JPS61191645A - Production of oxophorone - Google Patents

Production of oxophorone

Info

Publication number
JPS61191645A
JPS61191645A JP60030486A JP3048685A JPS61191645A JP S61191645 A JPS61191645 A JP S61191645A JP 60030486 A JP60030486 A JP 60030486A JP 3048685 A JP3048685 A JP 3048685A JP S61191645 A JPS61191645 A JP S61191645A
Authority
JP
Japan
Prior art keywords
isophorone
oxophorone
acid
oxygen
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60030486A
Other languages
Japanese (ja)
Inventor
Masakatsu Matsumoto
正勝 松本
Hisako Kobayashi
小林 久子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP60030486A priority Critical patent/JPS61191645A/en
Publication of JPS61191645A publication Critical patent/JPS61191645A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain oxophorone, in high efficiency and selectivity, by oxidizing alpha-isophorone with oxygen in the presence of phosphomolybdic acid or silicomolybdic acid and copresence of an alkali metal compound or an aromatic amine. CONSTITUTION:The objective compound of formula II useful as an intermediate for vitamin E, tobacco flavor or carotinoid such as rhodoxanthin, etc. economically from an easily available raw material, by oxidizing alpha-isophorone of formula I with oxygen at room temperature -130 deg.C, preferably at 70-110 deg.C, preferably in the absence of solvent, in the presence of phosphomolybdic acid or silicomolybdic acid, a nd in the copresence of an alkali metal salt such as bicarbonate, carbonate, acetate, oxide or hydroxide of Li, Na, K, Cs or Rb, or an aromatic amine such as pyrazine, triazine, 4,4'-dipyridyl, triphenylamine, etc.

Description

【発明の詳細な説明】 関する・更に詳しくはリンモリブデン酸るるいはクリコ
そリプデン酸の存在下、α−イソホロンる方法において
、アルカリ金属化合物又は芳香族アミンの共存下に行う
ことからなる該方法に関する〇 〔産業上の利用分野〕 本発明により得られるオギソホaンは、ビタミンBの合
成原料でめるトリメチル−p−ハイド口中メンの合成中
間体(西独−特許公開2646176参照)、タバコ香
料の製造原料(米国特許44776854、特公昭57
−29279号及び特開昭59−4589.3号参照)
、ロードキチンテン等のカロチノイドの合成原料として
幅広く使用されている化合物である。
DETAILED DESCRIPTION OF THE INVENTION Related and more specifically, a method of preparing α-isophorone in the presence of phosphomolybdic acid or cricosoripdic acid in the presence of an alkali metal compound or an aromatic amine. 〇〇 [Industrial Application Field] Ogisophon a obtained by the present invention is a synthetic intermediate of trimethyl-p-hyde mouth-feeding product made from a raw material for the synthesis of vitamin B (see West German Patent Publication No. 2646176), and a tobacco flavoring material. Manufacturing raw materials (U.S. Patent No. 4,477,6854, Special Publication No. 1983)
-29279 and JP-A-59-4589.3)
It is a compound that is widely used as a raw material for the synthesis of carotenoids such as rhodochitin tenen.

〔従来の技術〕[Conventional technology]

従来、オキソホロンを製造する方法としては、(イ)β
−イソホロンを金属触媒めるいは塩基触媒の存在下、酸
素により酸化する方法(仏国特許2335486、西独
特許公開2515304及び西独特許2457157等
参照)、(ロ)α−イソホロンをバナジウム触媒の存在
下、気相酸素酸化する方法(特開昭50−93947号
参照)、Vうα−イソホロンをパラジクム触媒の存在下
、t−プチルヒドロペルオキンドにより酸化する方法(
Murahashi8、、Chem、Lett、、19
83.1081参照)及びに)α−イソホロンをリンモ
リブデン酸あるいはシリコモリブデン酸の存在下、酸素
酸化する方法(特公昭55−3L)696号参照)が知
られている。
Conventionally, methods for producing oxophorone include (a) β
- A method of oxidizing isophorone with oxygen in the presence of a metal catalyst or a base catalyst (see French Patent No. 2335486, West German Patent Publication No. 2515304, West German Patent No. 2457157, etc.), (b) α-isophorone in the presence of a vanadium catalyst, A method of gas phase oxygen oxidation (see JP-A-50-93947), a method of oxidizing V-α-isophorone with t-butylhydroperoquine in the presence of a palladium catalyst (
Murahashi8,,Chem,Lett,,19
83.1081) and 2) A method of oxidizing α-isophorone with oxygen in the presence of phosphomolybdic acid or silicomolybdic acid (see Japanese Patent Publication No. 55-3L No. 696) is known.

〔発明が解決した間層点〕[Interlayer points solved by the invention]

しかしながら、ケ)の方法においては!−イソホロンは
α−イソホロンの異性化によって合成せねばならないし
、酸及び塩基に対しβ−イソホロンはα−イソホロンに
比べはるかに不安定でるる欠点を有している。(ロ)の
方法はオキソホロンの選択率が低く、シかも5.5−ジ
メチル−3−ホルミルフクロへキス−2−エン−1−オ
ンを多fK副生する欠点を有している。(/→の方法は
反応の効率が悪く、高価な酸化剤を使用せねばならない
欠点を有している。又、に)の方法はオキソホロンの選
択率が低いという欠点を有している。
However, in method (k)! - Isophorone must be synthesized by isomerization of α-isophorone, and β-isophorone has the disadvantage of being much more unstable to acids and bases than α-isophorone. The method (b) has the disadvantage that the selectivity for oxophorone is low and that 5,5-dimethyl-3-formylfucrohex-2-en-1-one is produced as a multi-fK by-product. The method (/→) has the drawback that the reaction efficiency is poor and an expensive oxidizing agent must be used.The method (2) also has the drawback that the selectivity for oxophorone is low.

本発明者等は従来の欠点を克服すべく検討した結果、オ
キソホロンを効率よくしかも高選択的に製造する方法を
見出し、本発明を完成した。
As a result of studies aimed at overcoming the conventional drawbacks, the present inventors discovered a method for producing oxophorone efficiently and highly selectively, and completed the present invention.

〔発明の概要〕[Summary of the invention]

本発明はリンモリブデン#Rあるいはシリコモリブデン
酸とアルカリ金属化合物又は芳香族アミンとの共存下に
、α−イソホロンを酸素酸化し、オキソホロンを製造す
るものでるる。
The present invention involves producing oxophorone by oxidizing α-isophorone with oxygen in the presence of phosphomolybdenum #R or silicomolybdic acid and an alkali metal compound or aromatic amine.

本発明の原料でろるα−イソホロンは工業的に入手容易
な化合物でるる。又、酸素は酸素ガス単独ろるいは空気
若しくは不活性ガスで希釈した酸素ガスを使用すること
ができる。
α-isophorone, which is the raw material for the present invention, is a compound that is easily available industrially. Further, as the oxygen, oxygen gas alone or oxygen gas diluted with air or an inert gas can be used.

本発明はリンモリブデン酸ろるいはシリコモリブデン酸
とアルカリ金属化合物又は芳香族アミンとの共存下に行
うことを必須の要件とする。リンモリブデン酸あるいは
シリコモリブデン酸の使用量はα−イノホロンに対し、
1重f%以下のいわゆる接触量で充分である。
The present invention requires that the reaction be carried out in the coexistence of phosphomolybdic acid or silicomolybdic acid and an alkali metal compound or aromatic amine. The amount of phosphomolybdic acid or silicomolybdic acid used is
A so-called contact amount of 1% by weight or less is sufficient.

アルカリ金属化合物としてはリチウム、ナトリクム、カ
リウム、セシウムあるいはルビジウムの炭酸水素塩、炭
酸塩、酢酸塩あるいは金属酸化物、金属水酸化物などを
用いることができる。
As the alkali metal compound, hydrogen carbonate, carbonate, acetate, metal oxide, metal hydroxide, etc. of lithium, sodium, potassium, cesium, or rubidium can be used.

芳香族アミンとしてはビフジン、トリアンン、4141
−ジピリジル、トリフェニルアミンなどを例示すること
ができる。リンモリブデン酸あるいはシリコモリブデン
酸に対するアルカリ金属化合物の使用tは4当量以下、
好ましくは約1当量であり、又、芳香族アミンの使用量
は触媒により任意に決定されるが通常4当量以下、好ま
しくは1/2当量以下である。
Aromatic amines include bifudine, trianne, 4141
Examples include -dipyridyl and triphenylamine. The amount of alkali metal compound used for phosphomolybdic acid or silicomolybdic acid is 4 equivalents or less,
It is preferably about 1 equivalent, and the amount of aromatic amine used is arbitrarily determined depending on the catalyst, but is usually 4 equivalents or less, preferably 1/2 equivalent or less.

反応は無暦媒で行う方が好ましく室1M〜130℃、好
ましくは70〜1it)℃で円滑に進行する。
The reaction is preferably carried out in an anhydrous medium and proceeds smoothly at a temperature of 1M to 130°C, preferably 70 to 11°C.

以下冥施例により本発明を史に詳細に説明する、。The present invention will be explained in detail below by way of examples.

比較例1 イソホa ノ(2g 、 14.5mmol )にリン
モリブデンfi (HsPMo 1204o、 20 
mg )をとかし、酸素雰囲気−ド、100℃で8時間
攪拌した。反応終了後内部係lAとして1,2,4.5
−ナト2メチルベンゼン(デxVン)を原え、ガスクロ
マトグラフィーで分析定鉱した。その結果、未反応のイ
ンホロン(619〜9回収率31%、転化率69チ)、
3,5.5−)リメテルシクロヘ午す−2−二ンー1.
4−ジオ7(オ+ソホa7,1.LJg、45.5%、
Jd率65,8ts)と3−ホルミル−5,5−ジメチ
ルシクロへ中ブー2−二ンー1−オン(80〜、3.6
チ、選択率5.2チ)を含有していた。
Comparative Example 1 Phosphomolybdenum fi (HsPMo 1204o, 20
mg) was dissolved and stirred at 100°C in an oxygen atmosphere for 8 hours. 1, 2, 4.5 as internal staff IA after reaction completion
-Nato-2-methylbenzene (DexV) was used for analysis by gas chromatography. As a result, unreacted inholon (619-9 recovery rate 31%, conversion rate 69%),
3,5.5-) Rimetelcyclohe-2-2-1.
4-Gio 7 (O+Soho a7, 1.LJg, 45.5%,
Jd rate 65,8ts) and 3-formyl-5,5-dimethylcyclo to 2-2-2-1-one (80~, 3.6
and selectivity 5.2).

分析条件 8himadzu GAS C出0訪ハχ氾
出HC−38F C−38F8hi CHK)Mに[’0PACC−R1
83% MGA / Diasolid Ll、2m1
000 821jc9/傷 retention time イソホロン 1.25m1n オキソホロン 1.90mn アルデヒド 3゜65m1n 内部標準(デ為Vン)  0.58血nさらに、ジクロ
ロメタンで希釈した反応混合物を飽和炭酸水素ナトIJ
・ラム水溶欺、飽和食塩水で順次洗浄し、無水硫酸マグ
ネククA上で乾燥した。
Analysis conditions 8himadzu GAS C0 visit HC-38F C-38F8hi CHK)
83% MGA / Diasolid Ll, 2m1
000 821jc9/wound retention time Isophorone 1.25ml1n Oxophorone 1.90mln Aldehyde 3゜65mln Internal standard (Detamer Vn) 0.58bloodnFurthermore, the reaction mixture diluted with dichloromethane was added to saturated sodium bicarbonate IJ.
- Washed sequentially with rum water solution and saturated saline solution, and dried on anhydrous sulfuric acid magnek A.

溶媒除去後、シリカゲルカラムクロマトグラフィーにか
け、ジクロロメタンで溶出することによりオキソホロン
を単離した。
After removing the solvent, oxophorone was isolated by subjecting it to silica gel column chromatography and eluting with dichloromethane.

オ中ソホay  bp 115〜118℃/37mm)
ig(lit、 He1v、 Chsm、 Acta、
、3’9゜2041  (1956)92〜94’Q/
11 mm14g ) NM几(CDCj、)δ: 6,48 (d 、 J=
1.5)1g 。
BP 115-118℃/37mm)
ig(lit, He1v, Chsm, Acta,
, 3'9°2041 (1956) 92-94'Q/
11 mm14g) NM几(CDCj,)δ: 6,48 (d, J=
1.5) 1g.

IH)@pah、 2.63(s 、 2H) 、 2
.LIL)(d、J=1.5Hz、3H)、1.11(
s。
IH) @pah, 2.63(s, 2H), 2
.. LIL) (d, J=1.5Hz, 3H), 1.11(
s.

6H)pP叱 + Mass  m/z(%)152(M  、39)、9
6(91)。
6H) pP scolding + Mass m/z (%) 152 (M, 39), 9
6 (91).

68(IIJU)。68 (IIJU).

3−ホルミル−5,5−ヅメナルシクロヘキサ−2−エ
ン−1−オン NMル(CDCI、)δ:1,08(s、IH)、2.
38(s、41()、6.50(s、18)、9.85
(s、IH)。
3-formyl-5,5-dumenalcyclohex-2-en-1-one NMle (CDCI,) δ: 1,08 (s, IH), 2.
38(s, 41(), 6.50(s, 18), 9.85
(s, IH).

IR(1iy、film) y  1698,1686
cm  −+ Massm/z(%)152(M  、39)、109
(14,5)。
IR (1iy, film) y 1698, 1686
cm −+ Massm/z (%) 152 (M, 39), 109
(14,5).

96(89)、81(14)、68(100)。96 (89), 81 (14), 68 (100).

67(35)。67(35).

比較例2 イソホロン5 g (36,2znmol)にシリコモ
リブデン酸suag(i(48iMo、21.+48.
0.0274mmol)をとかし、酸素雰囲気下、IU
L)’Qで8時間攪拌した。
Comparative Example 2 Suag silicomolybdate (i (48iMo, 21.+48.
0.0274 mmol) in an oxygen atmosphere, IU
L)'Q was stirred for 8 hours.

反応終了後、内tfBI準として、1,2,4.5−テ
トラメチルベンゼンを加えてジクロロメタンで希釈し、
ガスクロマトグツフィーで分析・定量したところ、反応
混合物には、未反応のインホロンデヒド(223吋、3
.9%1選択47.7%)が含まれていることがわがり
九。
After the reaction was completed, 1,2,4.5-tetramethylbenzene was added as a tfBI standard and diluted with dichloromethane.
When analyzed and quantified by gas chromatography, the reaction mixture contained unreacted inphorondehyde (223 in., 3 in.
.. 9% (47.7% selected 1).

実施例1 イソホロン(5g 、 36.2mm0凰)にリンモリ
フ゛デン酸(50Jl、 L)、027mmol )と
添加物として4.4’−ジピリジル(2ap、 0.L
l 13mmo l )をとかし、酸素雰囲気下、10
0’Qで19時間攪拌した。反応終了後、実施例1に示
した条件で反応物の分析・定量を行なり喪結果未反応の
イソホロン(3,14g、転化率37.3%)、オキソ
ホロン(1,96g、35.7%、選択率95.7チ)
とアルデヒド(132ダ、 1.8% 、選択率q、3
チ)を含有していた。
Example 1 Isophorone (5g, 36.2mm0), phosphomolyphidic acid (50Jl, L), 027mmol) and 4,4'-dipyridyl (2ap, 0.L) as an additive.
13 mmol l) was dissolved under an oxygen atmosphere for 10
The mixture was stirred at 0'Q for 19 hours. After the reaction was completed, the reactants were analyzed and quantified under the conditions shown in Example 1, and the results were as follows: unreacted isophorone (3.14 g, conversion rate 37.3%), oxophorone (1.96 g, 35.7%). , selection rate 95.7ch)
and aldehyde (132 Da, 1.8%, selectivity q, 3
h).

実施例2及び3 添加物として4,4゛−ジピリジンのかわシに炭酸ナト
リウA (1,5ap、 0.014mmol )又は
トリフェニルアミン(6,5j11il+、 13.0
27mmol )を使用した以外社、反応スケール、反
応温度は実施例1と同様でめシ、反応物の分析は比較例
1に示した条件でおこなった。
Examples 2 and 3 Sodium carbonate A (1,5ap, 0.014 mmol) or triphenylamine (6,5j11il+, 13.0
The reaction scale and reaction temperature were the same as in Example 1, except that 27 mmol) was used, and the reaction product was analyzed under the conditions shown in Comparative Example 1.

表1 車収率の項の()は選択率を示す 実施例4〜7 下表に記載した童のトリフェニルアミンを含むイソホロ
ン溶液(5g 、 36.2mmo I X調製し、グ
リコモリブデン酸(50〜、 L)、0274mmol
 )をとかし、10L)℃で8時間攪拌した。反応混合
物の分析定量は前実施例と同様におこない、各反応の結
果はまとめて表2に示した。
Table 1 The parentheses in the column of yield indicate selectivity. Examples 4 to 7 A solution of isophorone containing triphenylamine (5 g, 36.2 mmol) described in the table below was prepared, and glycomolybdic acid (50 mmol) was prepared. ~, L), 0274 mmol
) was dissolved and 10 L) was stirred at ℃ for 8 hours. The analytical quantification of the reaction mixture was carried out in the same manner as in the previous example, and the results of each reaction are summarized in Table 2.

戎 2Ebisu 2

Claims (1)

【特許請求の範囲】[Claims] (1)リンモリブデン酸あるいはシリコモリブデン酸の
存在下、α−イソホロンを酸素酸化し、オキソホロンを
製造する方法において、アルカリ金属化合物又は芳香族
アミンの共存下に行うことからなる、前記オキソホロン
の製造方法。
(1) A method for producing oxophorone, which comprises oxidizing α-isophorone with oxygen in the presence of phosphomolybdic acid or silicomolybdic acid to produce oxophorone in the presence of an alkali metal compound or an aromatic amine. .
JP60030486A 1985-02-20 1985-02-20 Production of oxophorone Pending JPS61191645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030486A JPS61191645A (en) 1985-02-20 1985-02-20 Production of oxophorone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030486A JPS61191645A (en) 1985-02-20 1985-02-20 Production of oxophorone

Publications (1)

Publication Number Publication Date
JPS61191645A true JPS61191645A (en) 1986-08-26

Family

ID=12305161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030486A Pending JPS61191645A (en) 1985-02-20 1985-02-20 Production of oxophorone

Country Status (1)

Country Link
JP (1) JPS61191645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166261A (en) * 1998-06-01 2000-12-26 Daicel Chemical Industries, Ltd. Oxidation catalytic system and process for producing ketoisophorone using the same
US6255509B1 (en) 1998-06-01 2001-07-03 Daicel Chemical Industries, Ltd. Oxidation catalyst and oxidation process using the same
US6346651B1 (en) 1998-07-16 2002-02-12 Daicel Chemical Industries, Ltd. Process and apparatus for producing ketoisophorone
US6410797B1 (en) 1998-12-28 2002-06-25 Daicel Chemical Industries, Ltd. Process for the production of ketoisophorone derivatives and equipment therefor
CN112760670A (en) * 2020-12-14 2021-05-07 北京理工大学 Electrocatalyst, preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166261A (en) * 1998-06-01 2000-12-26 Daicel Chemical Industries, Ltd. Oxidation catalytic system and process for producing ketoisophorone using the same
US6255509B1 (en) 1998-06-01 2001-07-03 Daicel Chemical Industries, Ltd. Oxidation catalyst and oxidation process using the same
US6346651B1 (en) 1998-07-16 2002-02-12 Daicel Chemical Industries, Ltd. Process and apparatus for producing ketoisophorone
US6410797B1 (en) 1998-12-28 2002-06-25 Daicel Chemical Industries, Ltd. Process for the production of ketoisophorone derivatives and equipment therefor
CN112760670A (en) * 2020-12-14 2021-05-07 北京理工大学 Electrocatalyst, preparation method and application thereof
CN112760670B (en) * 2020-12-14 2021-12-21 北京理工大学 Electrocatalyst, preparation method and application thereof

Similar Documents

Publication Publication Date Title
US20060270863A1 (en) Conversion of amorpha-4,11-diene to artemisinin and artemisinin precursors
JPS61191645A (en) Production of oxophorone
JPS63233943A (en) Manufacture of polyene aldehyde
CN114989063A (en) Synthesis method of beta-halopyrrole compound
JPS61282355A (en) Manufacture of 4,4'-dinitrostilbene-2,2'-disulfonate
JPH01294643A (en) Production of oxygen-containing compound
US5895823A (en) Process for the preparation of aqueous solutions of betaine
JPH02247151A (en) Cyclopentenone derivative and preparation thereof
CN112358424A (en) Preparation method of sulfinate compound
CN110981702B (en) Efficient synthesis method of 2, 3-dibromophenol or derivatives thereof
CN110437280B (en) Novel method for preparing 2 '-iodo [1, 1' -biaryl ] -2-organic phosphonate compound
JPS6157816B2 (en)
KR102657823B1 (en) A New Synthetic Route of Tafamidis
CN113372209B (en) Synthesis method of megastigmatrienone
JPS6133013B2 (en)
JPH021819B2 (en)
SU454196A1 (en) The method of obtaining aliphatic -diketones
JPS5852267A (en) Preparation of unsaturated sulfone
EP1035108A2 (en) Preparation of solutions of betaine
JPS6348260A (en) Production of alkali metallic salt of benzenesulfinic acid
JP4023255B2 (en) Method for producing dicarboxylic acid and method for producing catalyst used therefor
CN117247348A (en) Preparation method of 3-fluoro-4-aminopyridine
SU707157A1 (en) 1,4,4-trimethyl(5,1,0,0,3,5) tricyclooctancarbonic-8 acid as intermediate product for producing substance demonstrating insecticide activity
JP3757478B2 (en) Process for producing 2,4,5-trifluoro-3-iodobenzoic acid
CN110950755A (en) Method for synthesizing isobutyric acid D7 and isobutyric acid D6