JPS6118989Y2 - - Google Patents

Info

Publication number
JPS6118989Y2
JPS6118989Y2 JP1980099292U JP9929280U JPS6118989Y2 JP S6118989 Y2 JPS6118989 Y2 JP S6118989Y2 JP 1980099292 U JP1980099292 U JP 1980099292U JP 9929280 U JP9929280 U JP 9929280U JP S6118989 Y2 JPS6118989 Y2 JP S6118989Y2
Authority
JP
Japan
Prior art keywords
screw
wedge
injection
wall surface
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980099292U
Other languages
Japanese (ja)
Other versions
JPS5724021U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980099292U priority Critical patent/JPS6118989Y2/ja
Publication of JPS5724021U publication Critical patent/JPS5724021U/ja
Application granted granted Critical
Publication of JPS6118989Y2 publication Critical patent/JPS6118989Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk

Description

【考案の詳細な説明】 本考案は、スクリユに設けられているミキシン
グ機構部に特徴を有する射出成形機に関するもの
である。
[Detailed Description of the Invention] The present invention relates to an injection molding machine having a feature in a mixing mechanism section provided in a screw.

射出成形機では、その機能上、スクリユを可塑
化時に後退し射出時に前進するため、スクリユの
有効長が変化して樹脂に加えられる機械的エネル
ギーおよび伝熱エネルギーが変化する結果、ある
程度の樹脂温度の差は避けられない。
In an injection molding machine, the screw moves backward during plasticization and moves forward during injection, so the effective length of the screw changes and the mechanical energy and heat transfer energy applied to the resin change. As a result, the resin temperature changes to a certain extent. The difference is unavoidable.

前記スクリユの従来例としては、第1図に示す
ようなPVC用スクリユがあるが、該スクリユは
ストローク前後の樹脂温度差が大きい欠点があ
る。また、温度差を少なくするために発熱を押え
てスクリユ先端部に移送し、先端部で急激に溶か
すようにした混練ヘツド部を設けたものであり、
その具体例としては、第2図に示すようなホモメ
ルトスクリユ、第3図ないし第6図に示すような
ハイミツクススクリユ、第7図ないし第11図に
示すようなハイミツクススクリユ、第11図に示
すようなダルメージスクリユがある。
As a conventional example of the screw, there is a screw for PVC as shown in FIG. 1, but this screw has the disadvantage that there is a large difference in resin temperature before and after the stroke. In addition, in order to reduce the temperature difference, a kneading head section is installed that suppresses heat generation and transfers it to the tip of the screw, where it melts rapidly.
Specific examples include homomelt screws as shown in Figure 2, high-mix screws as shown in Figures 3 to 6, high-mix screws as shown in Figures 7 to 11, There is a Dalmage screw as shown in Figure 11.

前記の各種スクリユのうち、第3図ないし第6
図のハイミツクススクリユおよび第11図のダル
メージスクリユを除くスクリユは、いずれもバリ
ヤ(堰)を設け、スクリユ回転時にバツクフロー
を生ぜしめて練り作用を持たせるものであり、ス
トローク前後の樹脂温度差は少なくなつている
が、可塑化能力の低下および樹脂温度の上昇不足
等の難点がある。
Of the various screws mentioned above, Figures 3 to 6
All screws, except for the high-mix screw shown in the figure and the dalmage screw shown in Figure 11, are equipped with a barrier (weir) to create a backflow when the screw rotates to give it a kneading effect, and the resin temperature before and after the stroke changes. Although the difference has decreased, there are still drawbacks such as a decrease in plasticizing ability and insufficient rise in resin temperature.

本案は、前記のような難点を解消するための考
案であつて、スクリユの先端部に設けられている
ミキシング部の周面に、複数の可塑化側切り欠き
斜面および複数の射出側切り欠き斜面を相互に間
隔をおいて配設し、前記各可塑化側切り欠き斜面
とシリンダ内壁面によつてトーピード側ほど浅く
なる複数の楔状可塑化側空間と、前記各射出側切
り欠き斜面と前記シリンダ内壁面によつてトーピ
ード側ほど深くなる複数の逆向き楔状射出側空間
とを設けてなるミキシング機構部に特徴を有し、
可塑化性能とともに射出圧のバツクアツプ性能を
著しく向上させた射出成形機を提供するにある。
The present invention is an invention to solve the above-mentioned difficulties, and includes a plurality of notch slopes on the plasticizing side and a plurality of notch slopes on the injection side on the circumferential surface of the mixing part provided at the tip of the screw. are arranged at intervals from each other, and each of the plasticizing side notch slopes and the cylinder inner wall surface creates a plurality of wedge-shaped plasticizing side spaces that become shallower toward the torpedo side, and each of the injection side notch slopes and the cylinder. The mixing mechanism is characterized by a plurality of reverse wedge-shaped injection side spaces that become deeper toward the torpedo side due to the inner wall surface,
An object of the present invention is to provide an injection molding machine which has significantly improved plasticizing performance and injection pressure backup performance.

本考案は、前記のようにスクリユの先端部に設
けられているミキシング部の周面に、複数の可塑
化側切り欠き斜面および複数の射出側切り欠き斜
面を相互に間隔をおいて配設し、前記各可塑化側
切り欠き斜面とシリンダ内壁面によつてトーピー
ド側ほど浅くなる複数の楔状可塑化側空間と、前
記各射出側切り欠き斜面と前記シリンダ内壁面に
よつてトーピード側ほど深くなる複数の逆向き楔
状射出側空間とを設けているので、可塑化時に、
複数の前記楔状可塑化側空間によつて未溶融樹脂
が捕促され強力な剪断応力で急激に溶融されると
ともに、先側が小さくなる楔形状により剪断力が
さらに強められて練り作用、クリーニング作用が
著しく高められ滞留が防止され、また、射出時
に、複数の前記逆向き楔状射出側空間によつて射
出圧がバツクアツプされて、樹脂の可塑化、射出
性能が著しく向上されている。
In the present invention, a plurality of notch slopes on the plasticizing side and a plurality of slopes on the injection side are arranged at intervals on the circumferential surface of the mixing part provided at the tip of the screw as described above. , a plurality of wedge-shaped plasticizing side spaces which become shallower toward the torpedo side due to the above-mentioned respective plasticizing side notch slopes and the cylinder inner wall surface, and which become deeper toward the torpedo side due to the respective injection side notch slopes and the cylinder inner wall surface. Since multiple reverse wedge-shaped injection spaces are provided, during plasticization,
Unmelted resin is trapped by the plurality of wedge-shaped plasticizing side spaces and rapidly melted by strong shearing stress, and the shearing force is further strengthened by the wedge shape with the tip side becoming smaller, resulting in a kneading action and a cleaning action. The injection pressure is significantly increased and stagnation is prevented, and during injection, the injection pressure is backed up by the plurality of oppositely directed wedge-shaped injection side spaces, thereby significantly improving resin plasticization and injection performance.

以下、本考案の実施例を第12図ないし第15
図によつて説明する。
Embodiments of the present invention are shown in FIGS. 12 to 15 below.
This will be explained using figures.

図中1はスクリユであつて、同スクリユ1の先
端部即ちトーピード2の手前にミキシング部3が
設けられ、該ミキシング部3は、スクリユ径に対
し1〜3倍相当の長さに形成されている。
In the figure, 1 is a screw, and a mixing section 3 is provided at the tip of the screw 1, that is, in front of the torpedo 2, and the mixing section 3 is formed to have a length equivalent to 1 to 3 times the screw diameter. There is.

さらに、前記ミキシング部3の周面9には、第
12図ないし第15図に示すように複数の可塑化
側切欠き斜面4(図示右側)および複数の射出側
切欠き斜面5を相互に間隔をおいて配設し、各可
塑化側切欠き斜面4はトーピード2側になるほど
浅く形成され、各射出側切欠き斜面5はトーピー
ド2側になるほど深く形成されており、各可塑化
側切欠き斜面4とシリンダ内壁面6によつてトー
ピード2側ほど浅くなる複数の楔状可塑化側空間
7(第15図参照)と、各射出側切欠き斜面5と
シリンダ内壁面6によつてトーピード2側ほど深
くなる複数の逆向き楔状可塑化側空間8(第15
図参照)とを設けた構成になつており、各楔状可
塑化側空間7および各逆向き楔状可塑化側空間8
は、それぞれミキシング3部の周面9を介し図示
のように相互間隔を有しているとともに、先端部
と後端部が交互に入り込んだ配置になつている。
Further, on the peripheral surface 9 of the mixing section 3, as shown in FIGS. 12 to 15, a plurality of plasticizing side notch slopes 4 (on the right side in the figure) and a plurality of injection side notch slopes 5 are provided at intervals. Each plasticizing side notch slope 4 is formed shallower toward the torpedo 2 side, and each injection side notch slope 5 is formed deeper toward the torpedo 2 side. The slope 4 and the cylinder inner wall surface 6 form a plurality of wedge-shaped plasticizing side spaces 7 (see FIG. 15) that become shallower toward the torpedo 2 side, and the injection side notch slopes 5 and the cylinder inner wall surface 6 form a plurality of wedge-shaped plasticizing side spaces 7 on the torpedo 2 side. A plurality of reverse wedge-shaped plasticization side spaces 8 (15th
(see figure), each wedge-shaped plasticizing side space 7 and each reverse wedge-shaped plasticizing side space 8.
are spaced apart from each other as shown in the figure through the circumferential surface 9 of the mixing portion 3, and are arranged such that the leading end and the trailing end are intersected alternately.

第12図ないし第15図に示す実施例の作用説
明に先立つて、スクリユ外周に凹み11を形成し
た従来のものにおける樹脂の相遷移区間(固相か
ら液相への過渡区間)での溶融過程を第16図、
第17図で説明すると、スクリユ凹み11内のソ
リツトベツド13は、溶融体フイルム14を介し
て、スクリユ凹み11と相対し相対移動する壁部
12に接し、壁部12に対する凹み11の移動側
と反対側の凹み11内では溶融体プール15が形
成されているが、溶融が進行すると、ソリツトベ
ツド13は粉砕され、第17図に示すように、溶
融体16の中に未溶融ペレツトの固まり17が浮
遊している状態となる。この状態ではスクリユ回
転による剪断力が溶融体16に作用してその温度
が上るが、未溶融ペレツト17への作用は少な
い。そして未溶融ペレツト17の溶融は殆んどが
伝熱エネルギーによつて行なわれて溶融効率が悪
い。
Prior to explaining the operation of the embodiment shown in FIGS. 12 to 15, we will explain the melting process in the phase transition zone (transition zone from solid phase to liquid phase) of the resin in the conventional screw tube having a recess 11 formed on its outer periphery. Figure 16,
To explain with reference to FIG. 17, the solid bed 13 in the screw recess 11 is in contact with the wall portion 12 which faces the screw recess 11 and moves relatively through the molten film 14, and is opposite to the moving side of the recess 11 with respect to the wall portion 12. A melt pool 15 is formed in the side recess 11, but as the melting progresses, the solid bed 13 is crushed, and as shown in FIG. 17, unmelted pellets 17 are suspended in the melt 16. The situation is as follows. In this state, the shearing force due to the rotation of the screw acts on the melt 16 and raises its temperature, but the effect on the unmolten pellets 17 is small. Most of the unmelted pellets 17 are melted by heat transfer energy, resulting in poor melting efficiency.

前記を理論的に考察してみると、樹脂が溶融す
る時に受けるエネルギーは、図示されないシリン
ダヒータからの伝熱エネルギーと、スクリユ回転
による剪断エネルギーであり、剪断エネルギーは
次式で計算される。
Considering the above theoretically, the energy received when the resin melts is the heat transfer energy from the cylinder heater (not shown) and the shear energy due to the rotation of the screw, and the shear energy is calculated by the following formula.

壁面での剪断速度γは、スクリユ径D、スクリ
ユ回転数N、溝深さhの時、 γ=πDN/h …………(1) 単位体積当り消費されるエネルギーPは剪断応
力をτとすると、 P=τγ …………(2) ニユートン流体の流動式は粘度をμとすると、 τ=μγ …………(3) (3)式を(2)式に代入すると、 P=μγ=μ〔πDN/h〕 ………(4) 従つて剪断による単位体積当りのエネルギーP
は溝深さの2乗に反比例することになる。
The shear rate γ on the wall surface is, when the screw diameter D, the screw rotation speed N, and the groove depth h, γ=πDN/h …(1) The energy P consumed per unit volume is the shear stress Then, P=τγ …………(2) The flow equation for Newtonian fluid is, if the viscosity is μ, τ=μγ …………(3) Substituting equation (3) into equation (2), P=μγ 2 = μ [πDN/h] 2 ………(4) Therefore, the energy per unit volume due to shearing P
is inversely proportional to the square of the groove depth.

第2図、第7図および第8図、第9図と第10
図および第11図に示したミキシングヘツドは第
21図に示すように、未溶融ペレツト21を細分
化する作用はあるが、細分化された未溶融ペレツ
ト21の溶融の大部分は、溝が深いため剪断力が
小さく、伝熱エネルギーに依存し、その溶融効率
は悪い。
Figures 2, 7 and 8, 9 and 10
As shown in FIG. 21, the mixing head shown in FIG. Therefore, the shear force is small and depends on heat transfer energy, so the melting efficiency is poor.

またシリンダ壁面、スクリユ面のクリーニング
作用は面での剪断力に依存し、剪断力には次の関
係がある。(1)式を(2)式に代入すると、 τ=π・D・N・μ/h …………(5) 従つて第9図および第10図に示すミキシング
ヘツドでは、溝の切り始め箇所および切り終り箇
所の溝深さhは大きいため、クリーニング作用が
小さく、従つて前記両箇所で滞留が生ずる。
Further, the cleaning action of the cylinder wall surface and screw surface depends on the shearing force on the surface, and the shearing force has the following relationship. Substituting equation (1) into equation (2), τ=π・D・N・μ/h……(5) Therefore, in the mixing head shown in Figs. 9 and 10, when the groove is cut, Since the groove depth h at the location and the cut end location is large, the cleaning action is small and therefore stagnation occurs at both locations.

しかしながら第12図ないし第15図に示す本
考案の実施例では、スクリユ回転により、溶融体
と未溶融ペレツトはスクリユ先端に対し閉塞され
た楔状可塑化側空間7に輸送され、第18図およ
び第19図に示すように未溶融ペレツトは可塑化
側切欠き斜面4とシリンダ内壁面6との相対運動
(可塑化側切欠き斜面4は回転、シリンダ内壁面
6は停止)によつて巻込まれる形でコーナ部にな
つているミキシング部3の周面9に集合させられ
る。集合した未溶融ペレツト18は、第18図に
示すように、可塑化側切欠き斜面4の楔作用によ
り強くシリンダ内壁面6に押し付けられる。
However, in the embodiment of the present invention shown in FIGS. 12 to 15, the rotation of the screw transports the molten material and unmelted pellets to the wedge-shaped plasticizing side space 7 that is closed to the tip of the screw, and as shown in FIGS. As shown in Fig. 19, the unmolten pellets are drawn in by the relative movement between the notch slope 4 on the plasticizing side and the cylinder inner wall surface 6 (the plasticizing side notch slope 4 rotates, and the cylinder inner wall surface 6 stops). They are gathered on the circumferential surface 9 of the mixing section 3, which is a corner section. As shown in FIG. 18, the assembled unmelted pellets 18 are strongly pressed against the cylinder inner wall surface 6 by the wedge action of the notch slope 4 on the plasticizing side.

この時、楔状可塑化側空間7において、第16
図に示す溶融モデルの溶融体フイルム14と同様
に溶融フイルム層19が形成され、スクリユ回転
による機械エネルギーは強力な剪断エネルギーと
なり、未溶融ペレツト18に作用し、この溶融が
急激に促進される。
At this time, in the wedge-shaped plasticization side space 7, the 16th
A molten film layer 19 is formed in the same manner as the molten film 14 of the molten model shown in the figure, and the mechanical energy generated by the rotation of the screw becomes strong shear energy that acts on the unmolten pellets 18, rapidly accelerating their melting.

これをさらに詳細に説明すると、楔状可塑化側
空間7は、トーピード側即ち先端に進むに従つ
て、可塑化側切欠き斜面4とシリンダ内壁面6の
隙間が小さくなつた楔を形成しており、未溶融ペ
レツト18はシリンダ内壁面6とミキシング部の
周面9により堰止められて、シリンダ内壁面6に
押し付けられ、先端に行くほど溶融フイルム層1
9の厚みhが小さくなり、ミキシングヘツド部で
の発熱量Pは(4)式で示されるようにhの2乗に反
比例するために著しく大きくなり、溶融が飛躍的
に促進される。
To explain this in more detail, the wedge-shaped plasticizing side space 7 forms a wedge in which the gap between the plasticizing side notch slope 4 and the cylinder inner wall surface 6 becomes smaller as it advances toward the torpedo side, that is, the tip. The unmelted pellets 18 are blocked by the cylinder inner wall surface 6 and the circumferential surface 9 of the mixing section, and are pressed against the cylinder inner wall surface 6, and the molten film layer 1 increases toward the tip.
The thickness h of the mixing head 9 becomes smaller, and the amount of heat generated at the mixing head portion P becomes significantly larger because it is inversely proportional to the square of h, as shown by equation (4), and melting is dramatically promoted.

また楔状可塑化側空間7、逆向き楔状射出側空
間8の境界に近づくと、可塑化側切欠き斜面4と
シリンダ内壁面6の隙間hは小さくなつて零に近
づくため、(5)式で明らかなように、剪断力τは極
めて大きくなり、クリーニング作用は飛躍的に増
大し、その結果、第9図および第10図に示され
たミキシングヘツドに見られる溝の切り始め箇所
および切り終り箇所での滞留はなくなる。
Furthermore, as the boundary between the wedge-shaped plasticization side space 7 and the opposite wedge-shaped injection side space 8 is approached, the gap h between the plasticization side notch slope 4 and the cylinder inner wall surface 6 becomes smaller and approaches zero, so that equation (5) can be expressed as follows. As can be seen, the shearing force τ becomes extremely large and the cleaning action increases dramatically, so that the grooves start and end as seen in the mixing head shown in FIGS. 9 and 10. There will be no more stagnation.

さらに溶融した樹脂20はミキシング部周面9
とシリンダ内壁面6の隙間を通り、逆向き楔状射
出側空間8に流入し、スクリユ先端にプールされ
る。
Further, the melted resin 20 is applied to the mixing part peripheral surface 9.
It passes through the gap between the cylinder inner wall surface 6 and flows into the reverse wedge-shaped injection side space 8, where it is pooled at the tip of the screw.

一定量プールされた溶融樹脂は、次のサイクル
で図示省略した金型に射出されるが、スクリユ先
端圧は極めて高い圧力となるため、第20図に示
すように、溶融樹脂はミキシング部の周面9とシ
リンダ内壁面6の隙間を逆流しようとするが、逆
向き楔状射出側空間8は逆流方向に先細にとなつ
た逆向き楔状になつているため、樹脂自身の粘性
により射出圧力をバツクアツプする。特にプラグ
フロー的挙動を示す塩化ビニール樹脂ではその効
果は大きい。
A certain amount of pooled molten resin is injected into a mold (not shown) in the next cycle, but since the pressure at the tip of the screw is extremely high, the molten resin is injected around the mixing part as shown in Figure 20. Although the flow attempts to flow backward through the gap between the surface 9 and the cylinder inner wall surface 6, the injection pressure is backed up due to the viscosity of the resin itself because the reverse wedge-shaped injection side space 8 is tapered in the reverse flow direction. do. This effect is particularly great for vinyl chloride resins that exhibit plug-flow behavior.

またポリエチレン、ポリプロピレン等の結晶性
樹脂は融解潜熱が大きく溶融樹脂中に未溶融ペレ
ツトが浮遊している状態が観察される。しかし前
記実施例においては、楔状可塑化側空間7の可塑
化側切欠き斜面4が移動しているため、溶融樹脂
は第18図に示す矢印の循環流を生じ、浮遊して
いる未溶融ペレツト18も矢印方向に流動する
が、流動方向に沿つて先細りとなつているため、
周面9部即ちコーナ部で捕促され、可塑化側切欠
き斜面4とシリンダ内壁面6との間の狭い隙間に
より高い温度に加熱される大きな発熱量で未溶融
ペレツト18は確実に溶融される。
Further, crystalline resins such as polyethylene and polypropylene have a large latent heat of fusion, and unmolten pellets are observed floating in the molten resin. However, in the above embodiment, since the plasticizing side notch slope 4 of the wedge-shaped plasticizing side space 7 moves, the molten resin generates a circulation flow as shown by the arrow in FIG. 18 also flows in the direction of the arrow, but because it tapers along the flow direction,
The unmelted pellets 18 are reliably melted by the large amount of heat generated by the large amount of heat captured at the circumferential surface 9, that is, the corner, and heated to a high temperature by the narrow gap between the plasticizing side notch slope 4 and the cylinder inner wall surface 6. Ru.

前記実施例では、スクリユ1の先端近くにミキ
シング部3を設けたが、その設置位置をスクリユ
側に移設することもできる。
In the embodiment described above, the mixing section 3 is provided near the tip of the screw 1, but its installation position can also be moved to the screw side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のPVC用スクリユの側面図、第
2図は従来のホモメルトスクリユの下半部を縦断
した一部縦断側面図、第3図は従来のハイミツク
ススクリユの側面図、第4図ないし第6図は第3
図の−,−,−線に沿つて截断した
横断正面図、第7図は従来の他のスクリユの側面
図、第8図は第7図の−線に沿つた截断した
横断面図、第9図は従来の他のスクリユの側面
図、第10図は第9図の−線に沿つて截断し
た横断面図、第11図は従来のさらに他のスクリ
ユの側面図、第12図は本考案の一実施例を示す
側面図、第13図は第12図の正面図、第14図
は第12図の−線に沿つて截断した横断
正面図、第15図は要部拡大斜視図、第16図お
よび第17図は樹脂の相遷移区間での溶融過程を
図示した説明図、第18図は本考案実施例の溶融
過程を示した横断説明図、第19図は第18図の
展開図、第20図は第18図の縦断側面図、第2
1図は従来のものの樹脂の流れを示した横断説明
図である。 1……スクリユ、2……トーピード、3……ミ
キシング部、4……可塑化側切欠き斜面、5……
射出側切欠き斜面、6……シリンダ内壁面、7…
…楔状可塑化側空間、8逆向き楔状射出側空間、
9……周面(ミキシング部)。
Figure 1 is a side view of a conventional PVC screw, Figure 2 is a partially longitudinal side view of the lower half of a conventional homomelt screw, and Figure 3 is a side view of a conventional high-mix screw. Figures 4 to 6 are
Fig. 7 is a side view of another conventional screw; Fig. 8 is a cross-sectional view taken along the - line in Fig. 7; 9 is a side view of another conventional screw, FIG. 10 is a cross-sectional view taken along the line - in FIG. 9, FIG. 11 is a side view of still another conventional screw, and FIG. FIG. 13 is a front view of FIG. 12, FIG. 14 is a cross-sectional front view taken along the line - in FIG. 12, and FIG. 15 is an enlarged perspective view of the main parts. Fig. 16 and Fig. 17 are explanatory diagrams illustrating the melting process in the phase transition zone of the resin, Fig. 18 is a cross-sectional explanatory diagram showing the melting process of the embodiment of the present invention, and Fig. 19 is a development of Fig. 18. Figure 20 is a longitudinal cross-sectional side view of Figure 18, and Figure 2
FIG. 1 is a cross-sectional explanatory diagram showing the flow of resin in a conventional method. 1... Screw, 2... Torpedo, 3... Mixing section, 4... Plasticizing side notch slope, 5...
Injection side notch slope, 6...Cylinder inner wall surface, 7...
...Wedge-shaped plasticization side space, 8 reverse wedge-shaped injection side spaces,
9...Surrounding surface (mixing section).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] スクリユの先端部に設けられているミキシング
部の周面に、複数の可塑化側切り欠き斜面および
複数の射出側切り欠き斜面を相互に間隔をおいて
配設し、前記各可塑化側切り欠き斜面とシリンダ
内壁面によつてトーピード側ほど浅くなる複数の
楔状可塑化側空間と、前記各射出側切り欠き斜面
と前記シリンダ内壁面によつてトーピード側ほど
深くなる複数の逆向き楔状射出側空間とを設けて
なるミキシング機構部を特徴とする射出成形機。
An injection molding machine characterized by a mixing mechanism section in which a plurality of plasticization side cutout inclined surfaces and a plurality of injection side cutout inclined surfaces are arranged at intervals on the peripheral surface of a mixing section provided at the tip of a screw, and a plurality of wedge-shaped plasticization side spaces which become shallower toward the torpedo side by each of the plasticization side cutout inclined surfaces and the cylinder inner wall surface, and a plurality of inverted wedge-shaped injection side spaces which become deeper toward the torpedo side by each of the injection side cutout inclined surfaces and the cylinder inner wall surface are provided.
JP1980099292U 1980-07-16 1980-07-16 Expired JPS6118989Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980099292U JPS6118989Y2 (en) 1980-07-16 1980-07-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980099292U JPS6118989Y2 (en) 1980-07-16 1980-07-16

Publications (2)

Publication Number Publication Date
JPS5724021U JPS5724021U (en) 1982-02-08
JPS6118989Y2 true JPS6118989Y2 (en) 1986-06-09

Family

ID=29460961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980099292U Expired JPS6118989Y2 (en) 1980-07-16 1980-07-16

Country Status (1)

Country Link
JP (1) JPS6118989Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016119172B4 (en) * 2016-10-10 2020-03-05 Kraussmaffei Technologies Gmbh Injection molding machine for the production of fiber-reinforced plastic molded parts

Also Published As

Publication number Publication date
JPS5724021U (en) 1982-02-08

Similar Documents

Publication Publication Date Title
US4752136A (en) Extruder injection apparatus and method
US5071256A (en) Extruder injection apparatus and method
US4215978A (en) Resin moulding screws
EP1207991A1 (en) Extruder screw
JPS6118989Y2 (en)
US3327348A (en) Plastic melt extruder
JP3418639B2 (en) Injection molding equipment
US4218146A (en) Apparatus for melting a thermoplastic material
JPS59188418A (en) Screw for resin molding
CA1142319A (en) Process and apparatus for processing plastic and polymeric materials
KR100283375B1 (en) Plasticizing screw
US3897938A (en) Apparatus for refining polymeric material
JPS59103732A (en) Efficient kneading screw
JP4100326B2 (en) Plasticizer for injection molding machine
JPH0143217Y2 (en)
JPS6099627A (en) Highly kneading screw
CA1284413C (en) Method and apparatus for melting and conveying plasticated materials
JPH0310487B2 (en)
US3837536A (en) Plastic injection molding machine
JPH0418890B2 (en)
JPS60129214A (en) Highly kneading screw
JPS59103733A (en) Efficient kneading screw
JPS6319324B2 (en)
JPS59202835A (en) High kneading screw
CN210969865U (en) Single die head mechanism of extruder