JPS61188863A - Reactant gas supplying device for fuel cell power generating installation - Google Patents

Reactant gas supplying device for fuel cell power generating installation

Info

Publication number
JPS61188863A
JPS61188863A JP60027774A JP2777485A JPS61188863A JP S61188863 A JPS61188863 A JP S61188863A JP 60027774 A JP60027774 A JP 60027774A JP 2777485 A JP2777485 A JP 2777485A JP S61188863 A JPS61188863 A JP S61188863A
Authority
JP
Japan
Prior art keywords
gas supply
fuel cell
gas
power generation
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027774A
Other languages
Japanese (ja)
Inventor
Kazuo Koseki
小関 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60027774A priority Critical patent/JPS61188863A/en
Publication of JPS61188863A publication Critical patent/JPS61188863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To suppress unnecessary gas consumption thereby improve maintainability of reactant gas supplying device by supplying the reactant gas to be consumed in a fuel cell body from an auxiliary reactant gas supplying device of a small capacity separately installed, when the installation is out of power generation such as in the case of shut down or the like. CONSTITUTION:A hydrogen gas bomb 2 and an oxygen gas bomb 3 as reactant gases suppliers are pipe-connected with a fuel cell body 1 through reactnat gases supplying lines 4, 5 which supply fuel and oxidizing agent. The reactant gases are supplied into the cell by adjusting the gas pressure through pressure control valves 6. Meanwhile, separately from the reactant gas suppliers of of the bombs 2, 3, an auxiliary reactant gas generator 10 of a small capacity is pipe-connected with the branching lines 8, 9 led out from the lines 4, 5 in the device of the power generating installation. The reactant gases consumed in the fuel cell body 1 is supplied from the gas generator 10, while the installation is out of power generation such as in the case of the installation shut down or the like. With the above constitution, unnecessary gas consumption is suppressed and maintainability is improved at the reactant gas supplier device.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、例えば非常用電源として使用される比較的
小容量の燃料電池発電設備を対象とする当該発電設備の
反応ガス供給装置に関する。
The present invention relates to a reaction gas supply device for a relatively small-capacity fuel cell power generation facility used, for example, as an emergency power source.

【従来技術とその問題点】[Prior art and its problems]

まず第4図にこの種の従来における燃料電池発電設備の
概要を示す0図において、1は単位セルの積層体として
なる燃料電池本体、2,3はそれぞれ水素、酸素の反応
ガスを加圧充填した反応ガス供給源としての水素ボンベ
および酸素ボンベであり、各ボンベ2.3は燃料供給ラ
イン4.酸化剤供給ライン5を通じて燃料電池本体lに
接続配管されておいる。なお6は反応ガス供給ラインに
介挿された調圧弁である。かかる構成で反応ガス供給源
から水素および酸素の反応ガスを燃料電池本体を構成し
ている各単位セルの燃料極、酸化剤極へ供給することに
より、燃料電池本体で発電反応が行われ、これによって
生じた電気が出力端子7に出力されることは周知の通り
である。 かかる燃料電池はその運転開始により僅か数ミリ秒で所
定の出力電圧に達して負荷への給電が行える優れた立上
がり特性を有しており、したがって常時燃料電池本体へ
燃料、酸化剤を供給した状態を保持しておくことにより
、必要時には燃料電池へ負荷を接続することにより瞬時
に発電を開始して負荷に電力を供給することが可能であ
る。この特性を利用して最近では燃料電池が無停電電源
装置等の非常用電源として用いられるようになっている
。 しかして燃料電池発電設備を非常用電源として用いる場
合に、発電休止時も含めて常時反応ガスの供給状態を保
持しておくと、次記のような問題が派生する。すなわち (1)燃料電池本体を構成している各単位セルに電解液
を並列に循環供給しているものでは、各単位セルの相互
間を連通している共通の電解液供給ラインを通じて漏洩
電流が発生することになるので、無負荷運転状態でも常
に僅かづつ反応ガスが消費される。このために第4図の
ように反応ガス供給源としてガスボンベ2,3から反応
ガスの供給を行っている場合には、負荷運転を行わない
非発電状態が長期間続くと次第にボンベ内のガス量が消
耗してしまう、このために負荷運転を行わな(でも時々
はガスボンベを新規なものと交換を行う厄介な保守管理
が必要となる。この点に関して一例を示すと、出力10
に一程度の燃料電池に対して7rrlのボンベを使用し
た場合には、非発電状態のままでも約半年毎に一度はボ
ンベを交換する必要がある。 (2)上記した漏洩電流によるガス消費の他に、燃料電
池本体の反応ガス系路には構造上の面から不可避的なガ
ス漏れがあるためにガスボンベの反応ガスが消耗するの
で、前記と同様なガスボンベの交換が必要となる。 このように従来の発電設備の反応ガスイ社鋏藁のままで
は、反応ガスの供給に関してその反応ガス供給源の保守
管理に厄介な面があり、この点の改善策が望まれている
First of all, Figure 4 shows an overview of this type of conventional fuel cell power generation equipment. In Figure 0, 1 is the fuel cell body which is a stack of unit cells, and 2 and 3 are filled with pressurized reaction gases of hydrogen and oxygen, respectively. hydrogen cylinders and oxygen cylinders as reactant gas supply sources, each cylinder 2.3 being connected to a fuel supply line 4. The oxidizing agent supply line 5 is connected to the fuel cell main body 1 through piping. Note that 6 is a pressure regulating valve inserted in the reaction gas supply line. With this configuration, by supplying reactive gases of hydrogen and oxygen from the reactive gas supply source to the fuel electrode and oxidizer electrode of each unit cell that constitutes the fuel cell body, a power generation reaction is performed in the fuel cell body. As is well known, the electricity generated is output to the output terminal 7. Such fuel cells have excellent start-up characteristics that allow them to reach a predetermined output voltage and supply power to a load in just a few milliseconds after the start of operation. Therefore, fuel and oxidizer are constantly supplied to the fuel cell main body. By holding this, it is possible to instantly start generating power and supply power to the load by connecting the load to the fuel cell when necessary. Taking advantage of this characteristic, fuel cells have recently come to be used as emergency power sources such as uninterruptible power supplies. However, when using fuel cell power generation equipment as an emergency power source, if the reactant gas supply state is maintained at all times, including when power generation is stopped, the following problems arise. In other words, (1) in a fuel cell in which electrolyte is circulated and supplied in parallel to each unit cell that makes up the fuel cell body, leakage current is generated through the common electrolyte supply line that communicates between each unit cell. Therefore, the reaction gas is always consumed little by little even during no-load operation. For this reason, when the reactant gas is supplied from gas cylinders 2 and 3 as the reactant gas supply source as shown in Figure 4, if the non-power generation state without load operation continues for a long period of time, the amount of gas in the cylinder will gradually increase. For this reason, load operation is not carried out (but sometimes cumbersome maintenance management is required, such as replacing the gas cylinder with a new one).
If a 7rrl cylinder is used for one fuel cell per year, it is necessary to replace the cylinder approximately once every six months even when power is not being generated. (2) In addition to the gas consumption due to the leakage current mentioned above, there is an unavoidable gas leakage from the structural aspects of the reactant gas line in the fuel cell main body, which causes the reactant gas in the gas cylinder to be consumed. The gas cylinder will need to be replaced. As described above, if the reaction gas supply source of the conventional power generation equipment is used as it is, maintenance and management of the reaction gas supply source is troublesome, and there is a desire for an improvement in this point.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、従
来装置の難点を解消して保守性に優れた燃料電池発電設
備の反応ガス供給装置を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a reactant gas supply device for fuel cell power generation equipment that eliminates the drawbacks of conventional devices and has excellent maintainability.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は反応ガス供給源
とは別個に燃料および酸化剤を製造する補助の反応ガス
発生装置を分岐ガス供給ラインを通じて前記反応ガス供
給ラインに接続し、負荷へ電力を供給する負荷運転時に
は前記の反応ガス供給源から反応ガスを燃料電池本体に
供給するとともに、発電休止等の非発電時には燃料電池
本体側での反応ガス消費分を前記反応ガス発生装置から
補給するようにし、これにより反応ガス供給源側での不
要なガス消費を抑えて反応ガス補充面での保守管理の簡
便化を図るようにしたものである。 なおこの場合の反応ガス発生装置としては、電解質水溶
液を原料として電気分解により燃料としての水素および
酸化剤としての酸素を生成する水電解装置が好適である
In order to achieve the above object, the present invention connects an auxiliary reactive gas generator that produces fuel and oxidizer separately from the reactive gas supply source to the reactive gas supply line through a branch gas supply line, and provides power to the load. During load operation, the reactant gas is supplied from the reactant gas supply source to the fuel cell main body, and when power generation is not being performed, such as when power generation is stopped, the reactant gas consumed by the fuel cell main body is replenished from the reactant gas generator. This suppresses unnecessary gas consumption on the side of the reactant gas supply source and simplifies maintenance and management in terms of reactant gas replenishment. In this case, a suitable reaction gas generating device is a water electrolysis device that generates hydrogen as a fuel and oxygen as an oxidizing agent by electrolysis using an electrolyte aqueous solution as a raw material.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明による反応ガス供給装置の系統図であ
り、第4図と同一部材には同じ符合が付しである。すな
わち燃料電池本体1に対し燃料および酸化剤の反応ガス
供給ライン4.5を介して反応ガス供給源としての水素
ボンベ2および酸素ボンベ3が接続配管されており、第
1の調圧弁6によりガス圧力を500a+s+Ag程度
に調圧して燃料電池本体lへ反応ガスの供給を行ってい
る。一方、発電設備の系内には前記した水素、酸素ボン
ベ2゜3を主の反応ガス供給源として、この反応ガス供
給源とは別個に反応ガス供給ライン4.5から引き出し
た分岐ライン8,9に符合10で示す小容量の補助反応
ガス発生装置が接続されている。この反応ガス発生装置
は例えば市販の商用電源を用いた水素−酸素発生器が採
用される。また前記の分岐ライン8.9には圧力を第1
の調圧弁より高い600mmAg程度に調圧した第2の
調圧弁11.および系内のガス圧が設定値以上になった
際に反応ガスを系外に逃がすリリーフ弁12が介装され
ている。 なお13は燃料電池本体側の系内ガス圧が低下したこと
を検出して信号を発し、反応ガス発生装置10を作動さ
せる圧力スイッチであって、その動作圧力は550mm
Ag程度に設定されている。 次に上記構成による反応ガスの供給動作に付いて説明す
る。まず燃料電池本体1にはあらかじめ初期状態で60
0s+mAg程度の圧力で反応ガスが封入されており、
この状態で発電待機している。この発電待機状態で頭記
したように燃料電池本体での漏洩電流の発生ないしは反
応ガスの僅かな漏れ等による反応ガスの消費で燃料電池
本体の系内ガス圧が電池封入圧の下限である550mm
Agに低下すると、圧力スイッチ13が作動してその信
号を反応ガス発生装置10に与え、これにより反応ガス
発生装置lOで生成した水素および酸素の反応ガスを分
岐ライン8,9を通じて燃料電池本体1へ補給する。 なおこの場合には、水素系、酸素系のいずれか一方側の
みの圧力が低下した際にも反応ガス発生装置10が作動
し、かつ余剰なガスはリリーフ弁12を通じて系外に放
出される。一方、この状態では系内のガス圧が調圧弁6
の設定圧よりも高いので、ガスボンベ2.3から反応ガ
スが流出することはない。かくして発電を休止している
非発電の状態では反応ガス供給源2,3内に充填されて
いる反応ガスを消耗することなく、かつこの状態で漏洩
電流ないし反応ガスの漏れに起因する燃料電池本体1内
での反応ガスの僅かな消費分は反応ガス反応ガス発生値
!10より燃料電池本体1へ補給される。したがって燃
料電池本体1の系内は常に所定のガス圧に保持されてい
ることになる。 一方、上記の無負荷状態から負荷へ給電を行う負荷運転
状態に入ると、この時点では燃料電池本体1が所定のガ
ス圧に保持されているので瞬時に定常の発電を開始でき
る。またこの負荷運転状態では燃料電池本体1が大量の
反応ガスを消費する士^L−かスナーめL−E犬貞゛1
仝汁姑着10h1^のガス供給のみでは負荷運転に対応
できず、したがって系内のガス圧が早急に低下しようと
するが、この過程でガス圧が500+ms+Ag以下に
なれば第1の調圧弁6を通じて自動的に水素および酸素
ボンベ2゜3から反応ガスの供給が行われるようになり
、これによって負荷運転に対応した反応ガスの供給がな
される。その後に再び発電休止になれば前述した無負荷
状態に戻り、燃料電池本体lでの反応ガスの僅かな消費
分は反応ガス発生装置10からのガス補給によって賄わ
れるようになる。 次に上記した反応ガス発生装置10および第2の調圧弁
11に替えて適用される実施例の具体的な構成例を第2
図に示す、第2図において自動調圧弁機能を備えた反応
ガス発生装置30は、その中に電解質水溶液を満たした
電解槽14と、該電解槽14内の水溶液中にその下部開
口端を浸漬して直立設置した水素発生管15および酸素
発生管16と、前記発生管15および16の管内下部に
挿入配備した陰極および陽極側の電解用電極17.18
と、該電極間に接続された電解用の直流電源19とで構
成されている。 なお水素発生管15および酸素発生管16はそれぞれ第
1図に示した反応ガス供給ライン4.5に連通して接続
配管されている。 かかる構成で電極17.18の間に電源19より電流を
通電することにより、電極17側からは水素ガスが、電
極18側からは酸素が発生し、反応ガス供給ラインを通
じて燃料電池本体lへ供給される。またこの場合に電解
槽14の液面および電極17.18の設置レベルを系内
の設定ガス圧に対応して適当に設定しておくことにより
、反応ガスの補給が進んで燃料電池本体側の系内ガス圧
が所定圧まで高まった点で水素、酸素発生管15.16
内の液面が管内ガス圧によって押しさげられ、電極17
.18が液面上に露出するようになり、これにより通電
が自動的に停止してガス発生も停止するように自己制御
が行われる。またこの状態から燃料電池本体側での漏洩
電流、ガス漏れ等に起因するガス消費が住じて系内のガ
ス圧が所定値から低下するようになれば、再び電極17
.18は液面下に浸漬するようになって自動的に反応ガ
スの生成補給が再開されることになる。 なお第2図の実施例において、燃料、酸化剤のいずれか
一方側のガスの消費が他方側よりも多(発生するような
不平衡状態が発生した場合には、一方何の電極が溶液内
に浸漬するようになっても他方側の電極は液面上に露出
しているので通電がなされず、直ちにガス補給の対応が
できないおそれがあるが、このような問題には第3図に
示した実施例で対処できる。すなわち第3図の反応ガス
発生装置では、電解槽14内の電解質水溶液内に浸漬し
てガス発生管の外側にもう一つの補助電極20が設置さ
れており、かつこの補助電極20が切り替えスイッチ2
1を介して電源19の正、負いずれかの端子側へ選択的
に切り換えるように構成されている。かかる構成で、例
えば水素、酸素のうち水素    側の消費量が多く発
生する場合には、前記したスイッチ21を酸素側電極と
並列に接続しておくことにより、図示のように水素側の
ガス圧が低下してその電極17のみが液面下に没するア
ンバランスな液面状態が生じても、電極17と常時溶液
中に浸漬されている補助電極20との間で通電を保持し
て電気分解の継続が可能となり、これによって消耗側の
ガスのみを配管を通じて燃料電池本体へ補給できる。な
お補助電極20側で発生した酸素はそのまま溶液中を上
昇して槽外に放散される。なお、逆に酸素側の消費が多
い場合には前記した補助電極20を水素側の電極へ並列
接続しておけばよい。 【発明の効果] 以上述べたようにこの発明によれば、反応ガス供給源と
は別個に燃料および酸化剤を製造する小容量の補助反応
ガス発生装置を系内に装備して前記反応ガス供給ライン
に接続し、負荷へ電力を供給する負荷運転時には前記の
反応ガス供給源から反応ガスを燃料電池本体に供給する
とともに、発電休止の非発電時には燃料電池本体側での
反応ガス消費分を前記反応ガス発生装置から補給するよ
うに構成したことにより、非発電状態で燃料電池本体側
に生じる反応ガスの僅かな消費分は補助反応ガス発生装
置から自動的に補給されて反応ガスることがなく、これ
により反応ガス供給源に対する保守管理の簡便化を図る
ことができる。
FIG. 1 is a system diagram of a reaction gas supply apparatus according to the present invention, and the same members as in FIG. 4 are given the same reference numerals. That is, a hydrogen cylinder 2 and an oxygen cylinder 3 as reaction gas supply sources are connected to the fuel cell main body 1 via reaction gas supply lines 4.5 for fuel and oxidizer, and the gas is supplied by a first pressure regulating valve 6. The pressure is regulated to about 500a+s+Ag and the reactant gas is supplied to the fuel cell main body l. On the other hand, within the system of the power generation equipment, the above-mentioned hydrogen and oxygen cylinders 2.3 are used as the main reactant gas supply sources, and a branch line 8, which is drawn out from the reactant gas supply line 4.5 separately from this reactant gas supply source, is provided. 9 is connected to a small capacity auxiliary reaction gas generator indicated by 10. As this reaction gas generation device, for example, a commercially available hydrogen-oxygen generator using a commercial power source is employed. In addition, pressure is applied to the branch line 8.9 at the first line.
The second pressure regulating valve 11 is regulated to a pressure of about 600 mmAg, which is higher than that of the pressure regulating valve 11. A relief valve 12 is also provided to release the reaction gas to the outside of the system when the gas pressure within the system exceeds a set value. Note that 13 is a pressure switch that detects a decrease in the system gas pressure on the fuel cell main body side and issues a signal to operate the reaction gas generator 10, and its operating pressure is 550 mm.
It is set to about Ag. Next, the reaction gas supply operation with the above configuration will be explained. First, the fuel cell main body 1 is preset with 60
The reaction gas is sealed at a pressure of about 0s+mAg,
In this state, power generation is on standby. In this power generation standby state, as mentioned above, due to the occurrence of leakage current in the fuel cell main body or the consumption of reactant gas due to a slight leakage of the reactant gas, the gas pressure within the system of the fuel cell main body reaches 550 mm, which is the lower limit of the cell sealing pressure.
When the pressure decreases to Ag, the pressure switch 13 is activated and sends a signal to the reaction gas generator 10, whereby the reaction gases of hydrogen and oxygen generated in the reaction gas generator 10 are sent through the branch lines 8 and 9 to the fuel cell main body 1. supply to. In this case, even when the pressure of either the hydrogen system or the oxygen system decreases, the reaction gas generator 10 operates, and excess gas is released to the outside of the system through the relief valve 12. On the other hand, in this state, the gas pressure in the system is
Since the pressure is higher than the set pressure of the gas cylinder 2.3, the reaction gas will not flow out from the gas cylinder 2.3. In this way, in the non-power generation state where power generation is stopped, the reactant gas filled in the reactant gas supply sources 2 and 3 is not consumed, and in this state, the fuel cell main body due to leakage current or reactant gas leakage. The small amount of consumption of the reaction gas in 1 is the reaction gas generation value! The fuel is supplied to the fuel cell main body 1 from 10. Therefore, the inside of the fuel cell main body 1 is always maintained at a predetermined gas pressure. On the other hand, when the fuel cell main body 1 enters a load operation state in which power is supplied to the load from the above-mentioned no-load state, steady power generation can be instantaneously started because the fuel cell main body 1 is maintained at a predetermined gas pressure at this point. Also, in this load operation state, the fuel cell main body 1 consumes a large amount of reaction gas.
Gas supply of 10h1^ is not enough to cope with the load operation, and therefore the gas pressure in the system tries to drop quickly, but if the gas pressure falls below 500+ms+Ag during this process, the first pressure regulating valve 6 Through this, the reaction gas is automatically supplied from the hydrogen and oxygen cylinders 2.3, and thereby the reaction gas is supplied in accordance with the load operation. After that, when power generation is stopped again, the above-mentioned no-load state is returned, and the small amount of reaction gas consumed in the fuel cell main body 1 is covered by gas replenishment from the reaction gas generator 10. Next, a specific configuration example of an embodiment applied in place of the above-mentioned reaction gas generator 10 and second pressure regulating valve 11 will be described in the second section.
The reactive gas generator 30 shown in FIG. 2, which is equipped with an automatic pressure regulating valve function, includes an electrolytic cell 14 filled with an aqueous electrolyte solution, and a lower open end of the electrolytic cell 14 that is immersed in the aqueous solution in the electrolytic cell 14. Hydrogen generation tube 15 and oxygen generation tube 16 installed vertically, and electrodes 17 and 18 for electrolysis on the cathode and anode sides inserted into the lower portions of the generation tubes 15 and 16.
and a DC power source 19 for electrolysis connected between the electrodes. Note that the hydrogen generation tube 15 and the oxygen generation tube 16 are connected and connected to the reaction gas supply line 4.5 shown in FIG. 1, respectively. With this configuration, by passing current from the power supply 19 between the electrodes 17 and 18, hydrogen gas is generated from the electrode 17 side and oxygen is generated from the electrode 18 side, and is supplied to the fuel cell main body l through the reaction gas supply line. be done. In addition, in this case, by appropriately setting the liquid level of the electrolytic cell 14 and the installation level of the electrodes 17 and 18 in accordance with the set gas pressure in the system, the replenishment of the reaction gas progresses and the fuel cell main body side At the point where the gas pressure in the system has increased to a predetermined pressure, the hydrogen and oxygen generation pipes 15.16
The liquid level inside the tube is pushed down by the gas pressure inside the tube, and the electrode 17
.. 18 comes to be exposed above the liquid surface, and self-control is performed so that current supply is automatically stopped and gas generation is also stopped. Furthermore, if the gas pressure in the system decreases from a predetermined value due to gas consumption caused by leakage current, gas leakage, etc. on the fuel cell main body side from this state, then the electrode 17
.. 18 is immersed below the liquid surface, and the generation and replenishment of reaction gas is automatically restarted. In the example shown in Fig. 2, if an unbalanced state occurs in which either the fuel or the oxidizer gas is consumed more than the other side, which electrode is in the solution. Even if the electrode is immersed in water, the electrode on the other side is exposed above the liquid surface, so it will not be energized and there is a risk that it will not be possible to immediately replenish the gas. In other words, in the reactive gas generation device shown in FIG. The auxiliary electrode 20 is the changeover switch 2
1 to selectively switch to either the positive or negative terminal side of the power source 19. With such a configuration, if a large amount of hydrogen is consumed among hydrogen and oxygen, for example, by connecting the switch 21 described above in parallel with the oxygen side electrode, the gas pressure on the hydrogen side can be adjusted as shown in the figure. Even if an unbalanced liquid level condition occurs in which only the electrode 17 is submerged below the liquid surface due to a drop in the liquid, the current is maintained between the electrode 17 and the auxiliary electrode 20 that is constantly immersed in the solution. This makes it possible to continue disassembly, allowing only the gas on the consumable side to be supplied to the fuel cell main body through piping. Note that the oxygen generated on the auxiliary electrode 20 side rises in the solution as it is and is dissipated out of the tank. On the other hand, if consumption on the oxygen side is large, the auxiliary electrode 20 described above may be connected in parallel to the electrode on the hydrogen side. Effects of the Invention As described above, according to the present invention, a small-capacity auxiliary reaction gas generator that produces fuel and an oxidizer separately from the reaction gas supply source is installed in the system to supply the reaction gas. During load operation, the reactant gas is supplied from the above-mentioned reactant gas supply source to the fuel cell main body, and when power generation is stopped and no power is generated, the reactant gas consumed by the fuel cell main body is By configuring the fuel cell to be refilled from the reactive gas generator, the small amount of reactive gas consumed in the fuel cell body during non-power generation is automatically replenished from the auxiliary reactive gas generator, eliminating the need for reactive gas. This makes it possible to simplify the maintenance and management of the reactant gas supply source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る燃料電池発電設備の反
応ガス供給系統図、第2図および第3図1:燃料電池本
体、2:反応ガス供給源としての水素ボンベ、3:酸素
ボンベ、4,5;反応ガス供給ライン、10:反応ガス
発生装置、14:電解槽、15.16:ガス発生管、1
7.18:電解用電極、19:電解用電源、20:補助
電極、30:自動調圧機能を備えた反応ガス発生装置。 で J七理pu士山口 息こ易 第2vA 第3図
FIG. 1 is a reaction gas supply system diagram of a fuel cell power generation facility according to an embodiment of the present invention, FIGS. 2 and 3. 1: Fuel cell main body, 2: Hydrogen cylinder as a reaction gas supply source, 3: Oxygen cylinder , 4, 5; reaction gas supply line, 10: reaction gas generator, 14: electrolytic cell, 15.16: gas generation tube, 1
7.18: electrode for electrolysis, 19: power supply for electrolysis, 20: auxiliary electrode, 30: reaction gas generator with automatic pressure adjustment function. De J Shichiri puji Yamaguchi breath easy 2vA Figure 3

Claims (1)

【特許請求の範囲】 1)燃料電池本体と反応ガス供給源とを備え、該反応ガ
ス供給源から反応ガス供給ラインを通じて燃料、酸化剤
の反応ガスを燃料電池本体に供給して発電を行う燃料電
池発電設備において、前記反応ガス供給源とは別個に燃
料および酸化剤を製造する小容量の補助反応ガス発生装
置を分岐ガス供給ライン通じて前記反応ガス供給ライン
に接続し、発電休止等の非発電時には燃料電池本体側で
の反応ガス消費分を前記反応ガス発生装置から補給する
ことを特徴とする燃料電池発電設備の反応ガス供給装置
。 2)特許請求の範囲第1項記載の反応ガス供給装置にお
いて、反応ガス供給ラインに調圧弁を介装するとともに
、分岐ガス供給ラインに第2の調圧弁を介装し、第2の
調圧弁の設定圧を第1の調圧弁の設定圧よりも高くする
とともに、非発電時における電池本体のガス封入圧の下
限とすることを特徴とする燃料電池発電設備の反応ガス
供給装置。 3)特許請求の範囲第1項記載の反応ガス供給装置にお
いて、反応ガス供給ラインに開閉弁を介装するとともに
、反応ガス発生装置を、電解質水溶液を電気分解して水
素および酸素を生成する水電解装置として構成すること
を特徴とする燃料電池発電設備の反応ガス供給装置。 4)特許請求の範囲第3項記載の反応ガス供給装置にお
いて、反応ガス発生装置が電解質水溶液を満たした電解
槽と、該電解槽内にその下部開口端を浸漬して配備され
た水素発生管および酸素発生管と、各発生管内の下部に
設置した電解用の電極と、該電極間に接続された電解用
の電源とからなり、かつ前記水素発生管および酸素発生
管がそれぞれに対応する反応ガス供給ラインに接続配管
されていることを特徴とする燃料電池発電設備の反応ガ
ス供給装置。 5)特許請求の範囲第4項記載の反応ガス供給装置にお
いて、電解槽内における水素、酸素発生管の外方に水素
側、酸素側の電解用電極のいずれかへ選択的に並列接続
される補助電極が配備されていることを特徴とする燃料
電池発電設備の反応ガス供給装置。
[Claims] 1) A fuel that includes a fuel cell main body and a reactive gas supply source, and generates power by supplying fuel and a reactive gas of an oxidizer to the fuel cell main body through a reactive gas supply line from the reactive gas supply source. In battery power generation equipment, a small-capacity auxiliary reactive gas generator that produces fuel and oxidizing agent separately from the reactive gas supply source is connected to the reactive gas supply line through a branch gas supply line, and is connected to the reactive gas supply line in case of emergency such as power generation stoppage. A reactant gas supply device for fuel cell power generation equipment, characterized in that during power generation, the reactant gas consumed on the fuel cell main body side is replenished from the reactant gas generator. 2) In the reaction gas supply device according to claim 1, the reaction gas supply line is provided with a pressure regulating valve, and the branch gas supply line is provided with a second pressure regulating valve, and the second pressure regulating valve A reaction gas supply device for fuel cell power generation equipment, characterized in that the set pressure of the first pressure regulating valve is set higher than the set pressure of the first pressure regulating valve, and the lower limit of the gas filling pressure of the battery body during non-power generation is set. 3) In the reactant gas supply device according to claim 1, an on-off valve is interposed in the reactant gas supply line, and the reactant gas generator is connected to water that electrolyzes an aqueous electrolyte solution to generate hydrogen and oxygen. A reactant gas supply device for fuel cell power generation equipment, characterized in that it is configured as an electrolysis device. 4) In the reactive gas supply device according to claim 3, the reactive gas generating device comprises an electrolytic tank filled with an aqueous electrolyte solution, and a hydrogen generating tube disposed with its lower open end immersed in the electrolytic tank. and an oxygen generating tube, an electrode for electrolysis installed at the lower part of each generating tube, and a power source for electrolysis connected between the electrodes, and the hydrogen generating tube and the oxygen generating tube correspond to each other. A reaction gas supply device for fuel cell power generation equipment, characterized in that it is connected to a gas supply line. 5) In the reaction gas supply device according to claim 4, the hydrogen and oxygen generation pipes in the electrolytic cell are selectively connected in parallel to either the hydrogen side or the oxygen side electrolysis electrodes on the outside. A reactant gas supply device for fuel cell power generation equipment, characterized in that an auxiliary electrode is provided.
JP60027774A 1985-02-15 1985-02-15 Reactant gas supplying device for fuel cell power generating installation Pending JPS61188863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027774A JPS61188863A (en) 1985-02-15 1985-02-15 Reactant gas supplying device for fuel cell power generating installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027774A JPS61188863A (en) 1985-02-15 1985-02-15 Reactant gas supplying device for fuel cell power generating installation

Publications (1)

Publication Number Publication Date
JPS61188863A true JPS61188863A (en) 1986-08-22

Family

ID=12230318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027774A Pending JPS61188863A (en) 1985-02-15 1985-02-15 Reactant gas supplying device for fuel cell power generating installation

Country Status (1)

Country Link
JP (1) JPS61188863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938653A (en) * 1995-07-27 1997-02-10 Nec Corp Production of electrolyzed ionic water and device therefor
JP2009164136A (en) * 2009-04-20 2009-07-23 Toyota Motor Corp Fuel cell system for vehicle and method of controlling the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021235A (en) * 1973-06-29 1975-03-06
JPS58206070A (en) * 1982-05-25 1983-12-01 Motoda Electronics Co Ltd Oxygen-supplying device
JPS59139578A (en) * 1982-12-27 1984-08-10 ユナイテッド・テクノロジ−ズ・コ−ポレ−ション Fuel battery power device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021235A (en) * 1973-06-29 1975-03-06
JPS58206070A (en) * 1982-05-25 1983-12-01 Motoda Electronics Co Ltd Oxygen-supplying device
JPS59139578A (en) * 1982-12-27 1984-08-10 ユナイテッド・テクノロジ−ズ・コ−ポレ−ション Fuel battery power device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938653A (en) * 1995-07-27 1997-02-10 Nec Corp Production of electrolyzed ionic water and device therefor
JP2009164136A (en) * 2009-04-20 2009-07-23 Toyota Motor Corp Fuel cell system for vehicle and method of controlling the same

Similar Documents

Publication Publication Date Title
KR100456198B1 (en) Hydrogen fuel replenishment process and system
US8329020B2 (en) Method of shutting down water electrolysis system
KR100776353B1 (en) Stand alone energy system using hydrogen energy
US20050183948A1 (en) Apparatus and method for reducing instances of pump de-priming
JPS61263065A (en) Fuel cell system
WO2001038608A1 (en) Water electrolyzing device
NO844603L (en) BATTERY COMPREHENSIVE REACTIVE METAL AND CONTINUOUS SUPPLY OF CATODO REACTANT
CN112736270A (en) Proton conduction SOEC and oxygen ion conduction SOFC combined device
KR102656624B1 (en) Hydrogen Generator, Hydrogen Generation System and Hydrogen Supply System for Generator Cooling
US3161546A (en) Continuous feed primary battery
JPS61188863A (en) Reactant gas supplying device for fuel cell power generating installation
AU4961293A (en) Procedure for controlling pressure in electrolysis apparatus and electrolysis apparatus for producing hydrogen and oxygen
JP5367673B2 (en) Control method of high pressure water electrolysis system
EP1181398B1 (en) Pressure control system in a water electrolytic cell
JP2020190021A (en) Hydrogen/oxygen generator
JP2006299323A (en) Water electrolytic device
KR100660176B1 (en) Hydrogen Generaton by electroysis of water
JP3791477B2 (en) Water electrolysis equipment
JP3228883B2 (en) Operating method of hydrogen / oxygen generator and hydrogen / oxygen generator used for the same
JPH07242402A (en) Water-electrolysis ozonizer
JPS59163770A (en) Method of producing oxygen
JPS6223808Y2 (en)
CN219059147U (en) Oxyhydrogen generating equipment for alkali liquor electrolysis
KR20040009653A (en) Apparatus for fuel supply in fuel cell
JP2002028655A (en) Electrolytic water feed method to electrolytic bath for ozone generation and ozone generation device