JPS61189156A - Induction rotary electric machine - Google Patents

Induction rotary electric machine

Info

Publication number
JPS61189156A
JPS61189156A JP2627585A JP2627585A JPS61189156A JP S61189156 A JPS61189156 A JP S61189156A JP 2627585 A JP2627585 A JP 2627585A JP 2627585 A JP2627585 A JP 2627585A JP S61189156 A JPS61189156 A JP S61189156A
Authority
JP
Japan
Prior art keywords
winding
rotor
stator
poles
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2627585A
Other languages
Japanese (ja)
Inventor
Yukio Kitabayashi
北林 行雄
Noriyoshi Takahashi
高橋 典義
Toshiaki Okuyama
俊昭 奥山
Hisaya Sasamoto
笹本 久弥
Sadahiko Niwa
丹羽 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2627585A priority Critical patent/JPS61189156A/en
Priority to CA000501924A priority patent/CA1251255A/en
Publication of JPS61189156A publication Critical patent/JPS61189156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/30Structural association of asynchronous induction motors with auxiliary electric devices influencing the characteristics of the motor or controlling the motor, e.g. with impedances or switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/22Asynchronous induction motors having rotors with windings connected to slip-rings

Abstract

PURPOSE:To improve the utility rate of a magnetomotive force by forming a stator winding of the first and second windings having different number of poles, and disposing a rotor winding having one or more turns equally on the entire periphery in the number of average of the number of poles of the stator windings. CONSTITUTION:An induction rotary electric machine 40 is composed of a stator having a stator core 11 held in a housing 9 and a rotor having a rotor shaft 4 and a rotor core 5. The winding 10 of the stator is formed of two types of 3-phase windings 10a, 10b having different number of poles, the winding 20 of a rotor is formed of a plurality of rotor winding groups 30, and the number of the groups 3 has the number of average of the first and second stator winding poles. Further, the first winding 10a is connected with a 3-phase AC system 12, and the second winding 10b is connected through a transformer 16 and a breaker 17 with a frequency converter 13. Thus, the rotating speed can be altered by controlling the frequency of the voltage applied to the winding 10b.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導回転電機に係シ、特にポンプやファン等の
駆動用電動機に好適なブラシレス巻線形誘導回転電機に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an induction rotating electric machine, and particularly to a brushless wound type induction rotating electric machine suitable for a drive motor of a pump, a fan, or the like.

〔発明の背景〕[Background of the invention]

中〜大容量のポンプやファンの駆動用電動機として、従
来から巻線形誘導機が用いられ、その二次励磁制御方式
によシ速度制御が実施されてきた。
BACKGROUND OF THE INVENTION Conventionally, wound induction machines have been used as electric motors for driving medium to large capacity pumps and fans, and speed control has been performed using a secondary excitation control method.

ところが、巻線形誘導機はブラシやスリップリングとい
つfc粂電電装置あるため、保守1点検が不可欠である
。この欠点を解消するために、特公昭57−21959
に見られるブラシレス巻線形誘導機が提案されている。
However, since wound induction machines have brushes, slip rings, and fc coils, maintenance and inspection are essential. In order to eliminate this drawback,
A brushless wound induction machine, as seen in

この誘導機は2台の誘導機を1台にまとめ、固定子も回
転子も共に2重巻線構造とし、回転子巻線を電気的に接
続したものでるため、1スロツト中に上コイルと下コイ
ルを含めて4ケのコイルを収納せねばならない。そのた
め巻線作業が煩雑となり、製作コストが高くなる。
This induction machine combines two induction machines into one, and has a double winding structure for both the stator and rotor, and the rotor windings are electrically connected, so the upper coil and the upper coil are connected in one slot. I have to store 4 coils including the bottom coil. Therefore, the winding work becomes complicated and the manufacturing cost increases.

また回転子巻線損失が増加するなどの問題があった。Furthermore, there were other problems such as increased rotor winding loss.

一方、ブラシレス構造としては構造簡単にして堅牢なか
ご形誘導機が一般に知られているが、この誘導機そのま
まの構造では一次周波数制御が実施できても、二次励磁
制御は不可能である。大容量可変速システムにこの方式
を適用するとなると大容量の制御装置が必要と々シ、コ
ストが急増するという問題がある。
On the other hand, as a brushless structure, a simple and robust squirrel-cage induction machine is generally known, but with this induction machine structure as it is, although primary frequency control can be performed, secondary excitation control is impossible. If this method is applied to a large-capacity variable speed system, a large-capacity control device is required, resulting in a sharp increase in cost.

また、固定子巻線を二重巻線構造とし、回転子バー(導
体群)本数を固定子巻線極数の平均にした特殊な誘導機
も考えられているが、この場合、回転子パ一本数が少な
く、かつ1つの導体群に同時に流れる電流は一方向しか
とり得ないため、巻線係数が低くな9、波形が悪化し、
力率が低くな誘導機とほぼ同一の値に維持し、二次励磁
が可能で、かつ回転子巻線の構造が簡単なブラシレス誘
導回転電機の出現が望まれていた。
In addition, a special induction machine is being considered in which the stator winding has a double winding structure and the number of rotor bars (conductor groups) is the average number of stator winding poles, but in this case, the rotor Since the number of conductors is small and the current flowing simultaneously in one conductor group can only flow in one direction, the winding coefficient is low9 and the waveform is deteriorated.
There has been a desire for a brushless induction rotating electrical machine that maintains the power factor at almost the same value as a low induction machine, is capable of secondary excitation, and has a simple rotor winding structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来技術の欠点を解消し、回転子の巻線
係数を高く維持し、起磁力の利用率を向上させ、かつ回
転子巻線を単純な一重巻線構造にしながら、ブラシレス
で二次励磁制御可能な誘導回転電機を提供することにあ
る。
The purpose of the present invention is to eliminate the drawbacks of the prior art, maintain a high winding coefficient of the rotor, improve the utilization rate of magnetomotive force, and make the rotor winding a simple single winding structure while providing a brushless structure. An object of the present invention is to provide an induction rotating electric machine that can control secondary excitation.

〔発明の概要〕 すなわち本発明は、固定子巻線を夫々極数の異なる第1
.第2の固定子巻線より形成し、かつ回転子を逆方向の
電流も流しうるように1ターン以上備えた回転子巻線構
造とし、コイル辺の跨りピッチを調整して巻線係数を高
く維持すると共に、前記2種類の固定子巻線極数に対応
した起磁力をエアギャップ中に同時に発生させるために
、回転子巻線を前記固定子巻線極数の平均の数だけ全周
均等に配置し所期の目的を達成するようにしたものであ
る。
[Summary of the Invention] That is, the present invention provides a first stator winding having a different number of poles.
.. The rotor winding structure is formed from the second stator winding and has one or more turns so that current can flow in the opposite direction through the rotor, and the pitch between the coil sides is adjusted to increase the winding coefficient. In order to simultaneously generate magnetomotive forces corresponding to the two types of stator winding pole numbers in the air gap, the rotor windings are equally spaced around the entire circumference by the average number of stator winding poles. It was designed to achieve the intended purpose by placing it in the

〔発明の実施例〕[Embodiments of the invention]

以下図示した実施例に基づいて本発明の詳細な説明する
。第1図は本発明による誘導回転電機の固定子巻線及び
回転子巻線の巻線図を示すものであるが、本発明は両巻
線の巻線法に特徴がある。
The present invention will be described in detail below based on the illustrated embodiments. FIG. 1 shows a winding diagram of a stator winding and a rotor winding of an induction rotating electric machine according to the present invention, and the present invention is characterized by the winding method of both windings.

すなわち固定子巻線10が極数の異なる2種類の三相の
固定子巻線10a、10bから構成され、かつ回転子巻
線20は図中30の如く膜数の回転子巻線群から構成さ
れ、その巻線群の数が第1と第2の固定子巻線極数の平
均の数を有している。
That is, the stator winding 10 is composed of two types of three-phase stator windings 10a and 10b with different numbers of poles, and the rotor winding 20 is composed of a group of rotor windings with the number of films as shown in the figure 30. and the number of winding groups has an average number of poles of the first and second stator windings.

つまり、第1の固定子巻線の極数PMが8極の場合、第
2の固定子巻線の極数Pgが4極というように異なり、
かつ回転子巻線群の数nは(1)式の如く、 n= (PM+PK  )/2 = (8+4 )/2=6    ・川・・・・・(1
)6個とすることが特徴である。
In other words, if the number of poles PM of the first stator winding is 8 poles, the number of poles Pg of the second stator winding is 4 poles.
And the number n of rotor winding groups is as shown in equation (1), n= (PM+PK)/2=(8+4)/2=6 ・River...(1
) The feature is that there are 6 pieces.

この図において軸方向端部に短絡]IJt7a、7bを
設ける。また6aが回転子巻線の上コイル辺、6bは回
転子巻線の下コイル辺である。1つの巻線群(コイルグ
ループ)は7aからスタートして6a→6b→7aのよ
うに巻回される。
In this figure, short-circuit IJt7a, 7b are provided at the ends in the axial direction. Further, 6a is the upper coil side of the rotor winding, and 6b is the lower coil side of the rotor winding. One winding group (coil group) starts from 7a and is wound in the order of 6a→6b→7a.

なお、αbはコイルグループ間ピッチであり、αb −
n=2π      ・・団・・・・(2)となる。ま
た、βbはコイル辺ピッチで、β、はコイルまたがりピ
ッチであり、このβ。を変化することにより巻線係数が
変化する。β。を最高値に設計すれば、PMおよびPz
と電磁結合するギャップ起磁力成分が増加し、それ以外
の成分を大幅に減少させることができる。
Note that αb is the pitch between coil groups, and αb −
n=2π...Group...(2). Also, βb is the coil side pitch, and β is the pitch across the coil. By changing , the winding coefficient changes. β. If designed to the highest value, PM and Pz
The gap magnetomotive force component that electromagnetically couples with increases, and other components can be significantly reduced.

第2図は第1図の特徴を備えた具体的な誘導回転電機の
一部破断図である。1は回転子、旦は固定子、3は軸受
である。
FIG. 2 is a partially cutaway view of a specific induction rotating electric machine having the features shown in FIG. 1 is a rotor, 3 is a stator, and 3 is a bearing.

回転子1は、回転子軸4と、この回転子軸上に固定され
回転子軸とともに回転する回転子鉄心5と、この回転子
鉄心の外周近傍に設けたスロット中に埋設され、固定子
ヱ側と前記したように特殊な関係に配置された回転子巻
線6とより構成されている。7は回転子巻線の短絡環で
あり、8は回に保持された固定子鉄心11と、この固定
子鉄心の内周部に巻回保持された固定子巻線1oとによ
、!lll構成されている。この場合、特に固定子巻線
110は前記したように2種類の固定子巻線、すなわち
第1の固定子巻線10aと第2の固定子巻線iobとに
より形成される。
The rotor 1 includes a rotor shaft 4, a rotor core 5 fixed on the rotor shaft and rotating together with the rotor shaft, and a stator core 5 embedded in a slot provided near the outer periphery of the rotor core. The rotor winding 6 is arranged in a special relationship as described above. 7 is a short-circuit ring of the rotor winding, 8 is a stator core 11 that is held in rotation, and a stator winding 1o that is wound and held around the inner circumference of this stator core. It is composed of llll. In this case, in particular, the stator winding 110 is formed of two types of stator windings, ie, the first stator winding 10a and the second stator winding iob, as described above.

このように形成された誘導回転電機を実用に際し、2次
励磁制御する場合の系統が第3図に示されている。第1
の固定子巻線10aは三相交流系統12に接続され、第
2の固定子巻線10bは周波数変換器13に接続されて
いる。第2の固定子巻線10bに加える電圧の周波数を
制御することによって回転速度を変化させることができ
る。なお、14は負荷、15は本発明による誘導回転電
機4.0と負荷14を直結する軸受である。16は変圧
器、17はしゃ断器である。
FIG. 3 shows a system for performing secondary excitation control on the induction rotating electric machine formed in this manner when put into practical use. 1st
The stator winding 10 a is connected to a three-phase AC system 12 , and the second stator winding 10 b is connected to a frequency converter 13 . The rotation speed can be changed by controlling the frequency of the voltage applied to the second stator winding 10b. Note that 14 is a load, and 15 is a bearing that directly connects the induction rotating electric machine 4.0 according to the present invention to the load 14. 16 is a transformer, and 17 is a breaker.

次にこの誘導回転電機の動作原理を第4図により説明す
る。
Next, the principle of operation of this induction rotating electric machine will be explained with reference to FIG.

一般の2次制御のできる巻線形誘導回転電機はブラシと
スリップリングを介して、2次周波数を制御しているわ
けであるが、ブラシレス、つまり非接触で、2次励磁制
御を実施するには本発明で説明した第1の固定子巻線1
0aを1次巻線とした場合、第2の固定子巻線10bと
応答するような起磁力成分が、何らかの方法により回転
子電流によって作られなければならない。換言すれば、
固定子と回転子間のエアギャップにおける起磁力には第
1と第2の固定子巻線の極数に対応した成分が含まれて
いなければならない。
In general, wound type induction rotary electric machines that can perform secondary control control the secondary frequency via brushes and slip rings, but in order to implement secondary excitation control without brushing, that is, without contact. First stator winding 1 described in the present invention
When 0a is the primary winding, a magnetomotive force component that responds to the second stator winding 10b must be created by the rotor current in some way. In other words,
The magnetomotive force in the air gap between the stator and rotor must contain a component corresponding to the number of poles of the first and second stator windings.

第4図は第1の固定子巻線を「極、第2の固定子巻線を
4極としたときの電流分布、起磁力分布を示す。以下、
第1の固定子巻線を主巻線、第2の固定子巻線を励磁巻
線と呼ぶ。
Figure 4 shows the current distribution and magnetomotive force distribution when the first stator winding is a pole and the second stator winding is four poles.
The first stator winding is called the main winding, and the second stator winding is called the excitation winding.

励磁巻線に電圧を印加すると、(a)の如き空間回転磁
界ΦEを発生する。この回転磁界が回転子巻線と鎖交し
て二次電流を発生するわけであるが、第1図の特殊な巻
線にすれば、回転子巻線には第4図(b)のような電流
が流れる。この電流によってエアギャップ中に第4図(
C)の如き分布をした起磁力が発生する。この起磁力に
励磁巻線に対応した成分は勿論、もう一方の巻線、すな
わち主巻線に対応した成分が存在すれば二次励磁制御可
能となる。第4図(C)の起磁力分布をフーリエ級数に
展開したものを第4図(d)に示すが、励磁巻線に対応
した成分Φ26の他に、主巻線に対応した成分ΦHが発
生していることが分る。2点鎖線で囲んだ部分はそれ以
外の成分である。第2図のコイル辺ピッチβb及びコイ
ルまたがりピッチβ。を変化すれば、第4図(b)の電
流経路、及び第4図(C)の起磁力分布が変化する。こ
こで、励磁巻線と主巻線の起磁力、成分が高く、それ以
外の成分が極小となる場合が最適設計と言える。
When a voltage is applied to the excitation winding, a spatially rotating magnetic field ΦE as shown in (a) is generated. This rotating magnetic field interlinks with the rotor winding and generates a secondary current, but if the special winding shown in Figure 1 is used, the rotor winding will generate a secondary current as shown in Figure 4 (b). A current flows. This current flows into the air gap as shown in Figure 4 (
A magnetomotive force with a distribution as shown in C) is generated. If this magnetomotive force includes not only a component corresponding to the excitation winding but also a component corresponding to the other winding, that is, the main winding, secondary excitation control becomes possible. Figure 4(d) shows the expansion of the magnetomotive force distribution in Figure 4(C) into a Fourier series. In addition to the component Φ26 corresponding to the excitation winding, a component ΦH corresponding to the main winding is generated. I know what you're doing. The portion surrounded by the two-dot chain line is the other components. Coil side pitch βb and coil straddle pitch β in FIG. If , the current path in FIG. 4(b) and the magnetomotive force distribution in FIG. 4(c) change. Here, it can be said that the optimal design is when the magnetomotive force and components of the excitation winding and the main winding are high and other components are minimal.

続いて理論式によるエアギャップ中の起磁力成分の大き
さを検討する。主巻線(第1の固定子巻線)、及び励磁
巻線(第2の固定子巻線)に通電することにより固定子
側で発生する起磁力の大きさをそれぞれATM、AT+
eとする。固定子から回転子に入る起磁力Ratlは RatI:ATMej(a12t−pM#R)+ATz
ej(””p″’Rl    、、、 、、、 ・、、
(8)である。ただし、ω2゛は回転子角速度、PMは
主巻線の極対数、Pgは励磁巻線の極対数であシ、励磁
巻線は主巻線に対して逆相接続である。一方、固定子側
の起磁力が回転子巻線と鎖交することにより回転子側に
発生する起磁力をRat2とすると、次式で表現される
Next, we will examine the magnitude of the magnetomotive force component in the air gap using a theoretical formula. The magnitude of the magnetomotive force generated on the stator side by energizing the main winding (first stator winding) and the excitation winding (second stator winding) is ATM and AT+, respectively.
Let it be e. The magnetomotive force Ratl entering the rotor from the stator is RatI: ATMej (a12t-pM#R) + ATz
ej(""p"'Rl ,, ,,, ・,,
(8). However, ω2' is the rotor angular velocity, PM is the number of pole pairs of the main winding, Pg is the number of pole pairs of the excitation winding, and the excitation winding is connected in reverse phase to the main winding. On the other hand, if the magnetomotive force generated on the rotor side due to the interlinkage of the magnetomotive force on the stator side with the rotor winding is Rat2, it is expressed by the following equation.

Rat2−Σ(AT2r(n)e’ ””−”θ”+A
T2b(ホ)e”””am重 (9)     ””” ”’(4) ここで、A T 2 tは正相分起磁力の大きさ、A 
T 2 bは逆相発起磁力の大きさであり、mは発生す
る起磁力の極対数に対応する。従ってエアギャップ中の
起磁力はt;Ql(4)式の合成であり、次式となる。
Rat2−Σ(AT2r(n)e' ””−”θ”+A
T2b (e) e"""am weight (9) """"' (4) Here, A T 2 t is the magnitude of the positive phase component magnetomotive force, A
T 2 b is the magnitude of the reverse phase magnetomotive force, and m corresponds to the number of pole pairs of the generated magnetomotive force. Therefore, the magnetomotive force in the air gap is a combination of the equation t;Ql (4), and becomes the following equation.

Rat=Ratl+”at2    ++・+++++
+r5)なお、(3)〜(5)式は回転子座標で表現し
である。
Rat=Ratl+"at2 ++・++++++
+r5) Note that equations (3) to (5) are expressed in rotor coordinates.

次に第5図において起磁力配分の関係を説明する。動作
原理で述べた通り、エアギャップ中には主巻線と励磁巻
線の極数に対応し、トルり発生に戸与する有効な起磁力
成分と、それ以外のものが″発生する。そこで有効な起
磁力成分の含有率を判定する意味で、第5図(b)に示
す起磁力係数(h2tM+h2bM、 hHJ h2b
t  )を導入する。起、磁力係数を使って回転子起磁
力を表現すると、その撮幅は次式の通りである。
Next, the relationship of magnetomotive force distribution will be explained with reference to FIG. As mentioned in the operating principle, in the air gap, an effective magnetomotive force component that contributes to torque generation and other components are generated, corresponding to the number of poles of the main winding and excitation winding. In the sense of determining the effective magnetomotive force component content, the magnetomotive force coefficient (h2tM+h2bM, hHJ h2b
t). When the rotor magnetomotive force is expressed using the electromotive force coefficient, the field of view is as follows.

k’r+t (PM) =  hztMATM+11z
f璽ATg・・・・・・・・・(6) AT2b (PK) =JbvATy  hzbiAT
z・・・・・・・・・(7) 第2図の回転子巻線において主巻線だけに電圧を印加し
たときの回転子起磁力成分を第5図(C)に示すが、有
効なPM極とPg極酸成分大部分で、他の成分は僅かに
発生するだけである。第5図(d)は励磁巻線だけに電
圧を印〃口した場合の起磁力成分を示すが、同様のこと
が言える。
k'r+t (PM) = hztMATM+11z
f Seal ATg・・・・・・・・・(6) AT2b (PK) =JbvATy hzbiAT
z・・・・・・・・・(7) Figure 5(C) shows the rotor magnetomotive force component when voltage is applied only to the main winding in the rotor winding in Figure 2. Most of the PM polar and Pg polar acid components are generated, and only a small amount of other components are generated. FIG. 5(d) shows the magnetomotive force component when voltage is applied only to the excitation winding, and the same can be said.

第6図は、本発明による誘導回転電機の等価回路を示し
たもので、これに基づき2つの固定子巻線及び回転子に
おける各部の電圧、電流2周波数等の関係を示す。
FIG. 6 shows an equivalent circuit of the induction rotating electric machine according to the present invention, and based on this, the relationship between voltages, currents, two frequencies, etc. at various parts of the two stator windings and the rotor is shown.

主巻線に周波数fMなる電圧VMを印加すれば、周波数
fMなる主巻線電流1wが流れる。この電流によって極
数PMなる回転磁界が発生し、回転子巻線とΦVなる磁
束が鎖交する。これによって回転子巻線に電流IRが流
れる。この電流Inの周波数はすベシ周波数SMfMで
ある。ここで、すべりSMは主巻線と回転子の間におけ
るものである。この回転子電流Inにより発生するギャ
ップ中の起磁力にPm成分が含まれており、これが極数
Pzなる回転磁界を発生させる。この回転磁界が励磁巻
線と鎖交して電流Itが流れる。なおこの図において、
’IMは主巻線の巻線抵抗、XIMは主巻線の漏れリア
クタンスを示し、rRは回転子巻線抵抗、XRは空間高
調波による漏れも含めた回転子巻線の漏れリアクタンス
、rIgは励磁巻線の巻線抵抗、xlmは励磁巻線の漏
れリアクタンスを示す。
When a voltage VM with a frequency fM is applied to the main winding, a main winding current 1w with a frequency fM flows. This current generates a rotating magnetic field with a pole number PM, and a magnetic flux ΦV interlinks with the rotor winding. This causes current IR to flow through the rotor winding. The frequency of this current In is the average frequency SMfM. Here, the slip SM is between the main winding and the rotor. The magnetomotive force in the gap generated by this rotor current In includes a Pm component, which generates a rotating magnetic field with the number of poles Pz. This rotating magnetic field interlinks with the excitation winding, causing a current It to flow. In this figure,
'IM is the winding resistance of the main winding, XIM is the leakage reactance of the main winding, rR is the rotor winding resistance, XR is the leakage reactance of the rotor winding including leakage due to spatial harmonics, and rIg is the The winding resistance of the excitation winding, xlm, indicates the leakage reactance of the excitation winding.

SEを励磁巻線と回転子間のすベシとすれば、励磁巻線
に流れる電流の周波数f、は ・・・・・・・・・(8) で表わされる。
If SE is the range between the excitation winding and the rotor, the frequency f of the current flowing through the excitation winding is expressed as (8).

従って、誘導回転電機の回転数Nmは となり、fMを商用周波数とすれば、周波数変換器によ
り、flを制御することによって誘導回転電機の可変速
運転ができる。すなわち、二次励磁制御が可能である。
Therefore, the rotational speed Nm of the induction rotating electric machine is as follows.If fM is the commercial frequency, the induction rotating electric machine can be operated at variable speed by controlling fl using a frequency converter. That is, secondary excitation control is possible.

この笑施例によれば、回転子を1重巻線で、ブラシレス
二次励磁制御可能である。しかも、回転子巻線は1ター
ン以上備えているので、コイル辺の跨りピッチを調整し
て巻線係数を高く(現行の巻砿形誘導機並)維持するこ
とができ、起磁力の利用率を向上させることができる。
According to this embodiment, the rotor has a single winding, and brushless secondary excitation control is possible. Moreover, since the rotor winding has more than one turn, it is possible to maintain a high winding coefficient (comparable to current wound rod induction machines) by adjusting the straddling pitch of the coil sides, and the utilization rate of magnetomotive force. can be improved.

従って、従来例で問題となった集電部の保守点検、回転
子巻線作業の煩雑、巻線係数の低下、及びシステムコス
トの高騰等の問題はすべて解消される。
Therefore, all of the problems of the conventional example, such as maintenance and inspection of the current collector, complicated rotor winding work, reduction in winding coefficient, and increase in system cost, are solved.

〔発明の効果〕〔Effect of the invention〕

以上種々述べてきたように、本発明の誘導回転電機によ
れば、固定子巻線を夫々極数の異なる第1、第2の巻線
より形成し、かつ1ターン以上備えた回転子巻線を前記
固定子巻線極数の平均の数だけ全周均等に配置したから
、回転子巻線のコイル辺跨りピッチを調整して巻線係数
を現行の巻線形誘導機並の高い直に維持しつつ、回転子
巻線−重のプラシレスニ次励磁制御可能な誘導回転電機
を得ることができる。
As described above, according to the induction rotating electrical machine of the present invention, the stator winding is formed of first and second windings each having a different number of poles, and the rotor winding has one or more turns. Since the number of poles of the stator winding is equal to the average number of poles of the stator winding, the pitch across the coil sides of the rotor winding is adjusted to maintain the winding coefficient as high as the current winding induction machine. At the same time, it is possible to obtain an induction rotary electric machine capable of controlling the rotor winding with heavy plasticine secondary excitation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘導回転電機の固定子及び回転子巻線
図、第2図はその回転電機の一部破断斜視図、第3図は
第1〜2図の回転電機を二次励磁制御する場合の系統図
、g4図は本発明による誘導回転電機の原理説明図、第
5図はその誘導回転電機における甑数を起磁力成分の関
係図、第6図はその回転電機の等価回路である。 1・・・回転子、2・・・固定子、3・・・軸受、4・
・・シャフト、5・・・回転子鉄心、6・・・回転子巻
線、7・・・短絡環、8・・・補強環、9・・・ハウジ
ング、11・・・固定子鉄心、10a・・・第1の回転
子巻線(主巻線)、10b・・・第2の固定子巻線(励
磁巻線)、12・・・系統母線、13・・・周波数変換
器、14・・・負荷、15・・・軸受、16・・・変圧
器、17・・・しゃ断器。
Figure 1 is a stator and rotor winding diagram of the induction rotating electric machine of the present invention, Figure 2 is a partially cutaway perspective view of the rotating electric machine, and Figure 3 is the secondary excitation of the rotating electric machine shown in Figures 1 and 2. A system diagram for control, Figure G4 is a diagram explaining the principle of the induction rotating electric machine according to the present invention, Figure 5 is a diagram showing the relationship between the number of coils and the magnetomotive force component in the induction rotating electric machine, and Figure 6 is an equivalent circuit of the rotating electric machine. It is. 1... Rotor, 2... Stator, 3... Bearing, 4...
... Shaft, 5... Rotor core, 6... Rotor winding, 7... Short circuit ring, 8... Reinforcement ring, 9... Housing, 11... Stator core, 10a ...First rotor winding (main winding), 10b... Second stator winding (excitation winding), 12... System bus, 13... Frequency converter, 14... ...Load, 15... Bearing, 16... Transformer, 17... Breaker.

Claims (1)

【特許請求の範囲】[Claims] 1、回転子鉄心、及び回転子巻線を有する回転子と、該
回転子に所定の間隔をもって対向配置され、固定子鉄心
と固定子巻線を有する誘導回転電機において、前記固定
子巻線が夫々極数の異なる第1、第2の固定子巻線より
形成され、かつ前記回転子の回転子巻線は夫々少なくと
も1ターン以上備え、1つの磁極を形成するように短絡
されて成り、該回転子巻線は前記固定子巻線極数の平均
の数だけ全周均等に配置されたことを特徴とする誘導回
転電機。
1. In an induction rotating electrical machine having a rotor having a rotor core and a rotor winding, and a stator core and a stator winding arranged opposite to the rotor at a predetermined interval, the stator winding is The stator windings are formed of first and second stator windings each having a different number of poles, and the rotor windings of the rotor each have at least one turn and are short-circuited to form one magnetic pole. An induction rotating electric machine characterized in that the rotor windings are equally arranged around the entire circumference by an average number of the stator winding poles.
JP2627585A 1985-02-15 1985-02-15 Induction rotary electric machine Pending JPS61189156A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2627585A JPS61189156A (en) 1985-02-15 1985-02-15 Induction rotary electric machine
CA000501924A CA1251255A (en) 1985-02-15 1986-02-14 Brushless asynchronous alternating current machine controllable by secondary excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2627585A JPS61189156A (en) 1985-02-15 1985-02-15 Induction rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61189156A true JPS61189156A (en) 1986-08-22

Family

ID=12188731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2627585A Pending JPS61189156A (en) 1985-02-15 1985-02-15 Induction rotary electric machine

Country Status (2)

Country Link
JP (1) JPS61189156A (en)
CA (1) CA1251255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006848A3 (en) * 1991-06-17 1995-01-03 Elektronik Regelautomatik Electrical control device for a machine.
WO1995019064A1 (en) * 1994-01-06 1995-07-13 Hyun Laboratory Co., Ltd. Power generator
AU2004227000B2 (en) * 1994-01-06 2007-10-11 Hyun Laboratory Co., Ltd. Power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006848A3 (en) * 1991-06-17 1995-01-03 Elektronik Regelautomatik Electrical control device for a machine.
WO1995019064A1 (en) * 1994-01-06 1995-07-13 Hyun Laboratory Co., Ltd. Power generator
MD1727F2 (en) * 1994-01-06 2001-08-31 Hyun Laboratory Co., Ltd Electric generator
AU2004227000B2 (en) * 1994-01-06 2007-10-11 Hyun Laboratory Co., Ltd. Power generator
AU2004227000C1 (en) * 1994-01-06 2008-04-17 Hyun Laboratory Co., Ltd. Power generator

Also Published As

Publication number Publication date
CA1251255A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
US7134180B2 (en) Method for providing slip energy control in permanent magnet electrical machines
US6177746B1 (en) Low inductance electrical machine
US4371802A (en) Half-pitch capacitor induction motor
US4503377A (en) Variable speed rotary electric machine
US4556809A (en) Combination synchronous and asynchronous electric motor
US6326713B1 (en) A.C. electrical machine and method of transducing power between two different systems
Lawrence Principles of alternating-current machinery
JPH03150055A (en) Ac motor
EP1230724A1 (en) Low inductance electrical machine
US6803847B2 (en) Segmented induction electric machine with interdigitated disk-type rotor and stator construction
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
JPH0227920B2 (en)
JPH0834712B2 (en) Variable speed induction motor
US5194773A (en) Adjustable speed split stator rotary machine
JPS61189156A (en) Induction rotary electric machine
CN87217235U (en) Axial air-gap synchronous motor with consentric construction
CN207732599U (en) Asynchronous motor based on pulsating field
US3205421A (en) Electric servo motors
WO2023164876A1 (en) Multi-phase stator single-phase yoke-winding rotor motor
WO2023164875A1 (en) Multi-phase stator single-phase rotor motor
Naoe et al. A Three-Phase PM Generator with Double Rotors for Low-Head Hydropower–Trial Structure and Basic Characteristics
US20050030142A1 (en) Segmented induction electric machine with interdigitated disk-type rotor and stator construction
KR890004920B1 (en) Electric motor
JP2516393B2 (en) 2 stator induction motor
JPS6318985A (en) Variable speed induction motor