JPS61191063A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS61191063A
JPS61191063A JP60032039A JP3203985A JPS61191063A JP S61191063 A JPS61191063 A JP S61191063A JP 60032039 A JP60032039 A JP 60032039A JP 3203985 A JP3203985 A JP 3203985A JP S61191063 A JPS61191063 A JP S61191063A
Authority
JP
Japan
Prior art keywords
layer
inp
type
region
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60032039A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Akimoto Serizawa
芹沢 晧元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60032039A priority Critical patent/JPS61191063A/en
Publication of JPS61191063A publication Critical patent/JPS61191063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a photodiode, whose p-n junction is not exposed on an InGaAs surface, by forming the second layer comprising first conducting type In0.53Ga0.47As at a part on the first layer comprising first conducting type InP, implanting impurities in a region including the entire surface of the second layer, thereby forming the PIN photodiodes. CONSTITUTION:On a semi-insulating InP substrate 1, an n-type InP (or InGaAsP close to this) layer 2 is formed. An n-type In0.53Ga0.47As (or InGaAsP close to this) layer 3 is formed at a part on the layer 2. Then Zn is implanted or diffused in a region including the entire surface of the layer 3, and a (p) region 4 is formed. Thus a PIN photodiode 10 is formed. Then, the p-n junction plane of the photodiode 10, which is exposed on the surface, becomes the InP layer 2. Therefore leak currents on the surface can be reduced. When an FET 20 is formed in the layer 2 in the same chip, the surface leak currents at the p-n junction due to the layer 2 and a (p) region 5 at a gate part can be made small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体へテロ接合を有するフォトダイオードと
接合形電界効果トランジスタの二律化された化合物半導
体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a compound semiconductor device in which a photodiode having a semiconductor heterojunction and a junction field effect transistor are integrated.

従来の技術 1.0〜1.7μm帯(長波長帯)の光フアイバ通信は
、高純度光ファイバがこの波長帯域で低分散。
Conventional technology In optical fiber communication in the 1.0 to 1.7 μm band (long wavelength band), high-purity optical fiber has low dispersion in this wavelength band.

低損失の特性を示すため、長距離伝送の手段として注目
されている。この長波長帯域における受光素子として、
GoやInxGa l )(Ag 1−7F7 (以後
InGaAsPと略す)或はInassG*o、a7P
 (以後1nGaAsと略す)を用いたPINフォトダ
イオード、アバランシェフォトダイオード或はPINフ
ォトダイオードと増幅用の電界効果型トランジスタの一
体化された素子(以後PIN/FICTと略す)の開発
が行なわれている。なかでもPIN/FITは低雑音、
高感度の受光素子としての可能性を有している事からI
 nG4Aj又はInGaAgP系の材料を用いて開発
が行われている。
Because it exhibits low loss characteristics, it is attracting attention as a means of long-distance transmission. As a light receiving element in this long wavelength band,
Go, InxGal) (Ag 1-7F7 (hereinafter abbreviated as InGaAsP) or InassG*o, a7P
(hereinafter abbreviated as 1nGaAs), a PIN photodiode, an avalanche photodiode, or an integrated element of a PIN photodiode and an amplification field-effect transistor (hereinafter abbreviated as PIN/FICT) is being developed. . Among them, PIN/FIT has low noise,
I
Development is underway using nG4Aj or InGaAgP-based materials.

上記のPIN/FIETは、InP基板上にエピタキシ
ャル成長させたInP或はInGaAsやInGaAg
Pの層を用いてPIN受光素子とFITを一体化して形
成するものであるが、InGaAs又はInGaAsに
近い組成を有するInGaAgPの表面層が非常に不安
定であり、特にpn接合部がこれらの層の表面に露出し
た場合は、大きなリーク電流が生じていた。InGaA
sのPINフォトダイオードに関しては、InGaAs
をメサ構造にし、InGaAsの全面を含む領域に不純
物を拡散して、pn接合がInP表面上に形成される様
な構造の素子や、InGaAs上に更にInP層を形成
し、InP層の表面の一部に不純物の拡散されたPIN
素子が提案されている。
The above PIN/FIET is made of InP, InGaAs, or InGaAg epitaxially grown on an InP substrate.
The PIN photodetector and FIT are integrated using a layer of P, but the surface layer of InGaAs or InGaAgP, which has a composition close to InGaAs, is extremely unstable, especially at the p-n junction. When exposed to the surface, a large leakage current occurred. InGaA
For s PIN photodiodes, InGaAs
A device with a structure in which a pn junction is formed on the InP surface by forming a mesa structure and diffusing impurities into a region that includes the entire surface of InGaAs, or forming an InP layer on the InGaAs and forming a pn junction on the surface of the InP layer. PIN with impurities partially diffused
elements have been proposed.

ところがPIN/FITのリーク電流に関しては、ポリ
イミド等によるパッシベーション技術の検討はなされた
ものの構造の検討はほとんどなされていなかった。
However, regarding the leakage current of PIN/FIT, although passivation techniques using polyimide and the like have been studied, the structure has hardly been studied.

第2図に従来のプレチー形のPIN/FIT・第3図に
従来のメサ形のP X N/F K Tの断面構造を示
す。第2図に於て、21は半絶縁性基板であり、その上
にn型のI nGaAs層が形成されており、その表面
よりZnを拡散する事により、ゲート拡散層23.受光
部拡散層24が形成されている。
FIG. 2 shows the cross-sectional structure of a conventional Prechey-type PIN/FIT, and FIG. 3 shows the cross-sectional structure of a conventional mesa-type PXN/FKT. In FIG. 2, reference numeral 21 denotes a semi-insulating substrate, on which an n-type InGaAs layer is formed, and by diffusing Zn from its surface, a gate diffusion layer 23. A light receiving portion diffusion layer 24 is formed.

25.26,27.28は、それぞれソース電極。25.26, 27.28 are source electrodes, respectively.

ゲート電極、ドレイン電極、受光部電極である。These are a gate electrode, a drain electrode, and a light receiving part electrode.

26.28は表面上で接続されており、受光により27
.28間に発生する電圧により、増幅されたドレイン電
流が26から27に向って流れる。
26.28 are connected on the surface, and 27
.. The voltage generated between 28 causes an amplified drain current to flow from 26 to 27.

第3図に於ては、31は半絶縁性基板上に、n型のIn
P層32、n型のInGaAS層33更Kp型のInG
a1834層が形成され、F′ETのソース電極35.
ゲート電極36.ドレイン電極37が、n型InP層3
2の表面に設置されている。38゜39は、それぞれ、
34及び32上に設置された受光部電極である。動作原
理等は第2図のプレナー型のP I If/F K T
と全く同様である。
In FIG. 3, 31 is an n-type In
P layer 32, n-type InGaAS layer 33 and Kp-type InG
A1834 layer is formed and the source electrode 35.a of the F'ET is formed.
Gate electrode 36. The drain electrode 37 is formed of the n-type InP layer 3
It is installed on the surface of 2. 38°39 are respectively,
This is a light receiving part electrode installed on 34 and 32. The operating principle is the planar type P I If/F K T shown in Figure 2.
It is exactly the same.

発明が解決しようとする問題点 第2図に示すPIN/FITの特長は、プラナ−構造で
製造が容易な事とFITのチャンネルに移動度の大きな
InGaAsを用いている事であるが、pn接合が、I
nGaAs 220表面に露出しているためリーク電流
が数10nÅ以上と大きいという問題点がある。第3図
に示すP I N/F K Tでは、FET部のpn接
合が、InPの表面に露出しているので、表面のリーク
電流を低くする事は可能となっているが、受光部のpn
接合がInGaAsの表面に形成されているので、低暗
電流性が確保しにくいという問題点がある。
Problems to be Solved by the Invention The features of the PIN/FIT shown in Fig. 2 are that it has a planar structure and is easy to manufacture, and that InGaAs with high mobility is used for the channel of the FIT. But I
Since it is exposed on the nGaAs 220 surface, there is a problem in that the leakage current is as large as several tens of nm or more. In the P I N/F K T shown in Figure 3, the pn junction in the FET section is exposed on the InP surface, making it possible to reduce surface leakage current; pn
Since the junction is formed on the surface of InGaAs, there is a problem in that it is difficult to ensure low dark current properties.

本発明は、このような問題点を解消し従来のPIN/F
ITの様にpn接合部が、InGaAs又はこれに近い
組成のInGaAsPの表面に露出せず、低暗電流のP
 I N/F E Tを実現するものである。
The present invention solves these problems and replaces the conventional PIN/F
Unlike IT, the pn junction is not exposed to the surface of InGaAs or InGaAsP with a composition similar to this, and Pn has a low dark current.
This realizes IN/FET.

問題点を解決するだめの手段 本発明は、半絶縁性のInP基板上に、第1導電形のI
nP又はInGaAs zASlyPyの第1層が形成
され、更に該第1の層の一部に第1導電形のI nGa
As又は第」層のInxGa、 zA!11 yPy層
よりもInGaAsに組成の近いInz’G2L + 
z’As + y’Py’する第2の層を有し、前記第
2の層の全面を含む領域に、第2導電形ならしめる不純
物が拡散又は注入されて受光素子を形放し、かつ第2の
層の存在していない領域の第1の層にFIT等の電気回
路が形成されている事を特徴とする化合物半導体装置を
形成する事により前記の問題点を解決するものである。
Means for Solving the Problems The present invention provides an I layer of the first conductivity type on a semi-insulating InP substrate.
A first layer of nP or InGaAs zASlyPy is formed, and further a part of the first layer is made of InGaAs of a first conductivity type.
As or 'th layer InxGa, zA! 11 Inz'G2L + whose composition is closer to InGaAs than the yPy layer
It has a second layer of z'As + y'Py', and an impurity for making the second conductivity type is diffused or implanted into a region including the entire surface of the second layer to release the light-receiving element, and The above problem is solved by forming a compound semiconductor device characterized in that an electric circuit such as an FIT is formed in the first layer in a region where the second layer does not exist.

作用 上記の手段により、pn接合は工nP又はこれに近いI
nGaAsPの表面に露出するので表面リーク電流が低
減される。
Operation By the above means, the p-n junction is
Since it is exposed on the surface of nGaAsP, surface leakage current is reduced.

実施例 本発明の実施例を第1図に示す。1は半絶縁性の基板で
あり、そのθ00′s上に第1層として約2μmのn形
InP層2及び約3μmの第2層のn型In0.5!I
G”O,47人S層3が形成され、InGaAgnGa
As層除きメサエッチングされている。メサ構造のIn
GaAsの全面を含む領域4と、InP層の表面5にZ
nが拡散され、受光部とFETのゲート部が形成されて
いる。なお、不純物はイオン注入されてもよい。6. 
7.8.9はそれぞれ、ソース電極、ゲート電極、ドレ
イン電極、受光部電極である。この実施例においては、
受光部径は100μmφであり、また、ゲート幅は6μ
m、ゲート長は1朋である。この構造によれば、受光部
のpn接合がn型InGaAg表面に露出せず、移動度
の小さなn型ZnP表面に露出するのみとなる。なお、
第2層3は、第1層がInxGal−2A31 yPy
よりなるとき第1層よりも組成がIn o、53Ga 
0047 Asに近い移動度の大きいInx/G2L、
−xzAs、y/py テtoFLLd本発明LD効果
を発揮することができる。
EXAMPLE An example of the present invention is shown in FIG. 1 is a semi-insulating substrate, on which θ00's is formed an n-type InP layer 2 with a thickness of about 2 μm as a first layer and an n-type In0.5! layer with a thickness of about 3 μm as a second layer. I
G”O, 47 S layer 3 is formed, InGaAgnGa
Mesa etching is performed except for the As layer. In mesa structure
Z is applied to the region 4 including the entire surface of GaAs and the surface 5 of the InP layer.
n is diffused to form a light receiving section and a gate section of the FET. Note that the impurity may be ion-implanted. 6.
7, 8, and 9 are a source electrode, a gate electrode, a drain electrode, and a light receiving part electrode, respectively. In this example,
The diameter of the light receiving part is 100μmφ, and the gate width is 6μm.
m, and the gate length is 1. According to this structure, the pn junction of the light receiving section is not exposed to the n-type InGaAg surface, but is only exposed to the n-type ZnP surface with low mobility. In addition,
In the second layer 3, the first layer is InxGal-2A31yPy
When the composition of the first layer is Ino, 53Ga
0047 Inx/G2L with high mobility close to As,
-xzAs, y/py tetoFLLd The LD effect of the present invention can be exhibited.

上記の実施例のPIN/FICTの特性を測定した結果
、同一サイズの従来のPIN/FICTに比較してリー
ク電流が、約20nムから約0.1 nÅ以下に低減さ
せる事ができた。
As a result of measuring the characteristics of the PIN/FICT of the above example, it was found that the leakage current could be reduced from about 20 nm to about 0.1 nÅ or less compared to a conventional PIN/FICT of the same size.

実施例では、n−InP層上にFiETを形成している
が、n−InP層の一部をメッチングし、半絶縁性基板
の表面に拡散又はイオン注入法等で、n型領域及びp型
領域を形成する事によりFICTを形成しても全く同等
である。
In the example, the FiET is formed on the n-InP layer, but a part of the n-InP layer is etched, and the n-type region and the p-type region are formed on the surface of the semi-insulating substrate by diffusion or ion implantation. Even if a FICT is formed by forming a region, it is completely equivalent.

発明の効果 以上のように本発明によれば低暗電流のP I N/F
ETの実現が可能である。
Effects of the Invention As described above, according to the present invention, a P I N/F with low dark current can be obtained.
It is possible to realize ET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるPIN/FITの構
造を示す図、第2図は従来のプレチー形のPIN/FE
Tの構造を示す図、第3図は従来のメサ形のP r N
/F K Tの構造を示す図である。 1・・・・・・半絶縁性InP基板、・2・・・・・・
n型InP層、3・・・・・パ外型InGtAs層、4
・・・・・・p領域、6・・・・・・ゲート電極。
Fig. 1 is a diagram showing the structure of a PIN/FIT in an embodiment of the present invention, and Fig. 2 is a diagram showing a conventional pre-chip type PIN/FE.
A diagram showing the structure of T, Figure 3 is a conventional mesa-shaped P r N
It is a figure which shows the structure of /FKT. 1...Semi-insulating InP substrate, 2...
N-type InP layer, 3...P-type InGtAs layer, 4
...P region, 6...Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性InP基板上に、第1導電形のInP又はIn
_xGa_1_−_xAs_1_−_yP_yなる第1
の層が形成され、さらにこの第1の層の一部に第1導電
形のIn_0_._5_3Ga_0_._4_7As又
は上記In_xGa_1_−_xAs_1_−_yP_
yよりも組成のIn_0_._5_3Ga_0_._4
_7Asに近いIn_x_′Ga_1_−_x_′As
_1_−_y_′P_yなる第2の層を有し、前記第2
の層の全面を含む領域に、該領域を第2導電形ならしめ
る不純物が拡散又はイオン注入され、かつ前記第2の層
の存在しない領域の第1の層に電気回路が形成されてい
る事を特徴とする化合物半導体装置。
On the semi-insulating InP substrate, InP of the first conductivity type or In
The first _xGa_1_−_xAs_1_−_yP_y
A layer of In_0_. of the first conductivity type is formed in a part of this first layer. _5_3Ga_0_. _4_7As or the above In_xGa_1_-_xAs_1_-_yP_
In_0_. of the composition than y. _5_3Ga_0_. _4
In_x_'Ga_1_-_x_'As close to _7As
a second layer _1_−_y_′P_y;
An impurity that makes the region a second conductivity type is diffused or ion-implanted into a region including the entire surface of the layer, and an electric circuit is formed in the first layer in the region where the second layer does not exist. A compound semiconductor device characterized by:
JP60032039A 1985-02-20 1985-02-20 Compound semiconductor device Pending JPS61191063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032039A JPS61191063A (en) 1985-02-20 1985-02-20 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032039A JPS61191063A (en) 1985-02-20 1985-02-20 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61191063A true JPS61191063A (en) 1986-08-25

Family

ID=12347724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032039A Pending JPS61191063A (en) 1985-02-20 1985-02-20 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61191063A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829346A (en) * 1987-01-05 1989-05-09 Nec Corporation Field-effect transistor and the same associated with an optical semiconductor device
JPH09213988A (en) * 1995-02-02 1997-08-15 Sumitomo Electric Ind Ltd P-i-n type photodetector, photoelectric conversion circuit and photoelectric conversion module
JP2009300206A (en) * 2008-06-12 2009-12-24 Murata Mfg Co Ltd Ultraviolet sensor
JP2014130939A (en) * 2012-12-28 2014-07-10 Toshiba Corp Optical semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829346A (en) * 1987-01-05 1989-05-09 Nec Corporation Field-effect transistor and the same associated with an optical semiconductor device
JPH09213988A (en) * 1995-02-02 1997-08-15 Sumitomo Electric Ind Ltd P-i-n type photodetector, photoelectric conversion circuit and photoelectric conversion module
JP2009300206A (en) * 2008-06-12 2009-12-24 Murata Mfg Co Ltd Ultraviolet sensor
JP2014130939A (en) * 2012-12-28 2014-07-10 Toshiba Corp Optical semiconductor device

Similar Documents

Publication Publication Date Title
Campbell et al. InP/InGaAs heterojunction phototransistors
US4636829A (en) Photodetector integrated circuit
JP2599131B2 (en) Integrated photodetector-amplifier device
US4739385A (en) Modulation-doped photodetector
US5107319A (en) Monolithically integrated photodiode-fet combination
US4346394A (en) Gallium arsenide burrus FET structure for optical detection
JPS61129883A (en) Photodetector
JP2559351B2 (en) Photo detector
JPS61191063A (en) Compound semiconductor device
US4416053A (en) Method of fabricating gallium arsenide burris FET structure for optical detection
Ohnaka et al. A planar InGaAs PIN/JFET fiber-optic detector
Shirai et al. A planar InP/InGaAsP heterostructure avalanche photodiode
JPH0658972B2 (en) Lateral pin heterojunction device and method of forming same
CA1287153C (en) Vertically integrated photodetector-amplifier
Wake et al. InGaAs/InP junction field-effect transistors with high transconductance made using metal organic vapor phase epitaxy
JPS61191064A (en) Compound semiconductor device
JP2670553B2 (en) Semiconductor light receiving / amplifying device
JPS61191065A (en) Semiconductor device
Jang et al. Wavelength dependent characteristics of high-speed metamorphic photodiodes
JPS6244827B2 (en)
Leheny et al. An integrated PIN/JFET photoreceiver for long wavelength optical systems
JPH0529642A (en) Semiconductor photodetector
JP3038509B2 (en) Manufacturing method of light receiving element
JPS63181371A (en) Optoelectronic integrated circuit
Campbell et al. InP/InGaAs heterojunction bipolar phototransistors with improved sensitivity