JPS6119092B2 - - Google Patents

Info

Publication number
JPS6119092B2
JPS6119092B2 JP55109235A JP10923580A JPS6119092B2 JP S6119092 B2 JPS6119092 B2 JP S6119092B2 JP 55109235 A JP55109235 A JP 55109235A JP 10923580 A JP10923580 A JP 10923580A JP S6119092 B2 JPS6119092 B2 JP S6119092B2
Authority
JP
Japan
Prior art keywords
cold
superconducting magnet
superconducting
containers
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109235A
Other languages
Japanese (ja)
Other versions
JPS5734313A (en
Inventor
Susumu Mitsune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10923580A priority Critical patent/JPS5734313A/en
Publication of JPS5734313A publication Critical patent/JPS5734313A/en
Publication of JPS6119092B2 publication Critical patent/JPS6119092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Description

【発明の詳細な説明】 この発明は、高均一又は高精度の磁界分布を発
生する超電導磁石装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a superconducting magnet device that generates a highly uniform or highly accurate magnetic field distribution.

従来、2個以上の超電導磁石から発生する磁界
の相互作用によつて所定の磁界分布を作る電子レ
ンズや電子ビーム転写装置等に使用される超電導
磁石装置の構造は、第1図及び第2図に示すよう
になつていた。すなわち、2個の超電導磁石1,
2はそれぞれ別個の液体ヘリウム3の収納された
保冷容器4,5に収納され、そしてそれぞれの保
冷容器4,5間を結ぶ通路6が設けられている。
この通路6には冷媒3が流通し、且つ超電導磁石
1,2を結ぶ電気配線7が設けられている。一方
保冷容器4,5は外槽8,9と冷媒3の収納され
た内槽10,11からなり、内槽10,11と外
槽8,9間には輻射シールド板12,13が設け
られ、このシールド板12,13には冷媒が流れ
るシールド管14,15が設けられてシールド効
果を高めている。そして、超電導磁石1に働く電
磁力は支持棒16,17,18で、超電導磁石2
に働く電磁力は支持棒19,20,21でそれぞ
れ支持されている。さらに、保冷容器1,2を保
持するために支持装置22が取り付けられてい
る。第2図は上記で説明した超電導磁石装置の斜
視図を示す。
Conventionally, the structures of superconducting magnet devices used in electron lenses, electron beam transfer devices, etc. that create a predetermined magnetic field distribution through the interaction of magnetic fields generated from two or more superconducting magnets are shown in Figures 1 and 2. The situation was as shown in . That is, two superconducting magnets 1,
2 are housed in separate cold containers 4 and 5 containing liquid helium 3, and a passage 6 is provided to connect the respective cold containers 4 and 5.
A refrigerant 3 flows through this passage 6, and an electric wiring 7 connecting the superconducting magnets 1 and 2 is provided. On the other hand, the cold storage containers 4, 5 consist of outer tanks 8, 9 and inner tanks 10, 11 containing the refrigerant 3, and radiation shield plates 12, 13 are provided between the inner tanks 10, 11 and the outer tanks 8, 9. The shield plates 12 and 13 are provided with shield tubes 14 and 15 through which a refrigerant flows to enhance the shielding effect. The electromagnetic force acting on the superconducting magnet 1 is applied to the support rods 16, 17, 18, and the superconducting magnet 2
The electromagnetic force acting on the support rods 19, 20, and 21 is supported by support rods 19, 20, and 21, respectively. Furthermore, a support device 22 is attached to hold the cold containers 1 and 2. FIG. 2 shows a perspective view of the superconducting magnet device described above.

以上のように構成された超電導磁石装置におい
ては、超電導磁石1,2及び保冷容器4,5はそ
れぞれ相対位置が固定されている。従つて、高均
一又は高精度の磁界分布を発生させる際、すなわ
ち、保冷容器4,5を常温から冷媒温度に冷却し
動作させる際電磁石1,2及び支持棒16,1
7,18,19,20,21の熱収縮、電磁石
1,2相互間の電磁力による電磁石1,2の相対
位置の設定位置からのずれが生じても相対位置の
調整が出来ず、高均一、高精度の磁界を発生させ
ることができなかつた。
In the superconducting magnet device configured as described above, the relative positions of the superconducting magnets 1 and 2 and the cold containers 4 and 5 are fixed. Therefore, when generating a highly uniform or highly accurate magnetic field distribution, that is, when operating the cold storage containers 4, 5 by cooling them from room temperature to the refrigerant temperature, the electromagnets 1, 2 and the support rods 16, 1
Even if the relative positions of electromagnets 1 and 2 deviate from the set positions due to heat shrinkage of 7, 18, 19, 20, and 21, and the electromagnetic force between electromagnets 1 and 2, the relative positions cannot be adjusted, resulting in high uniformity. , it was not possible to generate a highly accurate magnetic field.

本発明の目的は、上記の点を鑑みてなされたも
ので、超電導磁石間の相対位置を可動にした構造
にすることにより高均一又は高精度な磁界分布を
発生することができる超電導磁石装置を提供する
ことにある。
An object of the present invention was to provide a superconducting magnet device capable of generating highly uniform or highly accurate magnetic field distribution by having a structure in which the relative positions between superconducting magnets are movable. It is about providing.

本発明は、超電導磁石装置を複数個の超電導磁
石を支持装置で支持して複数個の保冷容器にそれ
ぞれ収容し、これらの保冷容器を支持し且つ可動
する可動装置を前記の保冷容器に設け、前記複数
個の保冷容器内の冷媒が流通し前記超電導磁石間
の配線が収納され前記可動装置に連動して動くベ
ローズで構成された通路を前記の複数の保冷容器
間に設けた構造とし、超電導磁石間の相対位置の
調整ができるようにしたものである。
The present invention provides a superconducting magnet device in which a plurality of superconducting magnets are supported by a support device and accommodated in a plurality of cold containers, and a movable device that supports and moves these cold containers is provided in the cold container, A structure is provided between the plurality of cold insulating containers, in which a path is provided between the plurality of cold insulating containers, through which the refrigerant in the plurality of cold insulating containers flows, the wiring between the superconducting magnets is housed, and a bellows moves in conjunction with the movable device. This allows the relative positions between the magnets to be adjusted.

以下、本発明の代表的実施例を図面を参照して
説明する。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

第3図は本発明に係る超電導装置の概略断面を
示すもので、第1図と同じものは同一符号を用
い、同じ構造になつている。保冷容器4,5を結
ぶ通路6は、保冷容器4,5と同一構造で断熱二
重構造となつており、外槽30、内槽31及び輻
射シールド板32を備え、輻射シールド板32に
はヘリウムガス、液体窒素等の冷媒を流し、シー
ルド効果を高めるシールド管33が設けられてい
る。通路6の外槽30、内槽31はそれぞれベロ
ーズで構成され、輻射シールド板32はスライド
可能なようにスライド部32Aが設けられてい
る。保冷容器4,5は可動装置34によつて支持
されている。可動装置34は、一端にネジ35,
36及び保冷容器4を支持する支持部材37、ナ
ツト38を有する摺動機構39を備え、他端は保
冷容器5を支持する保持部材40で構成される。
FIG. 3 shows a schematic cross section of a superconducting device according to the present invention, and the same parts as in FIG. 1 are denoted by the same reference numerals and have the same structure. The passage 6 connecting the cold containers 4 and 5 has the same structure as the cold containers 4 and 5, and has a double insulation structure, and includes an outer tank 30, an inner tank 31, and a radiation shield plate 32. A shield tube 33 is provided to flow a refrigerant such as helium gas or liquid nitrogen to enhance the shielding effect. The outer tank 30 and the inner tank 31 of the passage 6 are each made of a bellows, and the radiation shield plate 32 is provided with a sliding portion 32A so as to be slidable. The cold containers 4 and 5 are supported by a movable device 34. The movable device 34 has a screw 35 at one end,
36, a support member 37 for supporting the cold container 4, and a sliding mechanism 39 having a nut 38, and the other end is constituted by a holding member 40 for supporting the cold container 5.

第4図は可動装置34の摺動機構39の部分斜
視図を示す。第5図は摺動機構39の部分断面図
を示す。保冷容器4を支持する支持部材37に取
り付けられ、保持部材40を貫通してネジ36が
設けられ、このネジ36を摺動させることにより
保冷容器4を水平方向に移動させることができ
る。又、ネジ35は保持部材40の上端から垂直
方向に取り付けられ、ナツト38を摺動させると
保冷容器4を垂直方向に移動させることができ
る。
FIG. 4 shows a partial perspective view of the sliding mechanism 39 of the movable device 34. FIG. 5 shows a partial sectional view of the sliding mechanism 39. A screw 36 is attached to a support member 37 that supports the cold container 4 and passes through the holding member 40, and by sliding the screw 36, the cold container 4 can be moved in the horizontal direction. Further, the screw 35 is attached vertically from the upper end of the holding member 40, and by sliding the nut 38, the cold storage container 4 can be moved in the vertical direction.

次に、超電導磁石1,2を支持する支持装置4
1,42……46において、支持装置44,4
5,46は支持棒で超電導磁石2を固定し、支持
装置41,42,43は超電導磁石1の位置を保
冷容器4内で可動となるようにしている。支持装
置41,42,43は超電導磁石1を支持する支
持棒47,48,49と、支持棒47,48,4
9が内槽10、外槽8を貫通して可動できるよう
にするための内槽10に設けられたベローズ部材
50,51,52、及び外槽8に設けられたベロ
ーズ部材53,54,55と、ベローズ部材5
3,54,55を覆うカバー56,57,58
と、支持棒47,48,49を可動するための移
動手段として前記カバー56,57,58に設け
られたネジ59,60,61及びナツト62,6
3,64とそれぞれ具備して構成されている。
Next, the support device 4 that supports the superconducting magnets 1 and 2
1, 42...46, the support device 44, 4
Support rods 5 and 46 fix the superconducting magnet 2, and support devices 41, 42, and 43 allow the position of the superconducting magnet 1 to be movable within the cold storage container 4. The support devices 41, 42, 43 include support rods 47, 48, 49 that support the superconducting magnet 1, and support rods 47, 48, 4.
Bellows members 50, 51, 52 provided in the inner tank 10 to allow the bellows 9 to move through the inner tank 10 and the outer tank 8, and bellows members 53, 54, 55 provided in the outer tank 8. and bellows member 5
Covers 56, 57, 58 that cover 3, 54, 55
and screws 59, 60, 61 and nuts 62, 6 provided on the covers 56, 57, 58 as moving means for moving the support rods 47, 48, 49.
3 and 64, respectively.

又、保冷容器4,5にそれぞれ収納されている
超電導磁石1,2は、少なくとも一部を伸縮可能
なバネ状に構成した配線7で結合されている。
Further, the superconducting magnets 1 and 2 housed in the cold storage containers 4 and 5, respectively, are connected by a wire 7 having at least a portion formed in the shape of an expandable and contractable spring.

次に超電導磁石装置の動作について説明する。
この装置を作動させるために冷媒3を保冷容器
4,5に供給し、しかる後超電導磁石1,2を励
磁すると、保冷容器4,5内の超電導磁石1,2
相互間の相対位置は、励磁による相互の電磁力に
より、又支持棒44,45,46,47,48,
49等の熱収縮により、ずれが生じる。そこで可
動装置34の摺動機構39のネジ35,36を摺
動させると、保冷容器4,5間の通路6の外槽3
0、内槽31のベローズ、輻射シールド板32の
スライド部32A及び配線7が前記摺動方向と同
一方向に移動するので、保冷容器4を保冷容器5
に対して水平方向又は垂直方向に移動させること
ができる。超電導磁石1,2の相対位置を調整す
ることができる。更に保冷容器4内に収納された
超電導磁石1を支持している支持装置41,4
2,43のナツト62,63,64を摺動させる
ことでボルト59,60,61が動く。そして保
冷容器4の外槽8に設けられたベローズ部材5
3,54,55は、ボルト59,60,61に連
動して支持棒47,48,49を動かす。支持棒
47,48,49は内槽10に設けられたベロー
ズ部材50,51,52を介して超電導磁石1を
動かす。これにより超電導磁石1超電導磁石2に
対して相対位置を調整することができる。
Next, the operation of the superconducting magnet device will be explained.
In order to operate this device, the refrigerant 3 is supplied to the cold containers 4 and 5, and then the superconducting magnets 1 and 2 are excited.
The relative positions of the support rods 44, 45, 46, 47, 48,
Misalignment occurs due to heat shrinkage such as 49. Therefore, when the screws 35 and 36 of the sliding mechanism 39 of the movable device 34 are slid, the outer tank 3 of the passage 6 between the cold containers 4 and 5 is moved.
0, since the bellows of the inner tank 31, the sliding portion 32A of the radiation shield plate 32, and the wiring 7 move in the same direction as the sliding direction, the cold container 4 is moved into the cold container 5.
It can be moved horizontally or vertically. The relative positions of superconducting magnets 1 and 2 can be adjusted. Further, supporting devices 41 and 4 supporting the superconducting magnet 1 housed in the cold container 4
The bolts 59, 60, 61 move by sliding the nuts 62, 63, 64 of No. 2, 43. A bellows member 5 provided in the outer tank 8 of the cold container 4
3, 54, 55 move support rods 47, 48, 49 in conjunction with bolts 59, 60, 61. Support rods 47 , 48 , 49 move superconducting magnet 1 via bellows members 50 , 51 , 52 provided in inner tank 10 . Thereby, the relative position of the superconducting magnet 1 with respect to the superconducting magnet 2 can be adjusted.

以上の説明では保冷容器4,5を可動する可動
装置34においてナツト38、ネジ35,36を
用いて摺動機構39を構成したが、モーター等を
用いたものであつてもよい。同様に超電導磁石1
を支持する支持装置41,42,43もネジ5
9,60,61及びナツト62,63,64ばか
りでなく、モーター等を用いて構成することも可
能である。又、超電導磁石1のみを移動可能にし
たが、超電導磁石2についても移動可能なように
支持装置44,45,46を構成してもよい。
In the above explanation, the sliding mechanism 39 in the movable device 34 for moving the cold storage containers 4, 5 is constructed using the nut 38 and the screws 35, 36, but it may also be constructed using a motor or the like. Similarly, superconducting magnet 1
The supporting devices 41, 42, 43 that support the screws 5
It is also possible to use not only the nuts 9, 60, 61 and the nuts 62, 63, 64, but also a motor or the like. Further, although only the superconducting magnet 1 is made movable, the supporting devices 44, 45, and 46 may be configured so that the superconducting magnet 2 is also movable.

又、超電導磁石1,2とも支持装置で固定し、
動かないものであつてもよい。
In addition, both superconducting magnets 1 and 2 are fixed with a support device,
It can be something that doesn't move.

以上の説明で明らかなように本発明に係る超電
導磁石装置を用いれば、超電導磁石間の相対位置
を調整することができるので、熱収縮、電磁力に
よる超電導磁石間の相対位置ずれを修正すること
ができ、高均一、高精度の磁界分布を発生させる
ことができる等の優れた効果を奏する。
As is clear from the above explanation, by using the superconducting magnet device according to the present invention, the relative positions between the superconducting magnets can be adjusted, so that the relative positional deviation between the superconducting magnets due to thermal contraction and electromagnetic force can be corrected. It has excellent effects such as being able to generate a highly uniform and highly accurate magnetic field distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導磁石装置の概略を示す断
面図、第2図はその斜視図を示し、第3図は本発
明に係る超電導磁石装置の概略を示す断面図、第
4図は保持装置の一部概略斜視図、第5図は保持
装置の一部断面図を示す。 1,2……超電導磁石、3……冷媒、4,5…
…保冷容器、6……通路、7……配線、30,3
1……ベローズ、32……輻射シールド板、32
A……スライド部、34……可動装置、41,4
2,43,44,45,46……支持装置、4
7,48,49……支持棒、50,51,52,
53,54,55……ベローズ部材、59,6
0,61……ナツト(移動手段)、62,63,
64……ボルト(移動手段)。
FIG. 1 is a sectional view schematically showing a conventional superconducting magnet device, FIG. 2 is a perspective view thereof, FIG. 3 is a sectional view schematically showing a superconducting magnet device according to the present invention, and FIG. 4 is a holding device. FIG. 5 shows a partial sectional view of the holding device. 1, 2...Superconducting magnet, 3...Refrigerant, 4, 5...
...Cold container, 6...Aisle, 7...Wiring, 30,3
1... Bellows, 32... Radiation shield plate, 32
A...Sliding portion, 34...Movable device, 41, 4
2, 43, 44, 45, 46...support device, 4
7, 48, 49...Support rod, 50, 51, 52,
53, 54, 55... bellows member, 59, 6
0,61...Natsuto (transportation means), 62,63,
64...Bolt (movement means).

Claims (1)

【特許請求の範囲】 1 複数個の超電導磁石と、冷媒を収納し、前記
超電導磁石を収容する複数個の保冷容器と、前記
超電導磁石を前記保冷容器にそれぞれ支持する複
数個の支持装置と、前記保冷容器を支持し、且つ
可動にする前記複数個の保冷容器に設けられた可
動装置と、前記複数個の保冷容器間に、冷媒が流
通し且つ前記超電導磁石間の配線が収納され、前
記可動装置に連動して動くベローズで構成された
通路とを具備したことを特徴とする超電導磁石装
置。 2 超電導磁石に設けられる複数個の支持装置の
うち少なくとも1つの支持装置を、前記超電導磁
石を支持する支持棒と、この支持棒を移動させる
移動手段と、保冷容器に設けられ、前記支持棒と
連動するベローズ部材とで構成したことを特徴と
する特許請求の範囲第1項記載の超電導磁石装
置。 3 保冷容器間を結ぶ通路をベローズで構成した
内槽及び外槽と前記内槽と外槽との間に輻射シー
ルド板を設け、この輻射シールド板にスライド部
を設けたことを特徴とする特許請求の範囲第1項
記載の超電導磁石装置。
[Scope of Claims] 1. A plurality of superconducting magnets, a plurality of cold containers containing a refrigerant and accommodating the superconducting magnets, and a plurality of supporting devices that respectively support the superconducting magnets in the cold containers; A refrigerant flows between a movable device provided in the plurality of cold insulating containers that supports and makes the cold insulating containers movable, and wiring between the superconducting magnets is housed, 1. A superconducting magnet device characterized by comprising a passage composed of a bellows that moves in conjunction with a movable device. 2 At least one support device among the plurality of support devices provided on the superconducting magnet is connected to a support rod that supports the superconducting magnet, a moving means that moves the support rod, and a means that is provided in the cold container and that is connected to the support rod. The superconducting magnet device according to claim 1, characterized in that the superconducting magnet device comprises a bellows member that interlocks with each other. 3. A patent characterized in that an inner tank and an outer tank are formed of bellows to connect the passages between the cold storage containers, and a radiation shield plate is provided between the inner tank and the outer tank, and a sliding part is provided on the radiation shield plate. A superconducting magnet device according to claim 1.
JP10923580A 1980-08-11 1980-08-11 Superconductive magnet device Granted JPS5734313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10923580A JPS5734313A (en) 1980-08-11 1980-08-11 Superconductive magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10923580A JPS5734313A (en) 1980-08-11 1980-08-11 Superconductive magnet device

Publications (2)

Publication Number Publication Date
JPS5734313A JPS5734313A (en) 1982-02-24
JPS6119092B2 true JPS6119092B2 (en) 1986-05-15

Family

ID=14505033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10923580A Granted JPS5734313A (en) 1980-08-11 1980-08-11 Superconductive magnet device

Country Status (1)

Country Link
JP (1) JPS5734313A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828313B2 (en) * 2006-06-08 2011-11-30 イチカワ株式会社 Method and apparatus for grooving a press belt for papermaking

Also Published As

Publication number Publication date
JPS5734313A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
Von Hahn et al. The electrostatic cryogenic storage ring CSR–mechanical concept and realization
US4769623A (en) Magnetic device with curved superconducting coil windings
US7126448B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
US20110304416A1 (en) Superconducting magnet arrangement and method of mounting thereof
EP0122498B1 (en) Cryostat
JPS63200500A (en) Synchrotron radiation source
JPH09190913A (en) Superconducting magnet device and magnetic resonance imaging apparatus using this device
US5001448A (en) Shield for a magnet
EP0135185A2 (en) Cryostat for NMR magnet
JP2000040615A (en) Superconductive magnet for making open structured magnetic resonance image
US4560933A (en) Apparatus for adjustably mounting coils of a magnet system for nuclear spin tomography
JP2021163883A (en) Physics package, optical grating clock physics package, atomic clock physics package, atomic interferometer physics package, and quantum information processing device physics package
US5625331A (en) Superconducting deflection electromagnet apparatus
JPH0421112B2 (en)
JPS6119092B2 (en)
JPS6119093B2 (en)
JPH0219430B2 (en)
Roth et al. Superconducting Magnet Facility for Plasma Physics Research
JP3585141B2 (en) Superconducting magnet device
WO2021200909A1 (en) Physical package for optical lattice clock
JP3279031B2 (en) Superconducting electromagnet device for charged particles and charged particle storage ring
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
JPH09276246A (en) Superconducting magnet device
JPH06267740A (en) Cryostat for superconductive magnet
JP2010016025A (en) Superconducting device