JPS61189315A - Damage detector for bearing of rolling mill - Google Patents

Damage detector for bearing of rolling mill

Info

Publication number
JPS61189315A
JPS61189315A JP60027217A JP2721785A JPS61189315A JP S61189315 A JPS61189315 A JP S61189315A JP 60027217 A JP60027217 A JP 60027217A JP 2721785 A JP2721785 A JP 2721785A JP S61189315 A JPS61189315 A JP S61189315A
Authority
JP
Japan
Prior art keywords
bearing
damage
signal
circuit
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027217A
Other languages
Japanese (ja)
Inventor
Noriaki Inoue
井上 紀明
Jiro Katayama
二郎 片山
Takao Yoneyama
米山 隆雄
Kazuya Sato
佐藤 弌也
Shiyuuichi Hiruoka
昼岡 修一
Masayuki Matsuura
松浦 政幸
Hidetoshi Saito
斉藤 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Engineering Co Ltd
Priority to JP60027217A priority Critical patent/JPS61189315A/en
Publication of JPS61189315A publication Critical patent/JPS61189315A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/07Adaptation of roll neck bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B33/00Safety devices not otherwise provided for; Breaker blocks; Devices for freeing jammed rolls for handling cobbles; Overload safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/008Monitoring or detecting vibration, chatter or chatter marks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To early detect damage of every bearing by detecting a supersonic signal generated by damage of a bearing and discriminating same from noise according to a characteristic of the signal. CONSTITUTION:Back-up rolls 3a, 3b disposed outside work rolls 2a, 2b are supported by bearings 4a, 4b, 5a, 5b, and an acoustic sensor 10 is provided on the bearing 4b. An acoustic signal received by the acoustic sensor 10 is input to a filter 12 through an amplifier 11. Subsequently, the signal processed by an envelope detection circuit 13 is input to a continuous signal discrimination circuit 14 and a sudden signal discrimination circuit 15. The signal processed by the respective discrimination circuits is input to a bearing abnormality discrimination circuit 16. The bearing abnormality is discriminated by the bearing abnormality discrimination circuit 16 and the result is displayed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は圧延機に使用されるすべり軸受及びころがり軸
受の損傷検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a damage detection device for sliding bearings and rolling bearings used in rolling mills.

〔発明の背景〕[Background of the invention]

圧延機にはすべり軸受ところがり軸受が併用して用いら
れておシ、いずれの損傷が発生してもプラント停止の要
因となることが知られている。
It is known that sliding bearings and rolling bearings are used in combination in rolling mills, and damage to either of them can cause the plant to shut down.

すべり軸受においては潤滑油系統の事故や軸受荷重の過
大、潤滑油温度の上昇並びに軸受ブッシングとスリーブ
との調心性不良などが原因となシ、一方ころがり軸受に
おいては、グリース劣化やし−図面の疲労損傷等が原因
となり損傷現象を起こす。
In sliding bearings, the causes include accidents in the lubricating oil system, excessive bearing load, rising lubricating oil temperature, and poor alignment between the bearing bushing and sleeve.On the other hand, in rolling bearings, grease deterioration and Damage phenomena occur due to fatigue damage, etc.

従来、すべり軸受損傷の監視手段として、潤滑油の排油
温度を測定し、この排油温度が一定値を越えた時、軸受
損傷と見なし軸受を交換していた。
Conventionally, as a means of monitoring sliding bearing damage, the temperature of the lubricating oil drained was measured, and when the temperature of the drained oil exceeded a certain value, it was assumed that the bearing was damaged and the bearing was replaced.

また、ころがυ軸受の損傷監視には振動検出法を用い、
振動量がある一定値を越えた場合、軸受損傷と見なし軸
受を交換していた。上記いずれの損傷が起きても、その
軸受交換に要する時間の間スジプを加熱炉で無駄に保温
せねばならないなど、軸受交換に付随して消費されるエ
ネルギと生産機会の損失は膨大なものとなシネ経済であ
った。
In addition, vibration detection methods are used to monitor damage to roller υ bearings.
If the amount of vibration exceeded a certain value, it was assumed that the bearing was damaged and the bearing was replaced. Even if any of the above damage occurs, the energy consumed and the loss of production opportunities associated with bearing replacement will be enormous, such as having to uselessly keep the sujip warm in a heating furnace for the time required to replace the bearing. It was a cine economy.

ところで、前述した排油温度測定法は軸受損傷時に発生
する軸受の温度上昇を排油温度を介して知る方法である
ため、応答が遅く損傷がかなシ進んだ状態でないと検出
できないこと、また排油温度上昇が必らずしも軸受損傷
であると言えない場合も多く、信頼性の点で問題があっ
た。一方、振動測定法の場合も同様に、ころがり軸受損
傷がある程度進んだ状態でないと検出できない問題点が
ありた。さらに、すペシ軸受が損傷を起こすと振動が発
生するため、その振動を受信し、ころがり軸受の損傷発
生と誤診断してしまう欠点も有しておシ、それぞれの軸
受損傷側に診断を行なうことは困難であった。
By the way, the above-mentioned drain oil temperature measurement method is a method of determining the temperature rise of the bearing that occurs when the bearing is damaged through the drain oil temperature, so it has a slow response and cannot be detected unless the damage is very advanced. In many cases, an increase in oil temperature cannot necessarily be said to be a sign of bearing damage, and there were problems in terms of reliability. On the other hand, the vibration measurement method similarly has the problem that it cannot be detected unless rolling bearing damage has progressed to a certain extent. Furthermore, since vibration is generated when a speci bearing is damaged, it also has the drawback of receiving this vibration and erroneously diagnosing damage to the rolling bearing. That was difficult.

上記技術の改良案としてすべり軸受の場合、初期損傷状
態から検出可能な音響信号(主として超音波領域)監視
法がある。例えば蒸気タービンや発電機に用いられてい
るすべり軸受の損傷診断手法(特開昭56−53422
.特開昭57−54835)を用いる方法である。上記
特許では周期性をもち間欠的に発生する信号を検出する
手段であるため、圧延機用すペク軸受損傷にて発生する
連続型信号の増加や前記連続型信号に加えてランダムに
発生する突発型信号等の特徴を検出することは困難であ
る。また、ころがシ軸受の損傷を検出する技術として特
開昭50−67182があるが、本特許ではころがシ軸
受損傷に伴なって発生する周期性のある振動信号を検出
する手段である。圧延機に用いられているころがり軸受
損傷にて発生する音響信号は突発型信号がランダムに発
生するため、上記手法での検出は困難である。さらに上
記いずれの特許においても、すべり軸受ところがシ軸受
の損傷をそれぞれ別々に判断することは困難である。
As an improvement to the above technology, there is a method for monitoring acoustic signals (mainly in the ultrasonic range) that can detect early damage states in the case of sliding bearings. For example, damage diagnosis method for sliding bearings used in steam turbines and generators (Japanese Patent Laid-Open No. 56-53422
.. This is a method using Japanese Patent Application Laid-Open No. 57-54835). Since the above patent is a means of detecting signals that have periodicity and occur intermittently, there is an increase in continuous signals that occur due to damage to rolling mill bearings, and sudden signals that occur randomly in addition to the continuous signals. It is difficult to detect features such as type signals. Furthermore, Japanese Patent Laid-Open No. 50-67182 discloses a technique for detecting damage to a roller bearing, but in this patent, the technique is a means for detecting a periodic vibration signal generated due to damage to a roller bearing. Acoustic signals generated due to damage to rolling bearings used in rolling mills are difficult to detect using the above method because sudden signals are generated randomly. Furthermore, in both of the above patents, it is difficult to separately determine damage to sliding bearings, but damage to sliding bearings.

そのため、圧延機に用いられるすべり軸受及びころがυ
軸受の損傷を早期に検出し、しかもどちらの軸受損傷で
あるのかも判断できる技術が望まれていた。
Therefore, the plain bearings and rollers used in rolling mills are
There is a need for technology that can detect damage to bearings at an early stage and also determine which bearing is damaged.

〔発明の目的〕[Purpose of the invention]

本発明の目的は圧延機に用いられているすべり軸受の損
傷並びにころがり軸受の損傷を早期に検知するとともに
、すべり軸受の損傷がころが9軸受の損傷であるのかも
判別することのできる圧延機の軸受損傷検出装置を提供
することにある。
The purpose of the present invention is to detect damage to sliding bearings and rolling bearings used in rolling mills at an early stage, and to determine whether damage to sliding bearings is caused by damage to roller 9 bearings. An object of the present invention is to provide a bearing damage detection device.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、すべり軸受及びころがり軸受の損傷に
よって夫々発生する超音波信号を音響上ンサにて検出し
、この信号の形状や大きさなどの特徴から、ノイズとの
弁別を行ない、各軸受ごとの損傷を早期に検出できるよ
うにした点にある。
A feature of the present invention is that an acoustic sensor detects ultrasonic signals generated by damage to sliding bearings and rolling bearings, and distinguishes them from noise based on characteristics such as the shape and size of these signals. The key point is that damage can be detected early.

〔発明の実施例〕[Embodiments of the invention]

本発明は上記すべり軸受ところがり軸受の損傷を検出す
るものであシ、以下本発明の一実施例を図面に基づいて
説明する。
The present invention detects damage to the above-mentioned sliding bearing and rolling bearing.One embodiment of the present invention will be described below with reference to the drawings.

第2図(A)に圧延機の簡略化した構成と圧延機用軸受
の部分詳細構造を示す。圧延材1はワークロール’la
、 2bの間で圧延されるが、該ワークロール2a、 
2bの外側にはバックアップロール3a、3bがある。
FIG. 2(A) shows a simplified configuration of a rolling mill and a partial detailed structure of a bearing for the rolling mill. Rolled material 1 is work roll 'la
, 2b, the work rolls 2a,
There are backup rolls 3a and 3b on the outside of roll 2b.

このバックアップロール3a、3bの両端には軸受4a
、4b及び5a。
Bearings 4a are provided at both ends of the backup rolls 3a and 3b.
, 4b and 5a.

5bが設置されている。該軸受4a、4bと5a。5b is installed. The bearings 4a, 4b and 5a.

5bの構造は異なっており、同図(B)に示すように4
8,4b側の軸受にはラジアル方向の荷重をささえるた
めのすべり軸受6とスラスト方向の荷重をささえるため
のころがシ軸受7が設置されている。これに対し5a、
5bの軸受にはころがり軸受は設置されておらず、すべ
り軸受のみで構成されている。
The structure of 5b is different, as shown in the same figure (B).
A sliding bearing 6 for supporting the load in the radial direction and a roller bearing 7 for supporting the load in the thrust direction are installed on the bearings 8 and 4b. On the other hand, 5a,
No rolling bearing is installed in the bearing 5b, and it consists only of a sliding bearing.

圧延機の軸受の内、まず第2図に示す軸受4bに音響上
ンサ10を設置し、軸受の損傷を診断する例について説
明する。該音響センサ10にて受信された音響信号は、
増幅回路11を経てフィルタ12に入力される。該フィ
ルタ12は必要以外の周波数成分を除去するもので、た
とえば100k )l z〜2MH1の周波数領域の信
号を通すバンドパスフィルタなどで構成される。次に包
結線検波回路13に通され包絡線検波処理された信号は
連続型信号判別回路14及び突発型信号判別回路15に
通される。該夫々の判別回路にて処理された信号は軸受
異常判別回路16に入力され、該軸受異常判別回路16
にて軸受異常の判別及びその結果が表示される。
Among the bearings of a rolling mill, an example will be described in which an acoustic sensor 10 is installed on the bearing 4b shown in FIG. 2 to diagnose damage to the bearing. The acoustic signal received by the acoustic sensor 10 is
The signal is input to a filter 12 via an amplifier circuit 11. The filter 12 removes unnecessary frequency components, and is composed of, for example, a band-pass filter that passes signals in the frequency range from 100 kHz to 2 MH1. Next, the signal passed through the envelope detection circuit 13 and subjected to envelope detection processing is passed to the continuous type signal discrimination circuit 14 and the sudden type signal discrimination circuit 15. The signals processed by the respective discrimination circuits are input to the bearing abnormality discrimination circuit 16.
The determination of bearing abnormality and its results are displayed.

次に以上の構成における検出動作を第3図及び第4図に
示す各回路の出力波形図を参照しながら詳細に説明する
。第3図はすべり軸受が損傷した場合、wr;4図はこ
ろがり軸受が損傷した場合の各回路の動作例を示したも
のである。第3図、第4図に示し九該包絡線検波回路1
3の出力波形に示されるように、軸受が正常時であって
も圧延工程においては突発型信号がバンクアンプロール
1回転に1回周期的に発生する。これはすべり軸受より
発生している音響信号を受信しているものであり圧延機
特有の特徴である。すなわち、圧延機のすべり軸受にお
いては第5図(A)に示すごとく、バックアップロール
100にキー101にてスリーブ102を固定し、これ
が回転部となり軸受チョック103に固定されたブッシ
ング104との間で摺動する。圧延機のすべり軸受では
該キ〒101があるため同図(B)に示されるように該
スリーブ102のm−Pが他に比べわずかに突出してい
る。圧延工程においては前記突出部Pが受圧面倒に来た
際、すなわち圧延荷重が午一部に最大に加わる時、該ブ
ッシング104とわずかな接触現象を起こす。これがバ
ックアップロール1回転に1回周期的に突発型の音響信
号が発生する原因となっている。
Next, the detection operation in the above configuration will be explained in detail with reference to the output waveform diagrams of each circuit shown in FIGS. 3 and 4. FIG. 3 shows an example of the operation of each circuit when a sliding bearing is damaged; FIG. 4 shows an example of the operation of each circuit when a rolling bearing is damaged. The envelope detection circuit 1 shown in FIGS. 3 and 4
As shown in the output waveform No. 3, even when the bearing is normal, a sudden signal is periodically generated once per revolution of the bank unroll in the rolling process. This is a characteristic unique to rolling mills, as it receives acoustic signals generated from sliding bearings. That is, in the sliding bearing of a rolling mill, as shown in FIG. Sliding. In the sliding bearing of a rolling mill, since the key 101 is present, the m-P of the sleeve 102 protrudes slightly compared to the others, as shown in FIG. 1(B). During the rolling process, when the protrusion P reaches the pressure-receiving position, that is, when the maximum rolling load is applied to the noon part, a slight contact phenomenon occurs with the bushing 104. This causes a periodic sudden sound signal to be generated once per rotation of the backup roll.

ところで、前記したすべり軸受が損傷を起こすと、@3
図(A)に示した該包結線検波回路13の出力波形に見
られるように、その初期においては直流成分の振幅が徐
々に上昇する。これはすべり軸受のメタルが徐々に塑性
変形を生じ、その領域が徐々に拡大するため、それに伴
なって連続型の音響信号が増大するためである。さらに
損傷が進み損傷状態が中期に入ると、同図に示されるよ
うに連続型信号よシも振幅の大きな突発型信号が加わる
ようになる。これは、軸受メタルの変形あるいは剥離に
よるものである。圧延機用すべり軸受の損傷過程におい
ては、上記した信号が経時的に発生するのが特徴である
By the way, if the sliding bearing mentioned above is damaged, @3
As seen in the output waveform of the envelope detection circuit 13 shown in Figure (A), the amplitude of the DC component gradually increases in the initial stage. This is because the metal of the sliding bearing gradually undergoes plastic deformation and its area gradually expands, resulting in an increase in the continuous acoustic signal. As the damage progresses further and the damage state enters the middle stage, as shown in the figure, a sudden type signal with a large amplitude is added to the continuous type signal. This is due to deformation or peeling of the bearing metal. A characteristic of the damage process of sliding bearings for rolling mills is that the above-mentioned signals are generated over time.

以上述べた現象にて得られた包絡線検波信号は次に該連
続型信号判別回路14及び突発型信号判別回路15に入
力される。該連続型信号判別回路14には第2図に示す
ように、比較電圧の異なる比較回路17a、17bが2
個設けられておシ、第3図(A)に示した核比較回路1
7Hの比較電圧Els該比較回路17bの比較電圧E2
にて包絡線検波波形と比較される。同図(B)および(
C)に該比較回路17a、17bの出力波形を示す。次
に該比較回路17a、17bの出力は立上り検出回路1
8a、18bにそれぞれ入力され、第3図(E)および
(G)に示されるように、該比較回路17a、17b出
力の立上シ時のみが検出される。さらに、該比較回路1
7a、17bの出力は積分回路19a、19bに入力さ
れる。また、該積分回路19a、19bのリセット信号
として、該立上り検出回路18a、18bの出力が入力
される。上記比較回路の出力及びリセット信号が入力さ
れることによシ、該積分回路19a。
The envelope detection signal obtained by the phenomenon described above is then input to the continuous type signal discrimination circuit 14 and the sudden type signal discrimination circuit 15. As shown in FIG. 2, the continuous signal discrimination circuit 14 includes two comparison circuits 17a and 17b with different comparison voltages.
Nuclear comparison circuit 1 shown in FIG. 3(A) is provided.
7H comparison voltage Els comparison voltage E2 of the comparison circuit 17b
It is compared with the envelope detection waveform. (B) and (
C) shows the output waveforms of the comparison circuits 17a and 17b. Next, the outputs of the comparison circuits 17a and 17b are output from the rising edge detection circuit 1.
8a and 18b, respectively, and as shown in FIGS. 3(E) and 3(G), only the rising edge of the outputs of the comparison circuits 17a and 17b is detected. Furthermore, the comparison circuit 1
The outputs of 7a and 17b are input to integration circuits 19a and 19b. Furthermore, the outputs of the rise detection circuits 18a and 18b are input as reset signals for the integration circuits 19a and 19b. By inputting the output of the comparison circuit and the reset signal, the integration circuit 19a.

19bからは、同図(F)および(H)に示す波形が出
力される。次に上記積分回路の出力は比較回路20a、
20bに入力され、同図(F)および(H)に示す該比
較回路20Hの比較電圧E4、該比較回路20bの比較
電圧E5と比較され、該比較回路20a、20bの出力
として同図(I)および(J)に示す波形が得られるこ
とになる。
The waveforms shown in (F) and (H) in the figure are output from 19b. Next, the output of the integration circuit is a comparison circuit 20a,
20b, and is compared with the comparison voltage E4 of the comparison circuit 20H and the comparison voltage E5 of the comparison circuit 20b shown in FIG. ) and (J) are obtained.

さらに上記比較回路の出力はAND回路21に入力され
ることにより、該AND回路21から同図(K)に示す
論理出力が得られる。すなわち、上述した処理を行なう
ことにより、すべり軸受損傷の初期過程にて発生する連
続型信号を検出するととができる。
Further, the output of the comparison circuit is inputted to an AND circuit 21, whereby a logical output shown in FIG. 2(K) is obtained from the AND circuit 21. That is, by performing the above-described processing, it is possible to detect a continuous signal generated in the initial process of sliding bearing damage.

なお、前述した連続型信号判別回路14では比較電圧の
異なる比較回路17a、17bの2種類を用いたが、該
比較回路17aのみを用いても連続型信号の検出は可能
である。さらに比較電圧の異なる比較回路を2遣類以上
用いれば、よシ高い精度で連続型信号発生の判別が可能
になることは言うまでもない。
Although two types of comparison circuits 17a and 17b with different comparison voltages are used in the continuous signal discrimination circuit 14 described above, it is possible to detect a continuous signal even if only the comparison circuit 17a is used. Furthermore, it goes without saying that if two or more types of comparison circuits with different comparison voltages are used, it becomes possible to determine continuous signal generation with even higher accuracy.

一方、前記包絡線検波回路13の出力は前記突発型信号
判別回路15に入力され、第2図に示す比較回路22に
入力される。該比較回路22の比較電圧は第3図(A)
に示されるように、該比較回路17a、17bよりも高
いレベル(比較電圧El )に設定されているため、す
べ)軸受損傷の初期にて発生する連続型信号は検出せず
、すべり軸受損傷の初期以降、すなわち損傷の中期にて
発生する突発型信号のみが検出される。同図(D)に該
比較回路22の出力波形を示す。次に該比較回路22の
出力はカウンタ23に入力される。該カウンタ23は該
比較回路22よシ出力されるパルスをある一定時間ごと
にカウントし、その値に応じた値を異常検出回路24に
第3図(L)の如く出力する。
On the other hand, the output of the envelope detection circuit 13 is input to the sudden signal discrimination circuit 15, and then to the comparison circuit 22 shown in FIG. The comparison voltage of the comparison circuit 22 is shown in FIG. 3(A).
As shown in FIG. 2, since the comparison circuits 17a and 17b are set at a higher level (comparison voltage El), the continuous signal that occurs at the initial stage of bearing damage is not detected, and it is not possible to detect sliding bearing damage. Only sudden signals that occur after the initial stage, ie, in the middle stage of damage, are detected. The output waveform of the comparator circuit 22 is shown in (D) of the same figure. Next, the output of the comparison circuit 22 is input to the counter 23. The counter 23 counts the pulses output from the comparator circuit 22 at regular intervals, and outputs a value corresponding to the counted value to the abnormality detection circuit 24 as shown in FIG. 3(L).

第3図に示されるように、すべり軸受損傷中期にて発生
する突発型の音響信号は正常時に発生する突発型の音響
信号に比べ数倍その発生数が多くなる。該異常検出回路
24では、該カウンタ23よシ出力される値が正常時に
比べ、数倍以上となった場合、それを検出し同図に示す
論理信号を出力する。すなわち、前記論理信号が出力さ
れた時点ですべり軸受が損傷の中期過程に至ったことが
知らされる。
As shown in FIG. 3, the number of sudden sound signals generated in the middle stage of sliding bearing damage is several times greater than the sudden sound signals generated during normal conditions. The abnormality detection circuit 24 detects when the value output from the counter 23 is several times higher than the normal value and outputs the logic signal shown in the figure. That is, at the time when the logic signal is output, it is notified that the sliding bearing has reached the intermediate stage of damage.

次にころがυ軸受損傷時の各回路の動作を説明する。こ
ろがり軸受が損傷を起こすと、第4図(A)に示した該
包絡線検波回路13の出力波形【見られるように、突発
型の信号がランダムに発生するようになる。これは圧延
機に用いられているころが9軸受損傷にて発生する音響
信号の特徴である。上記現象にて得られた包路線検波信
号は該連続型信号判別回路14及び突発型信号判別回路
15に入力される。該連続型信号判別回路14を構成す
る各回路の出力波形を第4図(B)〜(K)に示す。こ
ろがり軸受損傷にて発生する音響信号では、突発型信号
は発生するが、連続量が発生しないため、該積分回路1
9a、19bの出力波形(F)、 (H)の振幅が大き
くなることはない。
Next, we will explain the operation of each circuit when the roller υ bearing is damaged. When the rolling bearing is damaged, sudden signals will randomly occur as shown in the output waveform of the envelope detection circuit 13 shown in FIG. 4(A). This is a characteristic of the acoustic signal generated when a roller used in a rolling mill is damaged. The envelope detection signal obtained by the above phenomenon is input to the continuous type signal discrimination circuit 14 and the sudden type signal discrimination circuit 15. The output waveforms of each circuit constituting the continuous signal discrimination circuit 14 are shown in FIGS. 4(B) to 4(K). In the acoustic signal generated by rolling bearing damage, a sudden type signal is generated, but a continuous amount is not generated, so the integration circuit 1
The amplitudes of the output waveforms (F) and (H) of 9a and 19b do not become large.

それゆえ、該比較回路20a、20bより信号が出力さ
れないため該AND回路21より第4図(K)の如く論
理信号が出力されることもない。
Therefore, since no signals are output from the comparison circuits 20a and 20b, no logic signal is output from the AND circuit 21 as shown in FIG. 4(K).

一方、前記突発型信号判別回路15では、ころがシ軸受
損傷にて発生する突発型信号を検出するため、前述した
ようにその発生数が一定値を越えた場合、第4図(L)
に示されるように該異常検出回路24より論理信号が出
力される。すなわち、前記論理信号が出力された時点で
、ころがυ軸受が損傷していることが知らされる。
On the other hand, the sudden type signal discriminating circuit 15 detects sudden type signals generated due to damage to the roller bearing.
A logic signal is output from the abnormality detection circuit 24 as shown in FIG. That is, at the time when the logic signal is output, it is notified that the roller υ bearing is damaged.

以上述べたように、すべり軸受及びころがり軸受の損傷
によって該連続型信号判別回路14、該突発型信号判別
回路15より、それぞれ論理信号が出力される。次に前
記論理信号は前述した軸受異常判別回路16に入力され
る。該軸受異常判別回路16はAND回路30.NAN
D回路31a。
As described above, logical signals are output from the continuous type signal discrimination circuit 14 and the sudden type signal discrimination circuit 15, respectively, due to damage to the sliding bearing and the rolling bearing. Next, the logic signal is input to the bearing abnormality determination circuit 16 described above. The bearing abnormality determination circuit 16 is an AND circuit 30. NAN
D circuit 31a.

31b及び、たとえばLEDなどを用いたアラーム32
a、32b、32cとから構成されており、すべり軸受
損傷状態の初期と損傷の中期を、またころが9軸受が損
傷状態にあることを判別し、表示する。
31b and an alarm 32 using, for example, an LED.
a, 32b, and 32c, and determines and displays the initial stage of the sliding bearing damage state and the middle stage of the damage, as well as whether the roller 9 bearing is in the damaged state.

ここで該軸受異常判別回路16の動作を説明する。説明
の都合上、該連続型信号判別回路14の論理出力をX1
該突発型信号判別回路15の論理出力をYとする。表に
それぞれの軸受損傷にて発生するX、Y出力とアラーム
の動作状況を示す。
Here, the operation of the bearing abnormality determination circuit 16 will be explained. For convenience of explanation, the logic output of the continuous signal discrimination circuit 14 is
It is assumed that the logic output of the sudden type signal discrimination circuit 15 is Y. The table shows the X and Y outputs and alarm operating conditions that occur due to bearing damage.

正常時にはX、Yともに信号が出力されないためアラー
ムは点燈しない。これに対しすべり軸受損傷の初期状態
においては前述したようにX出力が1、Y出力が0であ
るため、該アラーム32aが点燈する。また、すべり軸
受損傷の中期状態においてはX、Yともに1が出力され
るため、該アラーム32bが点燈する。さらにころがり
軸受損傷状態にシいてはX出力が0、Y出力が1となる
ため、該アラーム32Cが点燈する。すなわち、各現象
ごとにアラームにて表示されるため、オペレータは圧延
機用軸受がどのような状態にあるのかを運転中リアルタ
イムで知ることができる。また異常が発生した場合、事
故を回避するための適切な処置を採ることができる。
During normal conditions, no signals are output for both X and Y, so the alarm does not light up. On the other hand, in the initial state of sliding bearing damage, as described above, the X output is 1 and the Y output is 0, so the alarm 32a lights up. Further, in the middle stage of damage to the sliding bearing, 1 is output for both X and Y, so the alarm 32b lights up. Furthermore, if the rolling bearing is damaged, the X output becomes 0 and the Y output becomes 1, so the alarm 32C lights up. That is, since an alarm is displayed for each phenomenon, the operator can know in real time what condition the rolling mill bearing is in during operation. Furthermore, if an abnormality occurs, appropriate measures can be taken to avoid accidents.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、圧延機に用いられ
ているすべり軸受ところがシ軸受の損傷を現象側に、し
かも早期に検知することができるため、軸受損傷による
圧延プラント停止などの事故も減シ、プラントの高効率
運転に寄与できるなど、極めて顕著な効果がある。
As explained above, according to the present invention, damage to the sliding bearing used in a rolling mill can be detected as a phenomenon and at an early stage, thereby preventing accidents such as rolling plant stoppage due to bearing damage. It has extremely significant effects, such as reducing emissions and contributing to highly efficient plant operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による圧延機の軸受損傷検出装置の一実
施例、第2図(A)は圧延機と圧延機用軸受の簡略化し
た構成図、同(B)は部分詳細図、第3.第4図は第1
図に示す本発明の一実施例の動作を説明するための出力
波形図、第5図は圧延機用すペシ軸受の構造図である。 6・・・すべり軸受、7・・・ころがシ軸受、10・・
・音響センサ、11・・・増幅回路、12・・・フィル
タ、13・・・包絡線検波回路、14・・・連続型信号
判別回路、15・・・突発型信号判別回路、16・・・
異常判別回路。 第 2 固 (ハ) (δ)
FIG. 1 is an embodiment of a bearing damage detection device for a rolling mill according to the present invention, FIG. 2(A) is a simplified configuration diagram of a rolling mill and a rolling mill bearing, FIG. 3. Figure 4 is the first
FIG. 5 is an output waveform diagram for explaining the operation of an embodiment of the present invention shown in the figure, and FIG. 5 is a structural diagram of a Pesci bearing for a rolling mill. 6...Sliding bearing, 7...Roller bearing, 10...
- Acoustic sensor, 11... Amplification circuit, 12... Filter, 13... Envelope detection circuit, 14... Continuous type signal discrimination circuit, 15... Sudden type signal discrimination circuit, 16...
Abnormality determination circuit. 2nd solid (c) (δ)

Claims (1)

【特許請求の範囲】 1、圧延機の軸受部に装着されているすべり軸受並びに
ころがり軸受の損傷を検出する軸受損傷検出装置におい
て、前記夫々の損傷にて発生する音響信号を検出するた
めの音響センサと該音響センサの出力を検波する手段を
備えるとともに、前記すべり軸受及びころがり軸受の損
傷にて発生する音響信号のうち、連続型信号発生の判別
を行なう手段と、突発型信号発生の判別を行なう手段と
前記連続型信号発生の判別手段と前記突発型信号発生の
判別手段からの出力信号に応答して、前記軸受の損傷状
態を判断する手段とを備えたことを特徴とする圧延機の
軸受損傷検出装置。 2、特許請求の範囲第1項において、前記判断手段は前
記連続型信号発生の判別手段並びに前記突発型信号発生
の判別手段にて、連続型信号の発生が判定され、突発型
信号発生の判定がなされなかつた場合は、すべり軸受損
傷の初期状態であると判断し、連続型信号の発生がなく
、突発型信号の発生が判定された場合にはころがり軸受
の損傷状態と判断し、連続型、突発型信号の何れも発生
が判定された場合には、すべり軸受の損傷が中期状態に
入つたことを判断する装置と、それぞれ前記判断結果に
応答してアラームを発する軸受異常判別装置を含むこと
を特徴とする圧延機の軸受損傷検出装置。
[Scope of Claims] 1. In a bearing damage detection device for detecting damage to sliding bearings and rolling bearings installed in a bearing section of a rolling mill, an acoustic signal for detecting acoustic signals generated by each damage. It comprises a sensor and a means for detecting the output of the acoustic sensor, and a means for determining whether a continuous type signal is generated and a means for determining whether a sudden type signal is generated among the acoustic signals generated due to damage to the sliding bearing or the rolling bearing. and means for determining a damaged state of the bearing in response to output signals from the continuous type signal generation determination means and the sudden type signal generation determination means. Bearing damage detection device. 2. In claim 1, the determination means determines whether a continuous signal is generated by the continuous signal generation determination means and the sudden signal generation determination means, and determines whether a sudden signal generation occurs. If this is not done, it is determined that the sliding bearing is in an initial state of damage, and if no continuous type signal is generated and a sudden type signal is determined to be generated, it is determined that the rolling bearing is damaged and the continuous type signal is not generated. , a device that determines that damage to the sliding bearing has entered a medium-term state when it is determined that the occurrence of any of the sudden type signals, and a bearing abnormality determination device that issues an alarm in response to the respective determination results. A bearing damage detection device for a rolling mill, characterized in that:
JP60027217A 1985-02-14 1985-02-14 Damage detector for bearing of rolling mill Pending JPS61189315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027217A JPS61189315A (en) 1985-02-14 1985-02-14 Damage detector for bearing of rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027217A JPS61189315A (en) 1985-02-14 1985-02-14 Damage detector for bearing of rolling mill

Publications (1)

Publication Number Publication Date
JPS61189315A true JPS61189315A (en) 1986-08-23

Family

ID=12214930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027217A Pending JPS61189315A (en) 1985-02-14 1985-02-14 Damage detector for bearing of rolling mill

Country Status (1)

Country Link
JP (1) JPS61189315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449708A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Abnormality diagnosing device for rolling bearing
WO2016136512A1 (en) * 2015-02-24 2016-09-01 日本電産コパル電子株式会社 Motor, and motor control system
US11041781B2 (en) * 2019-01-21 2021-06-22 Deublin Company Remote caster bearing sensing system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449708A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Abnormality diagnosing device for rolling bearing
WO2016136512A1 (en) * 2015-02-24 2016-09-01 日本電産コパル電子株式会社 Motor, and motor control system
US10233935B2 (en) 2015-02-24 2019-03-19 Nidec Copal Electronics Corporation Motor, and motor control system
US11041781B2 (en) * 2019-01-21 2021-06-22 Deublin Company Remote caster bearing sensing system and method

Similar Documents

Publication Publication Date Title
Amarnath et al. Exploiting sound signals for fault diagnosis of bearings using decision tree
EP1097363B1 (en) Bearing condition evaluation
JP6844552B2 (en) Abnormal vibration detection method for rolling mill
JP2001021453A (en) Method and device for diagnosing anomaly in bearing
WO2018155136A1 (en) Status diagnosing system for rolling guide device, and status diagnosing method
Guo et al. Experimental investigation on double-impulse phenomenon of hybrid ceramic ball bearing with outer race spall
CN114813124B (en) Bearing fault monitoring method and device
JPS61189315A (en) Damage detector for bearing of rolling mill
JPH01127934A (en) Damage diagnosing device
JP2013111614A (en) Method of detecting chattering of cold rolling mill and device for detecting chattering
Ismail et al. Vibration response characterisation and fault-size estimation of spalled ball bearings
Yadav et al. Bearing health assessment using time domain analysis of vibration signal
JPS61198057A (en) Method and device for diagnosing damage of sliding bearing for rolling mill
JPH0446650B2 (en)
Lim et al. Motor fault detection method for vibration signal using FFT residuals
JP3121488B2 (en) Bearing diagnostic device and escalator
RU2684709C1 (en) Method of acoustic-emission diagnostics of dynamic industrial equipment
JPH06100580B2 (en) Sliding bearing damage diagnosing device
JPS6135410B2 (en)
Shao et al. Fault diagnosis system based on smart bearing
Jeng et al. An on-line condition monitoring and diagnosis system for feed rolls in the plate mill
JPS62220207A (en) Detection of generation of chatter mark
Subhedar et al. Defect Evaluation in Rolling Element Bearings Using Frequency Domain Analysis
Kilundu et al. Early detection of bearing damage by means of decision trees
Méndez et al. Ultrasonic-based monitoring of tapered roller bearings in frequency and time domains