JPS61191823A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS61191823A
JPS61191823A JP60033724A JP3372485A JPS61191823A JP S61191823 A JPS61191823 A JP S61191823A JP 60033724 A JP60033724 A JP 60033724A JP 3372485 A JP3372485 A JP 3372485A JP S61191823 A JPS61191823 A JP S61191823A
Authority
JP
Japan
Prior art keywords
damper
blower
air conditioner
determining means
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60033724A
Other languages
Japanese (ja)
Other versions
JPH0563693B2 (en
Inventor
Nobuo Otsuka
大塚 信夫
Hideo Igarashi
英雄 五十嵐
Tonpuson Piita
ピータ・トンプソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60033724A priority Critical patent/JPS61191823A/en
Priority to KR1019850005919A priority patent/KR900001875B1/en
Priority to US06/824,589 priority patent/US4635445A/en
Priority to DE8686101599T priority patent/DE3682410D1/en
Priority to EP86101599A priority patent/EP0192140B1/en
Priority to AU53351/86A priority patent/AU580931B2/en
Priority to CA000501571A priority patent/CA1250639A/en
Publication of JPS61191823A publication Critical patent/JPS61191823A/en
Priority to MYPI87002406A priority patent/MY101346A/en
Publication of JPH0563693B2 publication Critical patent/JPH0563693B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To increase the reliability of a heat pump without impairing comfortableness of the room by carrying out an appropriate damper control at the time of a low load and to smoothen the operation of the heat pump in a system utilizing the heat pump for a heat source apparatus. CONSTITUTION:Thermal load measuring means 19 calculates a thermal load based on a difference between the room temperature set by a room thermostat 14 and the room temperature at the present time. By the thermal load thus calculated, the damper opening degree of a branch duct 7 is discriminated by damper control quantity discriminating means 20. Further, by the discriminated total opening degree of a damper 9, the change of the set room temperature is carried out by set room temperature determining means 21. Based on this result, the damper 9 is controlled by damper control means 22, and then the pressure and the temperature within the duct 6 after the damper control are detected. Based on this detection signal, the operational condition is measured by operational condition measuring means 23 and the rotational speed of the blower 5 is determined based on the pressure signal by blower rotational speed determining means 24 to control the blower 5. Based on the temperature signal the ability of a compressor 18 (heat pump) is determined by ability determining means 26 to control the ability of the compressor 18 to make the ON and OFF operations of the compressor 18 to the minimum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、各部屋の室温を独立に調節できる可変風量
制御システムを採用した空気調和機に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner that employs a variable air volume control system that can independently adjust the room temperature of each room.

〔従来の技術〕[Conventional technology]

温度調節された空気をエアーダクトを用−て各部屋へ分
配して空調を行なうセントラル空調システムは、加湿器
や高性能フィルターが容易に組込め・外気処理や全熱交
換器の採用も可能で質の高い空調が行うことがで&SL
かも空調する部屋には吹出口と吸込口しかなく室内スペ
ースが有効に使え、また熱搬送系のトラブルも少ないな
どヒートポンプチラー・ファンコイル方式やパッケージ
エアコン分散配置方式などに比べ多くのメリットを有し
ている。従ってビル空調等に用いられている。その中で
も省エネルギー運転が可能な可変風量制御方式(以下M
AY方式と呼ぶ)は熱負荷の異なる各部屋を独立に温度
制御でき1使用しない部屋の空調を停止させる事も可能
で、必要送風量の大小に応じ送風機の動力を可変して運
転費を低減させる事もでき、また同時使用率を考慮する
ことにより熱源機の能力を小さくすることができる。
Central air conditioning systems, which use air ducts to distribute temperature-controlled air to each room for air conditioning, can easily incorporate humidifiers and high-performance filters, and can also employ outside air processing and total heat exchangers. Quality air conditioning can do &sl
It has many advantages over heat pump chiller/fan coil systems and packaged air conditioner distribution systems, such as the fact that the room being air-conditioned only has an air outlet and an air inlet, making efficient use of indoor space, and fewer problems with the heat transfer system. ing. Therefore, it is used for building air conditioning. Among them, variable air volume control method (hereinafter referred to as M) enables energy-saving operation.
The AY method (called the AY method) can independently control the temperature of each room with a different heat load.1 It is also possible to stop air conditioning in rooms that are not in use, and reduce operating costs by varying the power of the blower depending on the amount of air required. It is also possible to reduce the capacity of the heat source device by considering the simultaneous usage rate.

vAv方式には風量調節用ダンパの形式に応じて2つの
方式がある。1つはバイパス形vAvユニット(ダンパ
ユニット)を用いる方式で室内負荷に応じて室内へ吹出
す風量と直接熱源機へ戻す(バイパスさせる)風量の比
率を調節するものである。この方式は送風量が一定のた
め熱源機の能力制御がむすかし−パッケージエアコンを
用いたシステムに用いられることが多いが1送風機制御
による省エネルギー効果はない。
There are two types of vAv systems depending on the type of damper for adjusting air volume. One is a system using a bypass type vAv unit (damper unit), which adjusts the ratio of the amount of air blown into the room and the amount of air directly returned (bypassed) to the heat source device according to the indoor load. Since the amount of air blown is constant in this system, it is difficult to control the capacity of the heat source equipment.Although this method is often used in systems using packaged air conditioners, there is no energy saving effect by controlling one fan.

もう1つの方式は絞り形vAvユニットを用いる方式で
、室内負荷に応じて室内への吹出風量を任意の値に調節
するものである。この方式はダンパの開度に応じて変化
するダクト内の圧力を検出し1この値がある値になるよ
う送風機の容量を制御するので負荷が少なくなれば(風
量が少なくなり、この時のダクト内の空気温度は一定に
制御される)、熱源機の所要能力が小さくなると同時に
送風機の動力も低減される。
The other method uses a diaphragm-type vAv unit, which adjusts the amount of air blown into the room to an arbitrary value depending on the indoor load. This method detects the pressure inside the duct, which changes according to the opening degree of the damper, and controls the capacity of the blower so that this value becomes a certain value. (The temperature of the air inside is controlled to be constant), the required capacity of the heat source equipment is reduced, and at the same time, the power of the blower is also reduced.

第2図は従来並びにこの発明の基礎となる空気調和機の
サシテム構成図であって・lは空調される部屋で・ここ
では3部屋の場合を示している。
FIG. 2 is a system configuration diagram of a conventional air conditioner as well as the basis of the present invention, where l is a room to be air conditioned. Here, a case of three rooms is shown.

コは天井内に配置されたファンコイルユニットで、エア
ーフィルタ3.熱交換器亭、送風機!から構成されてい
る。6は上記ファンコイルユニット−〇空気吹出口に接
続された主ダクト、りはこの主ダクトから分肢した3本
の枝ダクト、tはこの枝ダクトクの途中に挿入された絞
り形のVAVユニット、9はこのMAYユニット内に回
転可能に取付けられたダンパ、IOは上記枝ダクトクの
末端に取付けられた吹出口、l/は上記部屋lのドアー
下部に設けられた吸込口、lコは廊下天井面に設けられ
た天井吸込口・13はこの天井吸込口と上記ファンコイ
ルユエットコの吸込口を連絡する吸込ダクト、lダは上
記部屋jlK各々取付けられたルームサーモスタット、
13は上記主ダクト6内に取付けられた温度センサS/
Aは同じく・主ダレトロ内に検出部を設けた圧力センナ
であり、lりけ上記ファンコイルユニットコに取付けら
れた制御装置である。             パ゛
従来の空気調和機では・各ルームサーモスーツ)/lで
使用者が設定した設定温度と検出された現在の空気温度
の温度差に応じダンパ9の開度を任意の位置に各々調節
している。このため、主ダクト6内の圧力がダンパ9の
開度に応じて変化し、これを圧力センナ16が検出し1
過剰圧力にならないよう送風機3の容量を変化させてい
た。また、送風量の変化に伴ない熱交換W!IIIの出
口空気温度が変わるため、この濃度を温度センサ/3で
検出し1予め設定しておいた空気温度になるよう熱交換
器ダへの熱媒の温度または循環量を変化さ゛せていた。
This is a fan coil unit placed in the ceiling, and air filter 3. Heat exchanger-tei, blower! It consists of 6 is the main duct connected to the fan coil unit - 〇 air outlet, ri is the three branch ducts branched from this main duct, t is the throttle-shaped VAV unit inserted in the middle of this branch duct, 9 is a damper rotatably installed in this MAY unit, IO is an air outlet installed at the end of the branch duct, l/ is an inlet installed at the bottom of the door of room l, l is the ceiling of the hallway The ceiling suction port 13 provided on the surface is a suction duct that connects this ceiling suction port with the suction port of the fan coil Yuetco, and Lda is the room thermostat installed in each of the above rooms.
13 is a temperature sensor S/ installed in the main duct 6.
Similarly, A is a pressure sensor with a detection section installed inside the main retrofit, and is a control device attached to the above fan coil unit. In conventional air conditioners, the opening degree of the damper 9 is adjusted to an arbitrary position according to the temperature difference between the set temperature set by the user and the detected current air temperature. ing. Therefore, the pressure inside the main duct 6 changes according to the opening degree of the damper 9, which is detected by the pressure sensor 16 and
The capacity of blower 3 was changed to prevent excessive pressure. In addition, heat exchange W! due to changes in air flow rate! Since the temperature of the outlet air of III changes, this concentration is detected by temperature sensor/3 and the temperature or circulation rate of the heat medium to the heat exchanger is changed so that the air temperature reaches a preset temperature.

熱交換器ダは一般に冷温水蓄熱槽へ接続されている。ま
た、部屋lを空調した空気は吸込口//から廊下等のス
ペースを通り天井吸込口lコへ流れ、吸込ダクト/、7
を経由して再びファンコイルユエットコへ戻る。   
  ゛ なお、送風機3の制御法は、・−造静゛圧制御法゛と、
風量センサを併用した可変静圧制御法がよく知られてい
る。
The heat exchanger is generally connected to a hot and cold water storage tank. In addition, the air that has been conditioned in the room 1 flows from the suction port // through spaces such as hallways to the ceiling suction port 1, and then flows through the suction duct /, 7
Return to Funcoil Yuetko via .
゛The control method for the blower 3 is: -Static pressure control method.
A variable static pressure control method using an airflow sensor is well known.

また第2図ではリターンエアーを廊下等を利用して戻す
方式としているが1各部屋lから7アンコイルユニツ、
トコまでリターンダクトを設は制御性および一層の省エ
ネルギ性を増す方式もある。
In addition, in Figure 2, the return air is returned using a corridor, etc., but there are 7 uncoiled units from each room.
There is also a method that increases controllability and further energy savings by installing a return duct all the way to the top.

さらに第2図では主ダクト6から枝ダクトクを分肢させ
ていたが、主ダクトを設けずファンコイルユニットコか
らタコ足状に枝ダクトクを配設する方法もある。
Further, in FIG. 2, the branch ducts are separated from the main duct 6, but there is also a method in which the main duct is not provided and the branch ducts are arranged in an octopus-like shape from the fan coil unit.

なお、ファンコイルユニット−の形式には第2図の形式
以外にも天吊り形、床置き形などがある。
In addition to the type shown in FIG. 2, there are other types of fan coil units, such as a ceiling-suspended type and a floor-standing type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の空気調和機は上記のように構成されているので、
バイパス形vAYユニットを用いたシステムでは省エネ
ルギ性に乏しい。また絞り形vAvユニットを用いたシ
ステムでは住宅や店舗等の小規模なシステムで熱源機に
直膨形のヒートポンプを用いた場合には、同時゛に使用
される部屋の数が少なく、強制換気も行なわない事が多
いため熱負荷が少なく、しかも各ダンパが同時に全閉ま
たけ全一に近い状態になることがあり、この時の熱源機
(ヒー”トボンプ)−の制御が難しくなり〈装置の信頼
性が高められないという問題点があつな。 ゛この発明
は上述した問題点を解消したもので、熱源機にヒートポ
ンプを利用したシステムにおいて−・低負荷時に適切な
ダンパ制御を行ない・ヒートポンプの運転を円滑にする
こぶにより部屋の゛快適性を損なわすにヒートポンプの
信頼性を高めた空気調和機を提供することを目的とする
Conventional air conditioners are configured as above, so
A system using a bypass type vAY unit has poor energy saving properties. In addition, in a system using a diaphragm type vAv unit, if a direct expansion type heat pump is used as a heat source in a small system such as a house or store, the number of rooms used at the same time is small, and forced ventilation is not required. Since this is often not done, the heat load is small, and each damper may be fully closed at the same time, making it difficult to control the heat source (heat pump). Another problem is that reliability cannot be improved. ゛This invention solves the above-mentioned problems, and in a system using a heat pump as a heat source, it is possible to perform appropriate damper control at low loads, The purpose of the present invention is to provide an air conditioner in which the reliability of the heat pump is improved without impairing the comfort of the room due to the bumps that facilitate smooth operation.

〔問題点を解決するための手段〕′ この発明Kか−かる空気調和機゛は、ヒートポンプ  
[Means for solving the problem] The air conditioner according to this invention is a heat pump.
.

からの冷温風がダクトを介して分配される各部屋の温度
を検出する各部屋毎のルームサーモスタットと、このル
ームサーモスタット′の出力信号に基づいて熱負荷を測
定する熱負荷測定手段と、この゛測定結果から枝ダクト
のダンパ開゛度を判定するダンパ制御量判定手段と、と
のダンパ制御量判定手段により判定されな各ダンパの総
制゛御量に基づき前記ルームサーモスタットの設定値の
変更を決定する設定温度決定手段と、どの決定手段の出
力信号に基づいて上記ダンパ開度を制御するダンパ制御
手段と・これによるダンパ制glJ後のダクト内圧力及
び温度を検出して該検出信号により運転状態を測定する
手段と、この運転状態測定手段からの圧力信号で送風機
の回転数を決定する手段及び温度信号により圧縮機の能
力を決定する手段と、この決定手段からの出力により圧
縮機の能力を制御する手段とから構成したものである。
a room thermostat for each room that detects the temperature of each room to which cold and hot air is distributed via the duct; a heat load measuring means that measures the heat load based on the output signal of the room thermostat; damper control amount determining means for determining the damper opening degree of the branch duct from the measurement results; and changing the setting value of the room thermostat based on the total control amount of each damper determined by the damper control amount determining means. a damper control means for controlling the damper opening degree based on the output signal of which determining means; and a damper control means for controlling the damper by detecting the pressure and temperature inside the duct after damper control glJ, and operating according to the detection signal. means for measuring the operating state; means for determining the rotational speed of the blower based on the pressure signal from the operating state measuring means; and means for determining the compressor capacity based on the temperature signal; It consists of a means for controlling.

〔作用〕[Effect]

この発明において社・熱負荷測定手段がルームサーモス
タットで設定されな室温と現在の室温との差に基づいて
熱負荷を算出し、その*a7fr仕よう、枝ダクトめダ
ンパ開度をダンパ制御量判定手段によシ判定し−さらK
W定されたダンパのトータル関度により設定室温の変更
を設定室温決定手段により行ない、この結果によりダン
パ制御手段状態を運転状態測定手段で測定するとともに
、圧力信号により送風機の回転数を送風機回転数決定手
段で決定して送風機を制御し、まな温度信号により圧縮
機の能力を能力決定手段により決定して圧縮機の能力を
制御することになり、このように制御することで圧縮機
のオン・オフを最少にする。
In this invention, the heat load measuring means calculates the heat load based on the difference between the room temperature set by the room thermostat and the current room temperature, and determines the damper control amount based on the damper opening degree of the branch duct. Judging by means - Sara K
The set room temperature is changed by the set room temperature determining means based on the total damper function determined by W. Based on this result, the state of the damper control means is measured by the operating state measuring means, and the rotation speed of the blower is determined by the pressure signal. The determination means determines the capacity of the compressor and controls the blower, and the capacity determination means determines the capacity of the compressor based on the precise temperature signal.By controlling in this way, the compressor is turned on and off. Minimize off.

〔実施例〕〔Example〕

第1図はこの発明にかかる空気調和機の原理構成図であ
る。この発明においては、第1図から明らかなように、
熱源機のヒートポンプ/1と、このヒートポンプitか
らの冷温風を各部屋lへ主ダクト6及び枝ダクトクを介
して送風する送風機よと、枝ダクトクの部分に配置され
た風量1ItrJ用のダンパブと1各部屋lに取付けら
れたルームサーモスタットlダと、ダクト6内に取付け
られた温度センサ13及び圧力センサ16を備え、前記
各ルームサーモスタットlダの出力信号は熱負荷測定手
段に入力されるようになっており1この熱負荷測定手段
/9は熱負荷の大小を測定するものである。また、−〇
は前記熱負荷測定手段/デの出力に基jいてダンパ90
制御量を判定するダンパ舗御量判定手段であり1コ1I
Iiその判定結果に基づいて設定室温の変更の有無を決
定する設定室温決定手段である02λは設定室温決定手
段−/の決定結果に基づいてダンパブの開度を制御する
ダンパ制御手段、−3はダンパ制御後のダクト6内の温
度及び圧力を温度センサlよ及び圧力センサ/6で検出
してこの検出信号に基づき装置の運転状態を測定する運
転状態測定装置であり、さらにコIIIfi運転状態測
定装置コ3で測定されな圧力出力信号に基づいて送風機
3の最適回転数を決定する送風機回転数決定手段であり
為この回転数決定手段]ダには・その決定出力に基づい
て送風機3を制御する制御手段2Sが接続されている。
FIG. 1 is a diagram showing the basic configuration of an air conditioner according to the present invention. In this invention, as is clear from FIG.
A heat pump 1 as a heat source device, a blower that sends cold and hot air from the heat pump IT to each room 1 through the main duct 6 and branch ducts, and a damper pub with an air volume of 1 ItrJ placed in the branch duct 1. A room thermostat installed in each room and a temperature sensor 13 and a pressure sensor 16 installed in the duct 6 are provided, and the output signal of each room thermostat is inputted to a heat load measuring means. 1 This heat load measuring means/9 measures the magnitude of heat load. -〇 is the damper 90 based on the output of the heat load measuring means/de.
It is a damper control amount determining means for determining the control amount and is 1 piece 1 I
Ii is a set room temperature determining means that determines whether or not to change the set room temperature based on the determination result; 02λ is a damper control means that controls the opening degree of the damper pub based on the determination result of the set room temperature determining means -/; This is an operating state measuring device that detects the temperature and pressure inside the duct 6 after damper control with a temperature sensor 1 and a pressure sensor 6, and measures the operating state of the device based on the detection signal. This is a blower rotation speed determining means that determines the optimum rotation speed of the blower 3 based on the pressure output signal measured by the device 3. The rotation speed determining means includes: Controls the blower 3 based on the determined output. A control means 2S is connected thereto.

コロは前記運転状態測定手段]3で測定された温度出力
信号に基づいてヒートポンプ(圧縮tlA)1gの最適
能力を決定する能力決定手段であり1この能力決定手段
]6には為その決定出力によりヒートポンプ/gの能力
を制御する能力制御手段]りが接続されている。
The roller is a capacity determining means that determines the optimum capacity of the heat pump (compression tlA) 1g based on the temperature output signal measured by the operating state measuring means 3, and the capacity determining means 6 is a A capacity control means for controlling the capacity of the heat pump/g is connected.

第3図は前記ヒートポンプ/gの全体構成図を示すもの
で1可変容量形(回転数可変形)の圧縮機コt、VB方
弁コデ、室内側の熱交換器亭、電磁石によりプランジャ
ーを任意の位置に移動させ冷媒の流量調節を行なう膨張
弁30.室外側の熱交換器J/、及びアキュムレータ3
コを備え、これら社環状に連結されて冷凍回路を構成し
ている。
Figure 3 shows the overall configuration of the heat pump/g. 1. A variable displacement (variable rotational speed) compressor, a VB valve code, a heat exchanger on the indoor side, and a plunger operated by an electromagnet. Expansion valve 30 that can be moved to any position to adjust the flow rate of refrigerant. Outdoor heat exchanger J/ and accumulator 3
These are connected in a ring to form a refrigeration circuit.

また、3コ社前記室外側の熱交換器31に付属した室外
送風機である。
In addition, the outdoor blower attached to the outdoor heat exchanger 31 is manufactured by 3 companies.

第4図(a) 、 (b)けWAYユ二ッ)ffの詳細
を示すもので、ダンパ9を回動する正逆回転を任意の角
度で行なうステッピングモータを利用したダンパモータ
3ダ、及びダンパ9の位置を検出するリミットスイッチ
33を備えNリミットスイッチt?jはダンパ9の全閉
の位置に取付けられている。
Figures 4(a) and 4(b) show the details of WAY unit) ff, which shows the damper motor 3 which uses a stepping motor that rotates the damper 9 in forward and reverse directions at any angle, and the damper motor 3. A limit switch 33 for detecting the position of N limit switch t? j is attached to the damper 9 in the fully closed position.

第5図は第1図の原理構成に対応するこの発明の具体列
を示す回路図で、図中36は制御装置/り内のマイクロ
コンピュータで、CPU、7り、M御プログラム及びC
PU、7りでの演算結果等を記憶するメモリー311.
タイマー39.入力回路ダO及び出力回路ダlから構成
されている。ダコは各ルームサーモスタット/lと瀉度
センサ/3.圧力センサ16の検出出力が人力されるア
ナ田グマルチプレクサ、ダ3はその出力をディジタル信
号に変換する〜を変換器であり・そのディジタル出力信
号は入力回路ダOK与えられる。ダ亭は運転スイッチで
、リミットスイッチJjと共にその状態信号が上記入力
回路ダOに与えられる。446a〜ダ!fは出力回路ダ
lに各制御機器ごとに接続されたホトカプラ・88Rで
、このホトカプラ・5S144taと圧縮機コSの間に
はインバータダ6が。
FIG. 5 is a circuit diagram showing a concrete sequence of the present invention corresponding to the principle configuration of FIG.
A memory 311 for storing calculation results etc. in PU and 7.
Timer 39. It consists of an input circuit DAO and an output circuit DA1. The octopus is each room thermostat/l and temperature sensor/3. The detection output of the pressure sensor 16 is input to an analog multiplexer, and the converter 3 is a converter that converts the output into a digital signal.The digital output signal is given to the input circuit. Da-tei is an operation switch, and its status signal is applied to the input circuit DaO together with the limit switch Jj. 446a~da! f is a photocoupler 88R connected to the output circuit D1 for each control device, and an inverter 6 is connected between this photocoupler 5S144TA and the compressor S.

同じくホトカプラ・5SR4!jbと送風機30間には
サイリスタコントローラダクが、ホトカプラ・SSRダ
3cと膨張弁JOの間には膨張弁コントローラQlが、
ホトカプラ・SSR$j”dとダンパモータ31Iの間
ニはダンパコントローラダブがそれぞれ接続され、さら
にホトカプラ・SSRダ3eには室外送風機33が、ホ
トカプラ・8SRダjfには西方弁コ9が接続されてい
る。!toは各機器を駆動する交流および直流の電源で
ある。
Also photocoupler 5SR4! A thyristor controller dac is installed between jb and the blower 30, and an expansion valve controller Ql is installed between the photocoupler/SSR da 3c and the expansion valve JO.
A damper controller dub is connected between the photocoupler SSR $j"d and the damper motor 31I, an outdoor blower 33 is connected to the photocoupler SSR da 3e, and a western valveco 9 is connected to the photocoupler SSR da jf. !to is an AC and DC power source that drives each device.

次に上記実施例の動作を第6図〜第9図を参照りながら
説明する。第6図はマイクロコンピュータ36のメモリ
3gVC記憶された制御プログラ−ムを示すメインフロ
ーチャート、第7図はダンパ制御の・第8図は送風機制
御の、第9図は圧縮機制御のサブルーチンフローチャー
トである〇なおこれからの動作説明は暖房運転で説明す
る。
Next, the operation of the above embodiment will be explained with reference to FIGS. 6 to 9. Fig. 6 is a main flowchart showing the control program stored in the memory 3gVC of the microcomputer 36, Fig. 7 is a subroutine flowchart for damper control, Fig. 8 is a subroutine flowchart for blower control, and Fig. 9 is a subroutine flowchart for compressor control. 〇The operation from now on will be explained using heating operation.

先ず、ステップ!lにおいて、運転スイッチダ亭を暖房
または冷房運転(この場合は暖房)にセットすると1そ
のオン信号が入力回路IIOに入力され運転がスタート
する。この運転スイッチダダの操作により暖房または冷
房運転に必要な制御定数がメモリーJgよりCPUJり
中に設定される(ステップj−J、j−J)。次にステ
シブ31Iで各ダンパ9の初期設定が行なわれる。ダン
パモータ3ダは1度リミツトスイッチ33が動作するま
で(全閉に、なるまで)回動し1次いで全開位置に設定
される。この時ダンパ9の正確な位置がメモリー3tK
記憶される。次に通常の制御ループに入り、タイマー3
9により以降一定時間間隔で制御ループを繰返す(ステ
ップ33)。まずステップ!6で西方弁−9と室外送風
機JJの0N10FFが判断され、出力回路1/からホ
トカプラ・S S RIIje。
First, step! When the operation switch is set to heating or cooling operation (heating in this case) at 1, the ON signal is input to the input circuit IIO and operation starts. By operating this operation switch Dada, control constants necessary for heating or cooling operation are set from the memory Jg while the CPU is reading (steps j-J, j-J). Next, initial settings for each damper 9 are performed in the static system 31I. The damper motor 3da rotates once until the limit switch 33 operates (until it becomes fully closed), and then is set to the fully open position. At this time, the exact position of damper 9 is stored in memory 3tK.
be remembered. Then enters the normal control loop and timer 3
9, the control loop is repeated at regular time intervals (step 33). Step first! At 6, 0N10FF of the west valve 9 and the outdoor blower JJ is determined, and the photocoupler S S RIIje is output from the output circuit 1/.

ダ3fを介して西方弁コブと室外送風機33が制御され
る。次にステップ3りのダンパ制御に移り、第7図に示
す制御プログラムが実行される。即ち、第7図のステッ
プ3gで熱負荷測定動作が行なわれ、各ルームサーモス
タットlダから設定された室温Toと現在の室’1AT
sの信号がアナログマルチプレクサlIコ、A/D変換
器ダ3.入力回路u。
The west valve knob and the outdoor blower 33 are controlled via the door 3f. Next, the process moves to step 3, damper control, and the control program shown in FIG. 7 is executed. That is, the heat load measurement operation is performed in step 3g of FIG. 7, and the room temperature To set from each room thermostat L and the current room
The signal of s is sent to an analog multiplexer and an A/D converter.3. Input circuit u.

を経由してCPU、7クヘ取込まれる。次にステップ!
t〜63からなるダンパ制御量判定動作に入る。この動
作けすでにダンパ9がすべて全閉状態であるか否かがス
テップ!?で判定され、全閉の時はバイパスされ後述す
るステップ63へ移行する。そうでない場合はステップ
60でToとT1が比較されT1が(’ro  t)よ
り低い時、ステップ61でダンパブは全開と判定される
(±tはToの上下の不感帯)。t7ThT、が(’r
0+t)より高い時ダンパブは全閉と判定される(ステ
ップ6コ)。またT1が(T0±t)の中にある時祉ダ
ンパ9の開度は変化なしと判定される。ステップ60−
6コの処理はnilあるすべての部屋l忙ついて行なわ
れ1その終了判定はステップ63で判定される。
It is taken into the CPU, 7th node via . Next step!
The damper control amount determination operation starts from t to 63. The step is to see if all the dampers 9 are already fully closed in this operation! ? When the valve is fully closed, it is bypassed and the process moves to step 63, which will be described later. If not, To and T1 are compared in step 60, and when T1 is lower than ('rot), it is determined in step 61 that the damper pub is fully open (±t is a dead zone above and below To). t7ThT, is ('r
0+t), the damper pub is determined to be fully closed (step 6). Further, when T1 is within (T0±t), it is determined that the opening degree of the damper 9 does not change. Step 60-
The processing of 6 items is carried out in all nil rooms, and its completion is determined in step 63.

そして「YE8Jのときは次のステップ6ダ〜6Sホら
なる設定室温決定動作に入る。この動作は・ステップ6
ダで先のダンパ制御量判定動作においてすべてのダンパ
9が全閉でないと判定された場合は一ステップ4fKバ
イパスされる。そうでない場合、つまりすべてのダンパ
ブが全閉の場合、ステップ63に移行してToとT1が
再び比較され、T、が(To  tg)より低い時、ス
テップ66でダンパ9は全開と決定される( t *t
i ’r0の下側の不感帯で1(1,の関係がある)。
If "YE8J", the next step 6-6S enters the set room temperature determination operation.
If it is determined in the previous damper control amount determination operation that all dampers 9 are not fully closed, one step 4fK is bypassed. If not, that is, if all damper pubs are fully closed, the process moves to step 63, where To and T1 are compared again, and when T is lower than (To tg), damper 9 is determined to be fully open in step 66. (t *t
1 (relationship of 1) in the lower dead zone of i'r0.

またT、が(To−ta)ヨり高い時、ステップ6りで
ダンパ9は全閉と決定される。この決定をすべての部屋
lについて行なう(ステップbtr>。以上の結果が次
のステツ76?のダンパ制御動作により出力回路ダ/よ
りホトカプラ・8SR4!jdを経由してダンパコント
ローラlI9へ伝えられ、ダンパモータj4Cを正転・
逆転させてダンパ9を全開または全一にする。次に第6
図のステップクOの室内送風機制御に移り、第8図に示
す制御プログラムが実行される。この第8図のステップ
クlでは運転状a測定動作が行なわれ、温度センサ13
と圧カセどす16の信号(T、とP)がアナログマルチ
プレクサダコ、A/D変換器ダ3.入力回路4!oを経
由してCPU、7りへ取込まれる。次にステップクコ〜
りtからなる送風機回転数決定動作に入る。ステップク
ーではダンパtがすべて全閉かどうか判定され、全閉な
らば送風機!を0FFI、て(ステップク3)、ステッ
プクデヘバイパスする。ここで全閉でないならば、ステ
ップクダヘ進み送風機5のON10 F F状態を判定
し1もLOFF状態ならば・ステップク3で送風機!を
ONして次のステップクロへ進tr。ステップクロでは
メモリー3を中に記憶されているメインダクト6内の設
定圧力P0と先のステップク/で検出した圧力Pとが比
較されPo>Pの関係ならばPoとPの差に応じて送風
機jの回転数がアップされる(ステップクコ)。
Further, when T is higher than (To-ta), it is determined in step 6 that the damper 9 is fully closed. This determination is made for all rooms l (step btr>).The above results are transmitted from the output circuit D/ to the damper controller lI9 via the photocoupler 8SR4!jd by the damper control operation of the next step 76?, and the damper motor Rotate j4C forward/
Reverse the rotation to fully open or close the damper 9. Next, the sixth
Moving on to indoor blower control in step O in the figure, the control program shown in FIG. 8 is executed. In step 1 of FIG. 8, the operation state a measurement operation is performed, and the temperature sensor 13
The signals (T, and P) of the pressure cassette 16 are sent to an analog multiplexer and an A/D converter 3. Input circuit 4! The data is taken into the CPU and 7 via the Next step Kuko~
Then, the blower rotation speed determination operation consisting of step t begins. In step-cooling, it is determined whether all dampers t are fully closed, and if they are fully closed, it is the blower! Bypass 0FFI (step 3) to step 3. If it is not fully closed, proceed to step Kuda and determine the ON10FF state of blower 5. If 1 is also in LOFF state, go to step 3 and blower! Turn on and proceed to the next step. In the step chronograph, the set pressure P0 in the main duct 6 stored in the memory 3 is compared with the pressure P detected in the previous step chronograph, and if Po>P, the pressure is The rotation speed of blower j is increased (step Kuko).

ま7ThPo<Pの関係ならば同じく送風機3の回転数
がダウンされ(ステップクff)、PがPoの不感帯内
ならば回転数の変更をしないで次の送風機制御動作(ス
テップク9)へ移る。CPU37からの制御出力は出力
回路lI/からホトカプラ・5SB94−bを経由して
サイリスタコントローラダクヘ与えられ1ここで交流波
形をサイリスタにより制御し、送風機3に出力して回転
数を任意に調節する。その後、第6図のメインプログラ
ムに示すステップSOの圧縮機制御に移る。第9図はそ
の処理プログラムを示すもので、ステップg/Nざりに
より能力決定動作が行なわれる。まずステップ1/でダ
ンパ9がすべて全閉かどうか判定され、全閉ならばステ
ップクコで圧縮機−Sを0FFL、ステップltへバイ
パスする。また1全閉でないならば、ステップt3で圧
縮機コtのQN10FF状態を判定し1もLOFF状態
ならばステップ&’1で圧縮機−8をONして次のステ
ップへ進tr。ステップIr!ではメモリー3を中に記
憶されているメインダクト6内の設定空気温度T、と先
のステップクlで検出した温度T!とが比較され、T、
〉T、の関係ならばT、とT、の差に応じて圧縮機−t
の回転数がアップされ(ステップ16)、Ts<Ttの
関係ならば回転数がダウンされる(ステップgり)。
If the relationship is 7ThPo<P, the rotation speed of the blower 3 is similarly decreased (step ff), and if P is within the dead zone of Po, the rotation speed is not changed and the process moves to the next blower control operation (step 9). . The control output from the CPU 37 is given from the output circuit lI/ to the thyristor controller dak via the photocoupler 5SB94-b, where the AC waveform is controlled by the thyristor and output to the blower 3 to arbitrarily adjust the rotation speed. . Thereafter, the process moves to compressor control in step SO shown in the main program of FIG. FIG. 9 shows the processing program, in which the capacity determination operation is performed by skipping steps g/N. First, in step 1/, it is determined whether all dampers 9 are fully closed, and if they are fully closed, the compressor-S is bypassed to 0FFL in step 1 and to step lt. If 1 is not fully closed, the QN10FF state of the compressor t is determined in step t3, and if 1 is also in the LOFF state, the compressor 8 is turned on in step &'1 and the process proceeds to the next step tr. Step Ir! Now, store the set air temperature T in the main duct 6 stored in the memory 3, and the temperature T detected in the previous step 1! are compared, T,
〉T, then the compressor -t depends on the difference between T and T.
The rotational speed is increased (step 16), and if Ts<Tt, the rotational speed is decreased (step g).

またT、がT、の不感帯内ならば回転数の変更をしない
で次の能力制御動作(ステップtg)へ移る。CE”U
、7りからの制御出力は出力回路ダlからホトカプラ・
5SR1jaを経由してインパータダ6へ与えられ、こ
こで交流電源の周波数と電圧を制御し圧縮機コfK出力
して回転数を任意に調節する。圧縮機コSの回転数に応
じてヒートポンプ/lの能力は変化LS室内側の熱交換
器ダの出口空気温度が調節される。次に圧縮機−tの回
転数や外気温度に応じて膨張弁30が制御され(ステッ
プ!?)、さらにデフ0スト制御(ステップ?O)が行
なわれ1再びステップよ3へ戻り以後このループが繰返
される。なお1ステツプ19゜90とシステムの安全回
路については発明の内容と深く関係しないので詳細は省
略した。
Further, if T is within the dead zone of T, the rotation speed is not changed and the process moves to the next capacity control operation (step tg). CE"U
The control output from , 7 is connected to the photocoupler from the output circuit.
It is applied to the impertada 6 via the 5SR1ja, where the frequency and voltage of the AC power source are controlled, and the compressor fK is output to arbitrarily adjust the rotation speed. The capacity of the heat pump/l changes depending on the rotational speed of the compressor S, and the temperature of the outlet air of the heat exchanger on the indoor side of the LS is adjusted. Next, the expansion valve 30 is controlled according to the rotational speed of the compressor-t and the outside air temperature (step!?), and further defrost control (step? O) is performed, and the process returns to step 1 and step 3. is repeated. The details of the 19°90 step and the safety circuit of the system are omitted as they are not closely related to the content of the invention.

以上の制御の結果を第10.図と第11図の動作結果説
明図によって説明する。例えば複数の部屋lを同時に空
II(暖房)する場合、運転開始庫後は室温が設定値よ
り低いのでダンパ9は全開の状態で運転され、送風機よ
、圧縮機−gの回転数も高く制御される。室温が高まり
設定値に達するとダンパブは全開・全閉の動作を繰返し
1室瀉を設定値T0土tの範囲内に保つ。この時複数の
ダンパ9のトータルの開度に応じて送風貴社制御され1
送風量度も略一定に保たれる。たまたま複数のダンパブ
の開度がすべて閉になつな場合、送風機3と圧縮機−t
は一時的IC0FFされる。この状態になると、次にい
ずれかのダンパ9が開になるのは各室温が’r、−t、
まで降下した時で\この時まで送風機よと圧縮機−ざは
OFF状態を保つ。t。
The results of the above control are shown in Section 10. This will be explained with reference to the diagram and the operation result explanatory diagram of FIG. For example, when multiple rooms l are to be emptied (heated) at the same time, the room temperature is lower than the set value after the operation starts, so the damper 9 is operated in a fully open state, and the rotational speed of the blower and compressor -g is also controlled to be high. be done. When the room temperature rises and reaches the set value, the damper pub repeats fully open and fully closed operations to maintain the air per room within the range of the set value T0. At this time, the air blower is controlled according to the total opening degree of the plurality of dampers 9.
The amount of air blown is also kept approximately constant. If by chance all the openings of multiple damper pubs are closed, blower 3 and compressor-t
is temporarily turned off. In this state, the next time any damper 9 is opened is when the room temperature is 'r, -t,
Until this point, the blower and compressor remain OFF. t.

の値を大きくとると圧縮機−gの停止時間は伸びるが、
室温の上下変動が大きくなるので、圧縮機−tのON1
0 F Fに伴う信頼性を考慮してt。
If the value of is increased, the stop time of compressor-g will be extended, but
As the room temperature fluctuates greatly, compressor-t is turned ON1.
t considering the reliability associated with 0 F F.

の値を決定する。なお、−室のみしか空調されていない
場合、室温はいつもTo−t、からT、+tの間を上下
する。
Determine the value of Note that when only the - room is air-conditioned, the room temperature always fluctuates between To-t, T, and +t.

なお上記実施例ではダンパブの開度を全開か、全閉−制
御し室温を制御しているが、この方法によれはダンパ9
の開時は最大風量(風速)で温風を部屋lへ供給し・ダ
ンパ9の閉時は風量ゼロとなるため、部屋lの上下温度
分布が暖房時特に小さくなり快適な居住空間を実現する
ことができる。
In the above embodiment, the room temperature is controlled by controlling the opening degree of the damper pub to be fully open or fully closed.
When damper 9 is open, hot air is supplied to room L at the maximum air volume (wind speed), and when damper 9 is closed, the air volume is zero, so the vertical temperature distribution of room L is particularly small during heating, creating a comfortable living space. be able to.

上記方法以外にも、従来のVAVユニットで用いられて
いる絞り方式を本発明に適用することは可能である。こ
の場合はダンパ9のトータル最少開度を設定L (Rえ
ばVAVユニットが3台の場合、トータル開度が50襲
を最少値と設定する)・この開度以下の時−送風機3と
圧縮機−gを停止LSかつ不感帯にt、を適用する。
In addition to the above method, it is possible to apply the aperture method used in conventional VAV units to the present invention. In this case, set the total minimum opening of damper 9 L (For example, if there are 3 VAV units, set the total opening to 50 strokes as the minimum value) When this opening is below - Blower 3 and compressor - Apply g to the stop LS and t to the dead zone.

また上記実施例ではダンパtがすべて閉の時、すべての
部屋/の設定室温の不感帯の幅を可変していたが、不感
帯の幅は一定にし、設定室温そのものを暖房時は低く、
冷房時は高く可変するようにしても同様の効果を得るこ
とができる。
In addition, in the above embodiment, when all the dampers t are closed, the width of the dead zone of the set room temperature in all rooms/is varied, but the width of the dead zone is kept constant, and the set room temperature itself is set low during heating.
A similar effect can be obtained even if the temperature is set to a high value during cooling.

さらに上記実施例では送風機制御手段−3にサイリスタ
を用いた回転数制御を行なっていなか、能力制御手段]
りと同様インバータを用いてもよい。
Furthermore, in the above embodiment, the rotation speed control using a thyristor is not performed in the blower control means-3, and the capacity control means]
An inverter may be used as well.

また上記実施例では圧縮機−gを1台使ってインバータ
によりその能力を可変させていたが、能力制御範囲を拡
大するために複数台の圧縮機を用い、かつインバータを
併用して能力制御を行なうとより一層熱負荷に見合った
能力制御ができ、圧縮機−8のON10 F F回数を
減らすことができるO なお上記実施例は熱源機をヒートポンプとしたものであ
るが、ファンコイルユニット部IC,911えばガスフ
ァーネス等の補助暖房機を組込んだ空気調和機にも本制
御方法を適用することは可能である。まな1上記実施例
ではダクト内の圧力と空気温度を同時に検出し1運転状
態測定手段により装置の運転状態を測定し、次いで送風
機−圧縮機の制御を行なうよう構成していたが、まず圧
力のみを検出し送風機の制御を行ない・次いで空気温度
を検出し圧縮機の制御を行なうようにしてもよい。
In addition, in the above embodiment, one compressor-g was used and its capacity was varied by an inverter, but in order to expand the capacity control range, multiple compressors were used and an inverter was also used to control the capacity. If this is done, the capacity can be controlled even more commensurate with the heat load, and the number of ON10FF operations of the compressor-8 can be reduced.In the above embodiment, a heat pump is used as the heat source, but the fan coil unit IC , 911. For example, it is possible to apply this control method to an air conditioner incorporating an auxiliary heater such as a gas furnace. Mana1 In the above embodiment, the pressure inside the duct and the air temperature are simultaneously detected, the operating state of the device is measured by the operating state measuring means, and then the blower-compressor is controlled. The air temperature may be detected and the blower controlled, and then the air temperature may be detected and the compressor controlled.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、熱負荷が減少し各部屋
のダンパがすべて閉になり圧縮機を停止した時、次にダ
ンパが開になるまでの時間を1設定室瀉を変えることに
より伸ばすように構成したので、圧縮機のひんばんなO
N10 F Fがなくなり゛圧縮機の信頼性が向上する
効果がある。
As described above, according to the present invention, when the heat load is reduced and all the dampers in each room are closed and the compressor is stopped, the time until the next damper is opened can be changed by changing the set room temperature. Since it is configured to stretch, the compressor's low temperature
This eliminates N10FF, which has the effect of improving the reliability of the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による空気調和機の原理構成図、第2
図はこの発明の実施例および従来例の空気調和機を用い
たシステムの全体構成図、第3図はこの発明の実施例に
よるヒートポンプの構成図、第4図(a)は同じ(VA
Vユニットの詳細を示す正面図、第4図(b)tiその
側面図、第5図はこの発明の原理構成に対応する具体例
を示す回路図、第6図から第9図は第5図に示しなもの
の動作を説明するためのフローチャート、第10図と第
11図はこの発明の動作結果を説明するための説明図で
ある0 図中、3は送風機、tはダンパS/4cはルームサーモ
スタットS13は温度センサ、/Aは圧力上ンサ、/S
はヒートポンプ、19は熱負荷測定手段、−〇はダンパ
制御量判定手段−−lは設定室温決定手段Sココはダン
パ制御手段、コ3は運転状態測定手段1コダは送風機回
転数決定手段、コ3は送風機制御手段、コロは能力決定
手段1コクは能力制御手段である。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a diagram showing the principle configuration of an air conditioner according to the present invention, Fig. 2
The figure is an overall configuration diagram of a system using an air conditioner according to an embodiment of this invention and a conventional example, FIG. 3 is a configuration diagram of a heat pump according to an embodiment of this invention, and FIG.
4(b) is a front view showing details of the V unit, FIG. 5 is a side view thereof, FIG. 10 and 11 are explanatory diagrams for explaining the operation results of this invention. In the figure, 3 is a blower, t is a damper, and S/4c is a room. Thermostat S13 is a temperature sensor, /A is a pressure sensor, /S
is a heat pump, 19 is a heat load measuring means, -〇 is a damper control amount determining means, -l is a set room temperature determining means S is a damper controlling means, 3 is an operating state measuring means 1 is a blower rotation speed determining means, 3 is a blower control means, Koro is a capacity determining means, and 1 Koku is a capacity control means. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (13)

【特許請求の範囲】[Claims] (1)冷媒圧縮式の空気調和機に使用されるヒートポン
プ、このヒートポンプで加熱または冷却された空気を複
数の各部屋へ分配する主ダクトと枝ダクトからなるダク
ト及び送風機、前記枝ダクトに各部屋ごとに配置された
風量調節用のダンパ、各部屋ごとに設置されたルームサ
ーモスタットの検出信号を入力として熱負荷を測定する
熱負荷測定手段、この熱負荷測定手段の出力に基づき前
記ダンパの開度を判定するダンパ制御量判定手段、この
ダンパ制御量判定手段によつて判定された各ダンパの合
計制御量に基づき前記ルームサーモスタットの設定値の
変更を決定する設定室温決定手段、この設定室温決定手
段の出力に基づき前記ダンパの開度を制御するダンパ制
御手段、ダンパ制御後のダクト内の圧力を検出する圧力
検出器及び同じくダクト内の空気温度を検出する温度検
出器の検出信号を入力として装置の運転状態を測定する
運転状態測定手段、この運転状態測定手段の出力に基づ
き前記送風機の回転数を決定する送風機回転数決定手段
、この送風機回転数決定手段の出力に基づき送風機の回
転数を制御する送風機制御手段、及び前記運転状態測定
手段の出力に基づき前記ヒートポンプの能力を決定する
能力決定手段、この能力決定手段の出力に基づきヒート
ポンプの能力を制御する能力制御手段を備えた空気調和
機。
(1) A heat pump used in a refrigerant compression type air conditioner, a duct and blower consisting of a main duct and branch ducts that distribute air heated or cooled by the heat pump to multiple rooms, and a blower for each room in the branch duct. A damper for adjusting the air volume placed in each room, a heat load measuring means for measuring the heat load by inputting the detection signal of the room thermostat installed in each room, and an opening degree of the damper based on the output of this heat load measuring means. a damper control amount determination means for determining a damper control amount determination means, a set room temperature determination means for determining a change in a setting value of the room thermostat based on the total control amount of each damper determined by the damper control amount determination means, and a set room temperature determination means for determining a set value of the room thermostat. a damper control means that controls the opening degree of the damper based on the output of the damper, a pressure detector that detects the pressure in the duct after damper control, and a temperature sensor that also detects the air temperature in the duct. an operating state measuring means for measuring the operating state of the operating state; a blower rotational speed determining means for determining the rotational speed of the blower based on the output of the operating state measuring means; and controlling the rotational speed of the blower based on the output of the blower rotational speed determining means. an air conditioner comprising: a blower control means for controlling the heat pump; a capacity determining means for determining the capacity of the heat pump based on the output of the operating state measuring means; and a capacity control means for controlling the capacity of the heat pump based on the output of the capacity determining means.
(2)熱負荷測定手段は、あらかじめ使用者が設定した
設定室温と現在の室温との温度差を測定し熱負荷を算出
するようになつている特許請求の範囲第(1)項記載の
空気調和機。
(2) The heat load measuring means is adapted to calculate the heat load by measuring the temperature difference between the set room temperature set by the user in advance and the current room temperature. harmonizer.
(3)ダンパの開度はダンパ制御量判定手段およびダン
パ制御手段によつて開度0%か100%いずれかに判定
または制御されるようにした特許請求の範囲第(1)項
または第(2)項記載の空気調和機。
(3) The opening degree of the damper is determined or controlled to be either 0% or 100% by the damper control amount determining means and the damper control means. The air conditioner described in 2).
(4)ダンパの開度はダンパ制御量判定手段およびダン
パ制御手段によつて任意の開度になるよう判定または制
御されるようにした特許請求の範囲第(1)項または第
(2)項記載の空気調和機。
(4) Claims (1) or (2) above, wherein the opening degree of the damper is determined or controlled to be an arbitrary opening degree by a damper control amount determination means and a damper control means. Air conditioner as described.
(5)ダンパ制御量判定手段によつて判定された各ダン
パの合計の開度が0%もしくは最小設定値以下になつた
場合、設定室温決定手段は設定室温の上下不感帯の幅を
暖房時は低温側を、冷房時は高温側を一時的に大きくす
るようにした特許請求の範囲第(1)項ないし第(4)
項の何れかに記載の空気調和機。
(5) When the total opening degree of each damper determined by the damper control amount determining means becomes 0% or less than the minimum set value, the set room temperature determining means determines the width of the upper and lower dead zones of the set room temperature during heating. Claims (1) to (4) in which the low temperature side is temporarily increased and the high temperature side is temporarily increased during cooling.
The air conditioner described in any of the paragraphs.
(6)ダンパ制御量判定手段によつて判定された各ダン
パの合計の開度が0%もしくは最小設定値以下になつた
場合、設定室温決定手段は設定室温を一時的に暖房時は
低く、冷房時は高くするようにした特許請求の範囲第(
1)項ないし第(4)項の何れかに記載の空気調和機。
(6) When the total opening degree of each damper determined by the damper control amount determining means becomes 0% or less than the minimum set value, the set room temperature determining means temporarily sets the set room temperature to a lower value during heating. Claim No. 3 (2015) in which the temperature is increased during cooling.
The air conditioner according to any one of items 1) to (4).
(7)送風機回転数決定手段は、ダクト内の圧力があら
かじめ定められた圧力に略一定となるように回転数を決
定するようにした特許請求の範囲第(1)項ないし第(
6)項の何れかに記載の空気調和機。
(7) The blower rotation speed determining means determines the rotation speed so that the pressure within the duct is approximately constant at a predetermined pressure.
The air conditioner according to any of item 6).
(8)送風機制御手段にインバータを用いた特許請求の
範囲第(1)項ないし第(7)項の何れかに記載の空気
調和機。
(8) The air conditioner according to any one of claims (1) to (7), wherein an inverter is used as the blower control means.
(9)送風機制御手段にサイリスタを用いた特許請求の
範囲第(1)項ないし第(7)項の何れかに記載の空気
調和機。
(9) An air conditioner according to any one of claims (1) to (7), in which a thyristor is used as the blower control means.
(10)能力決定手段は、ダクト内の空気温度があらか
じめ定められた温度に略一定になるようヒートポンプの
能力を決定するようにした特許請求の範囲第(1)項な
いし第(9)項の何れかに記載の空気調和機。
(10) The capacity determining means is configured to determine the capacity of the heat pump so that the air temperature within the duct is substantially constant at a predetermined temperature. The air conditioner described in any of the above.
(11)能力制御手段に圧縮機の回転数を可変するイン
バータを用いた特許請求の範囲第(1)項ないし第(1
0)項の何れかに記載の空気調和機。
(11) Claims (1) to (1) in which an inverter for varying the rotation speed of the compressor is used as the capacity control means.
The air conditioner according to any of item 0).
(12)能力制御手段に圧縮機の台数制御とインバータ
を組合せて用いた特許請求の範囲第(1)項ないし第1
1項の何れかに記載の空気調和機。
(12) Claims (1) to 1 which use a combination of compressor number control and an inverter as the capacity control means.
The air conditioner according to any of Item 1.
(13)熱負荷測定手段、ダンパ制御量判定手段、設定
室温決定手段、運転状態測定手段、送風機回転数決定手
段、能力決定手段がマイクロコンピュータで実現されて
いる特許請求の範囲第(1)項ないし第(12)項の何
れかに記載の空気調和機。
(13) Claim (1) in which the heat load measuring means, the damper control amount determining means, the set room temperature determining means, the operating state measuring means, the blower rotation speed determining means, and the capacity determining means are realized by a microcomputer. The air conditioner according to any one of items 1 to 12.
JP60033724A 1985-02-20 1985-02-20 Air conditioner Granted JPS61191823A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60033724A JPS61191823A (en) 1985-02-20 1985-02-20 Air conditioner
KR1019850005919A KR900001875B1 (en) 1985-02-20 1985-08-16 Air-conditioner
US06/824,589 US4635445A (en) 1985-02-20 1986-01-23 Air-conditioner
DE8686101599T DE3682410D1 (en) 1985-02-20 1986-02-07 AIR CONDITIONING METHOD.
EP86101599A EP0192140B1 (en) 1985-02-20 1986-02-07 Air conditioning method
AU53351/86A AU580931B2 (en) 1985-02-20 1986-02-10 Air-conditioner
CA000501571A CA1250639A (en) 1985-02-20 1986-02-11 Air conditioner
MYPI87002406A MY101346A (en) 1985-02-20 1987-09-30 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033724A JPS61191823A (en) 1985-02-20 1985-02-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPS61191823A true JPS61191823A (en) 1986-08-26
JPH0563693B2 JPH0563693B2 (en) 1993-09-13

Family

ID=12394344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033724A Granted JPS61191823A (en) 1985-02-20 1985-02-20 Air conditioner

Country Status (1)

Country Link
JP (1) JPS61191823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237721A (en) * 1991-10-08 1993-09-17 Charmilles Technol Sa Machining tank for machine tool and electric discharge machining device incorporating it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237721A (en) * 1991-10-08 1993-09-17 Charmilles Technol Sa Machining tank for machine tool and electric discharge machining device incorporating it

Also Published As

Publication number Publication date
JPH0563693B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
KR900001875B1 (en) Air-conditioner
US8757506B2 (en) PTAC dehumidification without reheat and without a humidistat
WO2010039691A2 (en) Control of a conditioned air supply system
JPS62225842A (en) Air conditioner
JPS61191823A (en) Air conditioner
JPH02290454A (en) Air conditioner
JPS6284245A (en) Air conditioner
JPS61195234A (en) Air conditioner
JP2661274B2 (en) Air conditioner
JP3103583B2 (en) Air conditioner
JPS6284250A (en) Air conditioner
JPH0517462B2 (en)
JPH0436535A (en) Method of operating indoor fan of air conditioner
JPH0522824B2 (en)
JP2912696B2 (en) Air conditioner
JPS6266042A (en) Air conditioner
JPH0480297B2 (en)
JPS6266041A (en) Air conditioner
JPS6284244A (en) Air conditioner
JPH0229537A (en) Air conditioner
JPS6284254A (en) Air conditioner
JPS62194145A (en) Air-conditioning machine
JPS61262542A (en) Air-conditioning machine
JPH0480296B2 (en)
JPH03186137A (en) Duct type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees