圧との加算
器であるオペアンプ125から構成し、絶対湿度値を端
子126から電圧値とじて第4図は本発明の第3の実施
例を示すものであり、図中206は温度変化を抵抗変化
として検出する抵抗267よりなる合成抵抗である。端
子208の電圧値は端子209と210間の電圧を抵抗
206と抵抗211の抵抗値の比率に分割した値で、抵
抗207、すなわち温度を変数とする一次関数として表
わすことが可能である。オペアンプ212は同相増幅器
で非反転入力端子に温度の一次関数として表わされる電
圧を入力すると抵抗213および相対湿度変化を抵抗変
化として検出する抵抗214よジなる合成抵抗215に
よって定まる増幅度に応じた電圧が端子216に出力さ
れる。ここで合成抵抗216の値を、抵抗214すなわ
ち相対湿度の一次関数で表わされる抵抗値とすれば、端
子216の電圧は温度の一次関数と相対湿度の一次関数
の乗算で表わされる電圧値となる。オペアンプ217は
同相の加算器で、端子216の電圧値と、端子209お
よび210間の電圧を抵抗218と抵抗21°9の抵抗
値の比率に分割した電位を示す端子220の電圧値との
加算を行ない、端子221に電圧を出力する。すなわち
、端子221の電圧値は温度の一次関数と相対湿度の一
次関数との積の項と定数との和で表わされる絶対湿度値
の電圧値となる0 第5図は本発明の第4の実施例を示すもので、図中30
6は相対湿度変化を抵抗変化として検出する抵抗307
よりなる合成抵抗である。端子308の電圧値は端子3
09と310間の電圧を抵抗306と抵抗311の抵抗
値の比率に分割した値ヤ抵抗3o7、すなわち、相対湿
度を変数とする一次関数として表わすことが可能である
。オペアンプ312は同相増幅器で非反転入力端子に相
対湿度の一次関数として表わされる電圧を入力すると、
抵抗313.温度変化を抵抗変化として検出する抵抗3
14よりなる合成抵抗315および定電圧出力部316
によって定まる増幅度に応じた電圧か端子317に出力
される。
The E section is an adder section that connects the voltage at the terminal 122 and the power supply voltage to the resistor 12.
FIG. 4 shows a third embodiment of the present invention. In the figure, reference numeral 206 is a composite resistor consisting of a resistor 267 that detects temperature change as a resistance change. The voltage value at terminal 208 is a value obtained by dividing the voltage between terminals 209 and 210 into the ratio of the resistance values of resistor 206 and resistor 211, and can be expressed as a linear function with resistance 207, that is, temperature, as a variable. The operational amplifier 212 is a common-mode amplifier, and when a voltage expressed as a linear function of temperature is input to a non-inverting input terminal, a voltage corresponding to the amplification determined by a resistor 213 and a composite resistor 215 consisting of a resistor 214 that detects a change in relative humidity as a resistance change is generated. is output to terminal 216. If the value of the combined resistance 216 is the resistance value of the resistance 214, that is, the resistance value expressed by a linear function of relative humidity, then the voltage at the terminal 216 will be a voltage value expressed by the product of a linear function of temperature and a linear function of relative humidity. . The operational amplifier 217 is an in-phase adder that adds the voltage value at the terminal 216 and the voltage value at the terminal 220, which indicates the potential obtained by dividing the voltage between the terminals 209 and 210 into the ratio of the resistance values of the resistor 218 and the resistor 21°9. and outputs a voltage to the terminal 221. That is, the voltage value of the terminal 221 is the voltage value of the absolute humidity value expressed by the sum of the product term of the linear function of temperature and the linear function of relative humidity and a constant. 30 in the figure shows an example.
6 is a resistor 307 that detects a change in relative humidity as a change in resistance.
It is a composite resistance consisting of The voltage value of terminal 308 is terminal 3
The value obtained by dividing the voltage between 09 and 310 into the ratio of the resistance values of the resistor 306 and the resistor 311 can be expressed as the resistance 3o7, that is, as a linear function with relative humidity as a variable. The operational amplifier 312 is a common-mode amplifier, and when a voltage expressed as a linear function of relative humidity is input to the non-inverting input terminal,
Resistance 313. Resistor 3 that detects temperature changes as resistance changes
14 combined resistance 315 and constant voltage output section 316
A voltage corresponding to the amplification degree determined by is output to the terminal 317.

ここで合成抵抗315の値を抵抗314すなわち温度の
一次関数で表わせる抵抗値とすることは可能であるが、
定数項が、演算式(イ)の値と一致させることに容易で
ないため、抵抗と直列に定電圧出力部を入れることによ
って、定数項を容易に合わせることができる。したがっ
て端子317の電圧値は温度の一次関数と相対湿度の一
次関数の乗算で表わされる電圧となる。オペアンプ31
8は同相の加算器で、端子317の電圧値と、端子30
9および31o間の電圧を抵抗319と抵抗320の抵
抗値の比率に分割した電位を示す端子321の電圧値と
の加算を行ない、端子322に電圧値は温度の一次関数
と相対湿度の一次関数との積の項と定数項との和で表わ
される絶対湿度値の電圧値となる。
Here, it is possible to set the value of the combined resistance 315 to the resistance 314, that is, a resistance value that can be expressed as a linear function of temperature.
Since it is not easy to make the constant term match the value of equation (a), the constant term can be easily made to match by inserting a constant voltage output section in series with the resistor. Therefore, the voltage value at the terminal 317 is a voltage expressed by the product of a linear function of temperature and a linear function of relative humidity. operational amplifier 31
8 is an in-phase adder, which inputs the voltage value of terminal 317 and the voltage value of terminal 30.
The voltage value at terminal 321, which indicates the potential obtained by dividing the voltage between 9 and 31o into the ratio of the resistance values of resistor 319 and resistor 320, is added, and the voltage value at terminal 322 is a linear function of temperature and relative humidity. This is the voltage value of the absolute humidity value expressed as the sum of the product term and the constant term.

発明の効果 以上、実施例から明らかなように、本発明の絶対湿度出
力装置は相対湿度Iをx=atψ+bt+cψ+dなる
簡単な式により求めることができるため、この演算に使
用する演算器の回路構成を簡易にすることができるとと
もに、演算速度を向上させることができる。また、回路
中の定数を変更することにより、演算を対象とする温度
、湿度範囲を移動することが可能であることから、広範
囲にわたって使用可能となる。さらに、演算に必要な測
定・項目が乾球温度tと相対湿度ψという環境指数とし
て最も重要な要素であることから、空調制御に直接展開
でき、その効果は大なるものがある。
More than the effects of the invention, as is clear from the examples, the absolute humidity output device of the present invention can calculate the relative humidity I using the simple formula x = atψ + bt + cψ + d, so the circuit configuration of the arithmetic unit used for this calculation is It can be simplified and the calculation speed can be improved. Furthermore, by changing the constants in the circuit, it is possible to move the temperature and humidity range for calculation, making it possible to use it over a wide range of areas. Furthermore, since the measurements and items required for the calculation are the dry bulb temperature t and the relative humidity ψ, which are the most important environmental indexes, it can be directly applied to air conditioning control, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における絶対湿度出力装置の
構成を示すブロック図、第2図は同電気回路図、第3図
、第4図および第5図はそれぞれ本発明の他の実施例に
おける絶対湿度出力装置の電気回路図、第6図は相対湿
度Iと絶対湿度ψとの関係を示す図、第7図は乾球温度
tと係数mの関係を示す図、第8図は乾球温度tと係数
nとの関係を示す図である。 1・・・・・・湿度信号電圧出力部、2・・・・・・温
度信号電圧出力部、3・・・・・・乗算器、4・・・・
・・出力部、6・・・・・・湿度信号出力部、6・・・
・・・温度信号出力部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
2 図 第 4(!I 第5図 !s6図 朋前湿Aψ(割 第7図 れ球渇、7’1jit°ct
FIG. 1 is a block diagram showing the configuration of an absolute humidity output device according to an embodiment of the present invention, FIG. 2 is an electric circuit diagram of the same, and FIGS. 3, 4, and 5 are respectively other embodiments of the present invention. The electrical circuit diagram of the absolute humidity output device in the example, FIG. 6 is a diagram showing the relationship between relative humidity I and absolute humidity ψ, FIG. 7 is a diagram showing the relationship between dry bulb temperature t and coefficient m, and FIG. 8 is a diagram showing the relationship between relative humidity I and absolute humidity ψ. It is a figure showing the relationship between dry bulb temperature t and coefficient n. 1... Humidity signal voltage output section, 2... Temperature signal voltage output section, 3... Multiplier, 4...
... Output section, 6... Humidity signal output section, 6...
...Temperature signal output section. Name of agent: Patent attorney Toshio Nakao and one other name
2 Fig. 4 (! I Fig. 5! s6 Fig. Aψ

Claims (5)

【特許請求の範囲】[Claims] (1)相対湿度ψを信号に変換する湿度信号出力部と、
軟球温度を信号に変換する温度信号出力部と、前記湿度
信号と温度信号を入力し、絶対湿度xを、定数a、b、
c、dと相対湿度ψと軟球温度tで表わした関数、すな
わち、 x=atψ+bt+cψ+d に基づき演算して信号を出力し、所定の絶対湿度ψおよ
び乾球温度tの範囲内で、前記絶対湿度xが、軟球温度
tと臨界温度T_Cの比θ=(t+273.15)/T
_C、大気圧Pおよび飽和蒸気圧の実用国際状態式h(
θ)で表わされる実用国際状態式に基づく絶対湿度x_
0、すなわちx_0=(0.622ψh(θ))/(P
−ψh(θ))と誤差が大きくならないように前記定数
a、b、c、dを決定した演算器を備えた絶対湿度出力
装置。
(1) a humidity signal output section that converts relative humidity ψ into a signal;
A temperature signal output section that converts the soft bulb temperature into a signal, the humidity signal and the temperature signal are input, and the absolute humidity x is calculated by constants a, b,
A signal is calculated based on a function expressed by c, d, relative humidity ψ, and soft bulb temperature t, that is, x=atψ+bt+cψ+d, and the absolute humidity x is calculated within a predetermined range of absolute humidity ψ and dry bulb temperature t. However, the ratio between the soft ball temperature t and the critical temperature T_C is θ=(t+273.15)/T
Practical international equation of state h(
Absolute humidity x_ based on the practical international equation of state expressed as θ)
0, that is, x_0=(0.622ψh(θ))/(P
-ψh(θ)) and an absolute humidity output device comprising a computing unit that determines the constants a, b, c, and d so that the error does not become large.
(2)実用国際状態式に基づく絶対湿度x_0とx=a
tψ+bt+cψ+dより求まる絶対湿度xとの誤差が
(|x−x_0|)/(x_0)×100<5となるよ
うに定数a、b、c、dを決定した特許請求の範囲第1
項記載の絶対湿度出力装置。
(2) Absolute humidity x_0 and x=a based on the practical international equation of state
Claim 1 in which the constants a, b, c, and d are determined so that the error from the absolute humidity x determined from tψ+bt+cψ+d is (|x−x_0|)/(x_0)×100<5.
Absolute humidity output device as described in section.
(3)信号は電気信号とする特許請求の範囲第1項記載
の絶対湿度出力装置。
(3) The absolute humidity output device according to claim 1, wherein the signal is an electric signal.
(4)演算器は絶対湿度xをq=b/a、p=c/a、
r=d−apqとした定数を用いた関数x=a(t+p
)(ψ+q)+rで演算を行う特許請求の範囲第1項記
載の絶対湿度出力装置。
(4) The computing unit calculates the absolute humidity x by q=b/a, p=c/a,
Function x=a(t+p
)(ψ+q)+r. The absolute humidity output device according to claim 1.
(5)演算器は相対湿度変化を電圧変化に変換し、相対
湿度を変数とする一次関数で表わされる相対湿度信号電
圧出力部と、温度変化を抵抗変化に変換し、温度を変数
とする一次関数で表わされる抵抗によって増幅度を変化
させる温度信号電圧出力部を有し、温度出力信号と相対
湿度出力信号との乗算器で構成した特許請求の範囲第1
項記載の絶対湿度出力装置。
(5) The arithmetic unit converts relative humidity changes into voltage changes, and has a relative humidity signal voltage output section that is expressed as a linear function with relative humidity as a variable, and a relative humidity signal voltage output section that converts temperature changes into resistance changes and is expressed as a linear function that uses temperature as a variable. Claim 1 comprising a temperature signal voltage output section that changes the degree of amplification by a resistance expressed by a function, and comprising a multiplier for the temperature output signal and the relative humidity output signal.
Absolute humidity output device as described in section.
JP3213185A 1985-02-20 1985-02-20 Absolute humidity output apparatus Pending JPS61191952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213185A JPS61191952A (en) 1985-02-20 1985-02-20 Absolute humidity output apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213185A JPS61191952A (en) 1985-02-20 1985-02-20 Absolute humidity output apparatus

Publications (1)

Publication Number Publication Date
JPS61191952A true JPS61191952A (en) 1986-08-26

Family

ID=12350335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213185A Pending JPS61191952A (en) 1985-02-20 1985-02-20 Absolute humidity output apparatus

Country Status (1)

Country Link
JP (1) JPS61191952A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120157A (en) * 1982-01-11 1983-07-16 Matsushita Electric Ind Co Ltd Enthalpy-output device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120157A (en) * 1982-01-11 1983-07-16 Matsushita Electric Ind Co Ltd Enthalpy-output device

Similar Documents

Publication Publication Date Title
JPH0210896B2 (en)
JPH0373814B2 (en)
JPS61191952A (en) Absolute humidity output apparatus
JPS58122452A (en) Output apparatus for enthalpy
JPS628047A (en) Apparatus for outputting dew point temperature
JPS5925177B2 (en) Soutai Shitsudokei
JPS61274247A (en) Dew point temperature output unit
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
RU2025675C1 (en) Device for measuring temperature and temperature difference
JPH0431721A (en) Ic-type temperature sensor
JPH039023Y2 (en)
JPS6118453Y2 (en)
JPS6118452Y2 (en)
JPS58139018A (en) Enthalpy output device
SU564709A1 (en) Device for direct voltage amlification
JPS6152945B2 (en)
JPS58182526A (en) Enthalpy arithmetic device
JPS5975144A (en) Output device of relative humidity
PIEKARSKI et al. An analog multiplier based on field effect transistors
SU1644174A1 (en) Analog multiplication-division device
JPS63233357A (en) Dew point temperature output apparatus
SU705464A1 (en) Device for detecting modulus of alternating signal
JPS5942691Y2 (en) temperature compensation circuit
RU2878U1 (en) DEVICE FOR PERFORMING ARITHMETIC OPERATIONS (OPTIONS)
SU1401559A1 (en) Broad-band current amplifier