JPS6118887A - Chopper - Google Patents

Chopper

Info

Publication number
JPS6118887A
JPS6118887A JP14037984A JP14037984A JPS6118887A JP S6118887 A JPS6118887 A JP S6118887A JP 14037984 A JP14037984 A JP 14037984A JP 14037984 A JP14037984 A JP 14037984A JP S6118887 A JPS6118887 A JP S6118887A
Authority
JP
Japan
Prior art keywords
radiation
chopper
transmittance
detector
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14037984A
Other languages
Japanese (ja)
Other versions
JPH0550692B2 (en
Inventor
Haruo Hosomatsu
細松 春夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP14037984A priority Critical patent/JPS6118887A/en
Publication of JPS6118887A publication Critical patent/JPS6118887A/en
Publication of JPH0550692B2 publication Critical patent/JPH0550692B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a plurality of frequencies from one chopper, by arranging at least two kinds of radiation adjusting parts at a fixed interval in a disc near the circumference thereof to increase or decrease the transmissivity of radiation. CONSTITUTION:Discs in which at least two kinds of radiation adjusting parts are arranged at a fixed interval near the circumference thereof to increase or decrease the transmissivity of radiation are laminated aligning a plurality of center lines. Here, the radiation adjusting parts of the discs are varied in the shape. Then, the use of the discs thus laminated as chopper 2 enables the generation of electrical signals in a detector 3 corresponding to radiation varied in the intensity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発盟は放射m(光、X、α、β、γその細粒子線)検
出器の応答特性を測定する装置に用いて好適なチョッパ
ーに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a chopper suitable for use in a device for measuring the response characteristics of a radiation m (light, X, α, β, γ fine particle beam) detector. Regarding.

〈従来技術〉 放射線検出器の応答特性はステップ状の入力にサイン波
状の一定振幅の入力に対して低い周波数から順次高くし
ていったとき、出力が3dB下る時点の周波数などで表
わされる。これらの特性を測定する応答特性測定装置と
して従来、第6図に示す構成の装置がある。第6図に示
す応答特性測定装置において、1は例えば放射線源であ
り、2は放射線源1からの放射線をチョッピングするチ
ョッパー、3は放射線検出器(以下検出器という)、4
は検出器3からの出力を増幅する増幅器、5はば高速7
−リエ変換スペクトラムアナライザ(以下FFTという
)である。6はチョッピングされた放射線と同位相を発
生する参照信号源でFFTに入力てれ、増幅器47il
−経て入力さtする検出器5の出力信号のノイズ成分を
平均化して除去する参照信号として用いられる。
<Prior Art> The response characteristic of a radiation detector is expressed by the frequency at which the output drops by 3 dB when the frequency is sequentially increased from low to high for a step input with a constant amplitude in the form of a sine wave. As a response characteristic measuring device for measuring these characteristics, there is a conventional device having a configuration shown in FIG. In the response characteristic measuring device shown in FIG. 6, 1 is, for example, a radiation source, 2 is a chopper that chops the radiation from the radiation source 1, 3 is a radiation detector (hereinafter referred to as a detector), and 4 is a chopper that chops the radiation from the radiation source 1.
is an amplifier that amplifies the output from detector 3, and 5 is a high-speed amplifier 7.
- A FFT spectrum analyzer (hereinafter referred to as FFT). 6 is a reference signal source that generates the same phase as the chopped radiation, which is input to the FFT, and is input to the amplifier 47il.
- It is used as a reference signal to average and remove the noise component of the output signal of the detector 5 which is inputted through the input signal.

上記の如き構成によりチョ7パ痛転により生ずる一定周
波数における周波数応答特性を測定するが、この場合周
波数の種類をできるだけ多種類に変化可能なものが望ま
しい。第7図は周波数を横軸として、縦軸にそのときの
周波数特性をプロットしたものであるが、周波数のサン
プリングポイントは低域から高域まで多数得られる程検
出器の特性をよシ正確にあられしたデータが得られる。
With the above-mentioned configuration, the frequency response characteristics at a constant frequency caused by the pain rolling are measured, but in this case, it is desirable to be able to change the types of frequencies as many as possible. Figure 7 plots the frequency characteristics on the horizontal axis and the frequency characteristics on the vertical axis.The more frequency sampling points that can be obtained from low to high frequencies, the more accurate the characteristics of the detector will be. You can get a ton of data.

このサンプリング周波数は第1の方法としてチョッパー
の回軸数を変化させることにより行なうが周波数の再現
性、安定性を満足させながら一つのモータで広範囲の回
転数を得ることは難かしい。
The first method is to change the sampling frequency by changing the number of rotations of the chopper, but it is difficult to obtain a wide range of rotation speeds with one motor while satisfying frequency reproducibility and stability.

他の方法としてチヨ、バーを羽根の数の異なるものと変
更することが考えられるがチョッパーを多数用意するの
はコスト高となるばかりでなくチョッパー交換のために
多くの時間を要するという欠点がある。
Another option is to change the bar to one with a different number of blades, but having multiple choppers has the disadvantage of not only being expensive but also requiring a lot of time to replace the choppers. .

〈発明の目的〉 本発明は上記従来技術の欠点に鑑みてなされたもので、
一枚のチョッ□、ら複数の周波数を得ることを可能とし
、測定時間の短縮化をはかったものである。
<Object of the invention> The present invention has been made in view of the drawbacks of the above-mentioned prior art.
It is possible to obtain multiple frequencies from a single piece of paper, and the measurement time is shortened.

〈発明の構成〉 この目的を達成する本発明の構成は、放射線に対して一
定の透過率を有する円板の外周近傍に、前記透過率を増
大又は減少させる少なくとも2種類の放射線増減部分を
一定の間隔に配列したことを構成上の特徴とするもので
ある。
<Configuration of the Invention> The configuration of the present invention that achieves this object is to provide at least two types of radiation increasing/decreasing portions that increase or decrease the transmittance near the outer periphery of a disk having a constant transmittance to radiation. The feature of this structure is that they are arranged at intervals of .

〈実施例〉 ある種の放射線が物質中を透過する場合、その放射線の
強度は透過する物質の厚さに応じて指数関数的に減弱し
、物質中を透過した透過放射線強度°工は I =I。
<Example> When a certain type of radiation passes through a substance, the intensity of the radiation decreases exponentially depending on the thickness of the substance through which it passes, and the intensity of the transmitted radiation that passes through the substance is I = I.

e−μtで表わされる。It is expressed in e-μt.

ここに工o〒入射放射線強度 μ=減弱係数 t=透過距離 である。Here, the incident radiation intensity is μ = attenuation coefficient t=transmission distance It is.

本発明はこのような放射線の性質を利用してチ呵ツバ−
を形成したもので、第1図、@2図に一実施1例を示す
The present invention utilizes these properties of radiation to
One example is shown in Fig. 1 and Fig. 2.

第1図は例えば医用X線(実効エネルギー6DKeV)
に用いた本発明のチョッパ−10を複数板の円板を積層
、して形成した例を示すもので、第2図CB): (b
)(c)は第1図の積層チョッパー10を分解した状態
を示す。本例においては円板の材質として黄銅板を用い
る( 60 KeV Kおける黄銅板の減弱係数Pは1
3.7cm−”でろる)。第2図(8〕の円板は0 、
 s’mmの厚さとされ、中心線x−x’、 y−y’
で4分割されたA。
Figure 1 shows, for example, medical X-rays (effective energy 6DKeV)
This figure shows an example in which the chopper 10 of the present invention used in the present invention is formed by laminating a plurality of discs.
) and (c) show the state in which the laminated chopper 10 of FIG. 1 is disassembled. In this example, a brass plate is used as the material of the disc (attenuation coefficient P of the brass plate at 60 KeV K is 1
3.7cm-'').The disk in Figure 2 (8) is 0,
The thickness is s'mm, and the center line x-x', y-y'
A divided into four.

B、C,Dの領域のうちAの領域は等間隔に設は凹 だ18個の放射線増減部分(本例では円周上6喘部の凸
部イの部分から公印方向に3個毎に凸部を5測成9除い
た形状とされ、Bの領域は等間隔に設けた18個の凹凸
部のうちの凹部を口の部分から3個埋め3WA飛んで凍
た3個埋め、次に3個飛んで3個埋めた形状とされ、A
部と0部、B部とD部は同形状に形成される。第2図(
b)の円板は0.3mmの板厚とされ、中心線X−X’
 +、 y−y’で4分割された印方向に3個埋め、5
個飛んでまた3WA埋め、次に3個飛んで3個埋めた形
状とされ、Fの領域は二の部分からはじめ3個の凸部を
飛んで2個分の凹部を設け、次に2個の凸部を飛ぶ毎に
2部分の凹部および凸部を交互に設けた形状とされ、E
部とG部、2部とHsは同形状に形成嘔れる。第2図(
c)の円板は0 、5 mmの板厚とされ、中心線X 
−X /。
Of the areas B, C, and D, area A has 18 concave radiation increase/decrease areas arranged at equal intervals (in this example, every 3 areas from the convex part A of the 6 areas on the circumference in the direction of the official seal). It has a shape with 5 measurements and 9 removed of the convex parts, and in area B, of the 18 concave and convex parts provided at equal intervals, 3 of the concave parts are filled in from the mouth part, and the 3 frozen parts are filled in by 3 WA, and then It is said to have a shape of 3 flying and 3 buried, and A
The part and the 0 part, and the B part and the D part are formed in the same shape. Figure 2 (
The disk in b) has a thickness of 0.3 mm, and the center line X-X'
+, fill 3 in the direction of the mark divided into 4 by y-y', 5
It is assumed that the area F starts from the second part, skips three convex parts, creates a concave part for two, and then skips three WA and fills in 3 WA. E
The part and G part, and the second part and Hs are formed in the same shape. Figure 2 (
The disk in c) has a thickness of 0.5 mm, and the center line
-X/.

Y−Y’で4分割されたI、J、に、Lの領域のうち■
およびKの領域は全域が凸の状態、JおよびHの領域は
全域が凹の状態に形成される。
■ Of the areas I, J, and L divided into four by Y-Y'
The regions J and K are formed in a convex state throughout, and the regions J and H are formed in a concave state throughout.

上記3枚の板を中心線x−x’、 y−y’を合わせて
第1図のチョッパー10如く積層すると各凹凸部の厚さ
のレベルは第3図に示す如きものとなる。第3図におい
て横軸はチョッパー10の回転方向を示し、縦軸は凹凸
部の厚さの変化を示すもので、aのレベルは第2図(b
)の板(板厚a、5mm)の凸部のみが存在する部分、
bのレベルは第2図(a)または爲2図(c)板厚(0
、5mm )の凸部が存在する部分、Cのレベルは第2
図(a)または第2 IN ((1)と第2図LbJの
凸部が存在する部分、−のレベルは第2図(ML (b
)、 (e)の凸部がすべて存在する部分を示し・てお
り、これの従来例のチg7バーのかわシに用いると、検
出器5には第4図に示す如き4種類の強さの異なった放
射線に対応する電気信号が発生する。第4図において、
横軸方向はチョッパー10の回転方向を九レベル、Bの
レベルハM シ< 0.5mm 、 Cのレベルは0.
8mm 、 DのレベルはL3mmの厚さの部分を透過
して減衰する放射線の強さのレベルを示すものである。
When the three plates mentioned above are stacked with their center lines xx' and y-y' aligned as shown in the chopper 10 of FIG. 1, the thickness level of each uneven portion becomes as shown in FIG. 3. In FIG. 3, the horizontal axis indicates the rotation direction of the chopper 10, and the vertical axis indicates the change in the thickness of the uneven portion.
) plate (plate thickness a, 5 mm) where only the convex portion exists,
The level of b is as shown in Figure 2 (a) or Figure 2 (c).
, 5mm) where the convex portion exists, level C is the second level.
Figure (a) or 2nd IN ((1) and the part where the convex part of Figure 2 LbJ exists, - level is Figure 2 (ML (b
), (e) shows the part where all the convex parts are present, and when this is used for the conventional example of the Chig7 bar, the detector 5 has four types of strength as shown in Fig. 4. Electrical signals corresponding to different radiations are generated. In Figure 4,
In the horizontal axis direction, the rotation direction of the chopper 10 is 9 levels, the level B is <0.5 mm, and the level C is 0.
The level of 8 mm and D indicates the level of the intensity of radiation transmitted through a portion of thickness L3 mm and attenuated.

上記の減衰度合いに応じて発生した電気信号を増幅器を
介して第6図で示したFFT K入力するとFFTから
は第5図に示す如き振幅の等しい3種類の周波数を得る
ことができる。第5図において矢印Wの範囲はチョッパ
ー10が半回転する毎の波形を示しており、■の波形は
チョッパー10が半回転する毎に1サイクル、■は同じ
く6サイクル、■は同じ<36フイクルであることを示
している。これら3つの周期からなるチョッパーを回転
して得られる3つの周波数は基本周波数と呼ばれるもの
でFFTで3次、5次・・・の高調波まで解析すればさ
らに多くの種類の周波数を得ることができる。
When an electric signal generated according to the above-mentioned attenuation degree is input to the FFT K shown in FIG. 6 via an amplifier, three types of frequencies having equal amplitudes as shown in FIG. 5 can be obtained from the FFT. In Fig. 5, the range of the arrow W shows the waveform every time the chopper 10 makes a half rotation, the waveform ``■'' is one cycle every time the chopper 10 makes a half rotation, ``■'' is the same 6 cycles, and ``■'' is the same <36 cycles. It shows that. The three frequencies obtained by rotating the chopper consisting of these three periods are called fundamental frequencies, and if you analyze the third, fifth, etc. harmonics using FFT, you can obtain even more types of frequencies. can.

なお、上記実施例におい殆枚の円板の外周近傍に凹凸部
を設けて、これら3枚の円板を積層することにより放射
線透過率増減部分を形成したが、上記実施例に限ること
なく、一枚の円板を加工して複数種の肉厚の異なる部分
を一定の間隔に配列してもよく、また同じ厚さでも放射
線透過率の異なる材質の板を円板の外周近傍に一定の間
隔に埋め込んだり、貼付して配例してもよい。壕だ、本
例くおいてはX線を取上げたが、α線、β線、γ線、光
さらKは粒子線藩どにも応用できる。
In addition, in the above embodiment, an uneven portion was provided near the outer periphery of most of the disks, and the radiation transmittance increasing/decreasing portion was formed by stacking these three disks, but the present invention is not limited to the above embodiment. A single disc may be processed to have multiple parts with different thicknesses arranged at regular intervals, or plates of the same thickness but with different radiation transmittances may be arranged near the outer periphery of the disc. It may be arranged by embedding it in the interval or by pasting it. In this example, we have focused on X-rays, but α-rays, β-rays, γ-rays, and light radiation can also be applied to particle beams.

〈発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれは一枚のチョッパーに複数の基本周波数を生じさせ
るようにしたので、放射線検出器の特性を測定する場合
の測定時間の短縮化を実現することができる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, the present invention allows a single chopper to generate a plurality of fundamental frequencies. Measurement time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図(a)、 ’(b)、 ((1)は
本発明のチョッパーを示し、第1図は3枚の板を積層し
た図、第2図(a)、 (b)、 (e)は第1図の積
層チfiツバ−を分解した図、第6図は本発明のチョッ
パーが回転した場合の放射線透過率増減部分(凹凸部)
の厚さの変化を示す図、第4図は本発明のチョッパーが
回転した場合の放射線の減衰度合いを示す図、第5図は
本発明のチョッパーを透過した放射線が検出器を照射す
る周波数を示、す図、第6図は放射線特性測°定におけ
る構成例と従来例のチョッパーを説明する図、第7図は
周波数に対する検出器の出力を示す説明図である。 1・・・放射線源、2.10・・・チョッパー、3・・
・放射F線検出器、4・・・増幅器、5・・・高速フー
リエ変換スヒベクトルアナライザ、6・・・参照信号源
。     1M1図 n ! ら シ し 篤2 (a) (c) (b)
Figures 1 and 2 (a), '(b), ((1) shows the chopper of the present invention, Figure 1 is a diagram in which three plates are stacked, Figure 2 (a), (b) ), (e) is an exploded view of the laminated chopper shown in Fig. 1, and Fig. 6 shows the portions where the radiation transmittance increases and decreases (uneven portions) when the chopper of the present invention rotates.
Figure 4 is a diagram showing the degree of attenuation of radiation when the chopper of the present invention rotates, and Figure 5 is a diagram showing the frequency at which the radiation transmitted through the chopper of the present invention irradiates the detector. FIG. 6 is a diagram illustrating a configuration example and a conventional chopper for measuring radiation characteristics, and FIG. 7 is an explanatory diagram showing the output of a detector with respect to frequency. 1...Radiation source, 2.10...Chopper, 3...
- Radiation F-ray detector, 4... Amplifier, 5... Fast Fourier transform Schiveter analyzer, 6... Reference signal source. 1M1 figure n! Rashishi Atsushi 2 (a) (c) (b)

Claims (1)

【特許請求の範囲】 1、放射線に対して一定の透過率を有する円板の外周近
傍に、前記透過率を増大又は減少させる少なくとも2種
類の放射線透過率増減部分を一定の間隔に配列したこと
を特徴とするチョッパー。 2、前記透過率増減部分の割合いを、常に相等しいよう
にチョッパーの板厚または材質を選択し、チョッパーを
透過した放射線を相等しいパワーまたは振幅の複数の基
本周期を有する波に変調したことを特徴とする特許請求
の範囲第1項記載のチョッパー。
[Claims] 1. At least two types of radiation transmittance increasing/decreasing portions that increase or decrease the transmittance are arranged at regular intervals near the outer periphery of a disk having a constant transmittance to radiation. Chopper featuring. 2. The thickness or material of the chopper is selected so that the proportion of the transmittance increase/decrease is always equal, and the radiation transmitted through the chopper is modulated into waves having multiple fundamental periods with equal power or amplitude. A chopper according to claim 1, characterized in that:
JP14037984A 1984-07-06 1984-07-06 Chopper Granted JPS6118887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14037984A JPS6118887A (en) 1984-07-06 1984-07-06 Chopper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14037984A JPS6118887A (en) 1984-07-06 1984-07-06 Chopper

Publications (2)

Publication Number Publication Date
JPS6118887A true JPS6118887A (en) 1986-01-27
JPH0550692B2 JPH0550692B2 (en) 1993-07-29

Family

ID=15267445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14037984A Granted JPS6118887A (en) 1984-07-06 1984-07-06 Chopper

Country Status (1)

Country Link
JP (1) JPS6118887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244100A (en) * 1987-03-31 1988-10-11 藤崎 博也 Voice analyzer and voice synthesizer
US6223194B1 (en) 1997-06-11 2001-04-24 Nec Corporation Adaptive filter, step size control method thereof, and record medium therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963690A (en) * 1995-08-28 1997-03-07 Nec Eng Ltd Installing structure of wrapping connector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016588A (en) * 1973-05-04 1975-02-21
JPS58129334A (en) * 1982-01-29 1983-08-02 Sanyo Electric Co Ltd Infrared detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016588A (en) * 1973-05-04 1975-02-21
JPS58129334A (en) * 1982-01-29 1983-08-02 Sanyo Electric Co Ltd Infrared detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244100A (en) * 1987-03-31 1988-10-11 藤崎 博也 Voice analyzer and voice synthesizer
US6223194B1 (en) 1997-06-11 2001-04-24 Nec Corporation Adaptive filter, step size control method thereof, and record medium therefor

Also Published As

Publication number Publication date
JPH0550692B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
EP0173955B1 (en) A method and device for detecting a specific acoustic spectral feature
US3971962A (en) Linear transducer array for ultrasonic image conversion
US5010885A (en) Ultrasonic echograph with controllable phase coherence
US4265122A (en) Nondestructive testing apparatus and method utilizing time-domain ramp signals
Korpel et al. Measurement of acoustic surface wave propagation characteristics by reflected light
JPS6118887A (en) Chopper
Brown et al. Generation and reception of wideband ultrasound
CN114584896B (en) Frequency response curve testing method and system for parametric array loudspeaker
Roderick et al. Frequency Spectra of Forward‐Scattered Sound from the Ocean Surface
Zeqiri et al. A radiation force balance target material for applications below 0.5 MHz
Norman et al. Interaction of high frequency Lamb waves with surface-mount sensor adhesives
Licht Acoustic Emission(in nondestructive test techniques)
O'Donnell Phase-insensitive pulse-echo imaging
US4652817A (en) Acousto-optic chip rate detector
Bridoux et al. Optoacoustic testing of microsound devices
Chu BLDG. RES.
CA1249655A (en) Method and device for detecting a specific acoustic spectral feature
Geng et al. Narrow-edged beamforming based on individual phase inversion in amplitude-modulated wave for parametric array loudspeaker
Codron Detection of surface waves in the ground using an acoustic method
JPS61228844A (en) Ultrasonic measuring method and apparatus
Bhonsle et al. Determination of Faraday Rotation Occurring between the Burst-source in the Solar Corona and the Earth
JPH05235582A (en) Magnetic shielding material
Widener et al. Dynamic effects of mechanical angular scanning of a parametric array
Miller et al. Echoes from insects processed using time delayed spectrometry (TDS)
Atwal et al. Measurement of the absorption coefficient using the sound-intensity technique