JPS61188487A - Production of coke - Google Patents

Production of coke

Info

Publication number
JPS61188487A
JPS61188487A JP2760685A JP2760685A JPS61188487A JP S61188487 A JPS61188487 A JP S61188487A JP 2760685 A JP2760685 A JP 2760685A JP 2760685 A JP2760685 A JP 2760685A JP S61188487 A JPS61188487 A JP S61188487A
Authority
JP
Japan
Prior art keywords
coal
coke
molded
massively
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2760685A
Other languages
Japanese (ja)
Other versions
JPH0689334B2 (en
Inventor
Tokuji Yamaguchi
山口 徳二
Katsuaki Kobayashi
小林 勝明
Katsuaki Okuhara
奥原 捷晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2760685A priority Critical patent/JPH0689334B2/en
Publication of JPS61188487A publication Critical patent/JPS61188487A/en
Publication of JPH0689334B2 publication Critical patent/JPH0689334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To obtain coke having excellent coke strength and high-temperature properties without use of an expensive caking coal, by carbonizing in a coke oven a specific massively molded coal as it is or a mixture of a powder obtained by breaking the specific massively molded coal with a coarse powder coal fraction separated from a feed coal. CONSTITUTION:The moisture of a feed coal is adjusted to 6wt% in an atmosphere having controlled O2 concentration. The coal is separated into a finely divided coal fraction and a coarse powder coal fraction by means of a sieve or air classification. The finely divided coal fraction is, if necessary, mixed with a carbonaceous substance having a low utility value and press molded into a massively molded coal without use of a binder in an atmosphere having a controlled O2 concentration. The massively molded coal is either carbonized in a coke oven as it is, or broken, mixed with the coarse powder coal fraction obtained by the air classification and carbonized in a coke oven, thereby to obtain a high-quality coke having an excellent cold strength, a coke strength DI<150>15 of 1.7-2.6 and a strength after reaction with CO2 of 10-13 and a uniform optical anisotropy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコークス製造法に関し、特にコークス製造時に
おける乾燥炭装入法および劣質炭、非粘結炭等未利用炭
素物質の使用法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coke manufacturing method, and particularly to a method for charging dry coal during coke manufacturing and a method for using unused carbon materials such as poor quality coal and non-caking coal. It is.

〔従来の技術〕[Conventional technology]

高炉用コークスは冷間強度が高いことと共に、熱間にお
けるCO2反応劣化の小さいことが要求されている。
Blast furnace coke is required to have high cold strength and low CO2 reaction deterioration during hot heating.

しかし、高炉用コークスを製造する良質原料炭は現在お
よび将来においても不足であシ、また高価なものとなっ
ている。
However, high-quality coking coal for producing coke for blast furnaces is currently and in the future in short supply, and is also expensive.

このためコークス業界では種々の装入炭の事前処理技術
を開発し、劣質原料炭あるいは非粘結炭等、未利用炭素
物質を使用し良質のコークスを製造しようとしている。
For this reason, the coke industry has developed various pre-treatment techniques for charged coal, and is attempting to produce high-quality coke using unused carbon materials such as inferior coking coal or non-caking coal.

これら事前処理技術の1つとして装入炭を乾燥処理して
コークス業界ヲ回転る乾燥炭装入法がある。
One of these pre-treatment techniques is the dry coal charging method, which is used in the coke industry by drying the charged coal.

この乾燥炭装入法を装入炭に適用すると省エネルギーと
ともにコークスの冷間強度に対し効果を発揮する。
When this dry coal charging method is applied to charged coal, it is effective in saving energy and improving the cold strength of coke.

しかし、CO2反応劣化に対しては必ずしも対応。However, it does not necessarily respond to CO2 reaction deterioration.

しきれていない。I can't finish it.

このことは装入炭水分を加熱によって減少させることに
よって、装入炭中の微粉炭部分が風化を受は易くなり、
コークス化した場合に良質炭に生成する光学的異方性組
織が後退現象を起しCO2に反応され易い組織を形成す
るためと考えられる。
This means that by reducing the moisture content of the charged coal through heating, the pulverized coal portion in the charged coal becomes more susceptible to weathering.
This is thought to be because the optically anisotropic structure that is generated in high-quality coal when coked causes a regression phenomenon, forming a structure that is easily reacted with CO2.

この良質炭の光学的異方性組織が後退現象を起すことは
劣質原料炭あるいは非粘結炭の利用をCO2反応劣化の
立場から困難にする。
This regression of the optically anisotropic structure of good quality coal makes it difficult to use poor quality coking coal or non-caking coal from the standpoint of CO2 reaction deterioration.

従来の乾燥炭装入法は前述の乾燥による微粉炭の風化防
止対策あるいは光学的異方性組織の制御に関する検討は
全くなされずつぎに述べるように微粉炭の発塵防止にの
み視点が置れていた。すなわち、 (、)  石炭を乾燥処理して発生する粉塵を集めて、
これに重質油を添加し1〜3nに造粒しこれを乾燥炭に
混合する方法(%公昭49−28241号。
In the conventional dry coal charging method, no consideration was given to preventing weathering of the pulverized coal by drying or controlling the optically anisotropic structure, as described below, and the focus was only on preventing dust generation from the pulverized coal. was. In other words, (,) the dust generated by drying coal is collected,
A method of adding heavy oil to this, granulating it to 1 to 3N, and mixing it with dry coal (% Publication No. 49-28241).

1974、7.25 ’)。1974, 7.25’).

(b)  石炭を乾燥処理し微粉炭を粗粒子炭に分離し
微粉炭にタールを添加してベレットあるいは圧縮成製し
、粗粒子炭と混合し、装入炭とする方法(特開昭55−
48284号、 1980,4.5 )。
(b) A method of drying coal to separate pulverized coal into coarse granular coal, adding tar to the pulverized coal to form pellets or compression, and mixing with coarse granular coal to make charging coal (Japanese Patent Laid-Open No. 55 −
No. 48284, 1980, 4.5).

これらの(、)および(b)の方法は乾燥処理し、発塵
する微粉炭部分を分離しこれに重油あるいはタールを添
加して塊成化し発塵を防止するものであるが重油あるい
はタールを使用するためコークスの製造コストを高くシ
、好ましくない。
These methods (,) and (b) involve drying, separating the part of the pulverized coal that generates dust, and adding heavy oil or tar to it to agglomerate it and prevent dust generation. The use of coke increases the cost of producing coke, which is not desirable.

(c)他方、微粉炭と結合剤を使用することなく平滑ロ
ールでもって塊成化する方法として特開昭56−869
93号がある。
(c) On the other hand, as a method of agglomeration using smooth rolls without using pulverized coal and a binder, JP-A No. 56-869
There is No. 93.

この方法は前述の(a)および(b)と異なシ重油ある
いはタールを微粉炭に添加しないため経済的である。し
かし石炭の風化防止に対する配慮がない。
This method is economical because heavy oil or tar, which is different from the above-mentioned (a) and (b), is not added to the pulverized coal. However, there is no consideration given to preventing coal from weathering.

このため装入炭の粘結性の低下あるいは微粉炭を塊成化
した塊成炭部分のコークスに均質な光学的異方性組織を
発達させることが不十分になシCO2反応劣化に対して
必ずしも対応されていない。
As a result, the caking property of the charged coal decreases, or the coke in the agglomerated coal portion, which is made by agglomerating pulverized coal, is not sufficiently developed with a homogeneous optically anisotropic structure. Not necessarily supported.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来技術に見られるように乾燥炭装入法におい
て、微粉炭部分の発塵防止にとどまらず装入炭の風化防
止および微粉炭部分に高価な粘結剤を使用することなく
コークスの光学的異方性組織を均質化し、高温性状の優
れた高品位コークスを製造することを目的としている。
In the dry coal charging method as seen in the prior art, the present invention not only prevents dust generation in the pulverized coal portion, but also prevents weathering of the charged coal and allows coke to be formed without using expensive caking agents in the pulverized coal portion. The aim is to homogenize the optically anisotropic structure and produce high-grade coke with excellent high-temperature properties.

(問題点を解決するための手段、作用)本発明は高価な
粘結材を使用することなく、酸素濃度を抑制した雰囲気
下好ましくは無酸素状態でもって装入炭水分を6%以下
にし、篩あるいは気流分級でもって微粉炭部分を分離し
、分離した倣、粉炭部分をさらに酸素濃度を抑制した雰
囲気下、好ましくは無酸化雰囲気で加圧成型し塊成炭と
して、との塊成炭を気流分級した粗粒子炭と混合し、乾
燥装入炭とするものである。
(Means and effects for solving the problem) The present invention reduces the moisture content of charged coal to 6% or less in an atmosphere with a suppressed oxygen concentration, preferably in an oxygen-free condition, without using an expensive caking agent. The pulverized coal portion is separated by a sieve or air classification, and the separated pulverized coal portion is further pressure-molded in an atmosphere with suppressed oxygen concentration, preferably in a non-oxidizing atmosphere, to produce agglomerated coal. It is mixed with air-classified coarse particle coal to form dry charged coal.

乾燥後分離された微粉炭部分には、高炉用コークスの製
造を目的とした装入炭であるならば通常、高石炭化度良
質原料炭から低石炭化度原料炭までの範囲の活性成分に
富んだ石炭が混在することになる。
The pulverized coal separated after drying usually contains active components ranging from high quality coking coal to low coking coal if the charging coal is intended for the production of coke for blast furnaces. Rich coal will be mixed in.

この微粉炭部分はまた石炭の風化の面からみると原料炭
の輸送等によってすでに微粉化し、空気中の酸素でもっ
て風化が進行している部分と選炭工程の粉砕処理によっ
て発生した部分から構成されている。
From the perspective of coal weathering, this pulverized coal portion consists of a portion that has already been pulverized by transportation of coking coal and is undergoing weathering due to oxygen in the air, and a portion generated by the pulverization process in the coal preparation process. ing.

このような多種の微粒子炭は酸素の存在する雰囲気下で
もって加熱し乾燥処理を行いそのままの状態でコークス
化するとコークスの光学的異方性組織はその石炭の持り
ている固有の性質によりて大部分は粒子単位で独立して
コークスの光学的組織を形成する。
When these various types of fine particle coal are heated and dried in an atmosphere containing oxygen and turned into coke in that state, the optically anisotropic structure of the coke is due to the unique properties of the coal. For the most part, the optical structure of coke is formed independently in particle units.

しかし、微粉炭部分に石炭・石油系の芳香族性に富んだ
タール、ピッチを添加し塊成化すると石炭粒子とタール
−ピッチが相溶反応を起しコークスの光学的異方性組織
は発達する。しかし前述の通bタール、ピッチを使用す
ることはタール、ピッチが高価なため、コークスの製造
コストを高め好ましくない。
However, when coal/petroleum-based highly aromatic tar and pitch are added to the pulverized coal portion and agglomerated, a compatibility reaction occurs between the coal particles and the tar-pitch, and the optically anisotropic structure of the coke develops. do. However, the use of the above-mentioned tar and pitch is not preferable because it increases the production cost of coke because tar and pitch are expensive.

他方、微粉炭を単に加圧成型し、塊成炭とする方法は、
塊成化処理をしない場合に比較すると、石炭粒子相互の
コークス化過程における相溶反応は進行するが、塊成炭
中に酸素が入るために相溶反応が小さくなシ、コークス
の光学的異方性組織の均質化を阻害することになる。
On the other hand, the method of simply pressurizing pulverized coal to make lump coal is
Compared to the case without agglomeration treatment, the compatibility reaction between coal particles during the coking process progresses, but the compatibility reaction is small due to oxygen entering the agglomerated coal, and the optical difference of coke is small. This will inhibit the homogenization of the tropic tissue.

他方、粗粒子炭部分においても酸素の存在する雰囲気下
で加熱し乾燥すると風化作用を起す。
On the other hand, if the coarse particle coal portion is heated and dried in an atmosphere containing oxygen, weathering will occur.

そこで本発明は酸素濃度を下げた雰囲気下、好ましくは
無酸素状態で乾燥処理と微粉炭の分離を行い、さらに酸
素濃度を下げた、好ましくは無酸素雰囲気で微粉炭を粘
結剤なしに加圧成型して塊成炭を製造する点に特徴があ
る。
Therefore, the present invention performs drying treatment and separation of pulverized coal in an atmosphere with a reduced oxygen concentration, preferably an oxygen-free condition, and further adds pulverized coal without a binder in an oxygen-free atmosphere with a reduced oxygen concentration. It is characterized by producing lump coal by pressure forming.

このように無酸素状態で製造された粗粒子炭風化の影響
が小さいため粘結性は低下せず、さらには塊成炭は酸素
の存在が減少す名ため、良質な原料炭から発生した低分
子物質が低石炭化度石炭を改質する相溶反応が進行し、
モザイク状の光学的異方性組織を形成する。
Coarse coal produced under anoxic conditions has little effect on weathering, so its caking properties do not deteriorate, and since agglomerated coal is known to have a reduced presence of oxygen, A compatible reaction in which molecular substances modify low-coalization coal progresses,
Forms a mosaic-like optically anisotropic structure.

他方高石炭化度の良質原料炭から生成する繊維状あるい
は葉片状組織は低石炭化度炭から発生する脂肪族側鎖や
含酸素化合物などKよって光学的異方性組織は後退し、
モザイク状組織となる。
On the other hand, the optically anisotropic structure of the fibrous or leaf-like structure produced from high-quality coking coal with a high degree of coalification is regressed by K, such as aliphatic side chains and oxygen-containing compounds generated from coal with a low degree of coalification.
It becomes a mosaic-like structure.

このように本発明は装入炭の風化防止および今迄の乾燥
炭の発塵防止の手段としての微粉炭の塊成化にとどまら
ず、微粉炭の改質を積極的にしかも安価で行うことので
きる極めて重要なものである。
As described above, the present invention is not limited to the agglomeration of pulverized coal as a means of preventing weathering of charged coal and dust generation of dry coal, but also actively and inexpensively reforming pulverized coal. This is an extremely important thing that can be done.

さらには、このような微粉炭塊成化によって粘結性が回
復するので場合によっては劣質炭、非粘結炭、あるいは
粉コークス等を混合することができる。即ち利用価値の
値は、炭素物質である。劣質炭、非粘結炭、粉コークス
、半成コークス、集塵微粉炭、沈澱微粉コークス、ター
ルスラジ2石油コークス、木炭粉などを有効利用するこ
とができる。
Furthermore, since the caking property is restored by such agglomeration of pulverized coal, inferior quality coal, non-caking coal, coke powder, etc. can be mixed in depending on the case. That is, the value of utility value is carbon material. Low quality coal, non-caking coal, coke powder, semi-coke, dust-collected pulverized coal, precipitated pulverized coke, tar sludge 2 petroleum coke, charcoal powder, etc. can be effectively used.

(実施例) 以下本発明を実施例に基づいて詳細に説明する。(Example) The present invention will be described in detail below based on examples.

装入炭は表1に示す性状を有するものを使用した。The charging coal used had the properties shown in Table 1.

表  1 実施例1 表1の装入炭をN2雰囲気下140℃の乾燥機で装入炭
水分が5%になるまで乾燥した後、篩を用いて+0.5
 am部分の粗粒子炭と−0,5msの微粉炭に分離し
た。分離された微粉炭部分をN2で空気を置換したロー
ルコンノククターを用い、無酸素状態で厚み3.0±0
.2朋の板状の塊成炭とし、この塊成炭を解砕して3〜
10龍の粒度とした。
Table 1 Example 1 The charged coal in Table 1 was dried in a dryer at 140°C under N2 atmosphere until the moisture content of the charged coal became 5%, and then it was sieved to +0.5%.
It was separated into coarse particle coal of am part and pulverized coal of -0.5ms. The separated pulverized coal was heated to a thickness of 3.0±0 in an oxygen-free condition using a roll connoctor in which the air was replaced with N2.
.. The lump coal is made into 2 pieces of plate-shaped lump coal, and this lump coal is crushed to produce 3~
The particle size was 10 dragons.

解砕した3〜10朋の塊成炭を前記+0.5順の粗粒子
炭と混合し、本発明の乾燥装入炭を調製した。
Dry charged coal of the present invention was prepared by mixing 3 to 10 pieces of crushed agglomerated coal with the coarse particle coal of +0.5 order.

調製された乾燥装入炭を高さ450mttt、長さ60
0Il!I11幅4301mの亜鉛鉄板の缶に装入密度
・  0.82で装入し、この缶を電気炉に装入し、炭
柱温度が1050℃に昇温してから1時間保定して乾留
しコークスを製造し、D115  およびC3R(C0
2反応後強度以下同じ)を測定した結果84.1および
50を得た。
The prepared dry charging coal was heated to a height of 450 mttt and a length of 60 mttt.
0Il! The coal was charged into a galvanized iron plate can with a width of 4301 m at a charging density of 0.82, and the can was charged into an electric furnace, and after the coal column temperature rose to 1050°C, it was held for 1 hour and carbonized. Produce coke, D115 and C3R (C0
After two reactions, the strength (the same below) was measured and the results were 84.1 and 50.

実施例2、 実施例1と同様にして一〇、 5 龍の微粉炭部分と+
 0.5 tn*の粗粒子炭部分に分離した後、微粉炭
部分に、表2に示す性状を有する非粘結炭を−0,3龍
に粉砕し20重量多混合し実施例1と同様にロールコン
・臂りターを用い無酸素状態で塊成炭を製造した。この
塊成炭を3〜1011IKに解砕した後十0.5 mg
の粗粒子炭と混合し、実施例1と同一条件でコークスを
製造した。
Example 2, 10, 5 Dragon's pulverized coal part and +
After separating into the coarse particle coal part of 0.5 tn*, non-caking coal having the properties shown in Table 2 was crushed to -0.3 weight and mixed with 20% by weight into the pulverized coal part, and the same as in Example 1 was added. Agglomerated coal was produced in an oxygen-free condition using a roll-con/rubber. After crushing this lump coal into 3 to 1011 IK, 10.5 mg
coke was produced under the same conditions as in Example 1.

このコークスのDI   およびC8Rを測定した結果
82.5および45を得た。
The DI and C8R of this coke were measured and found to be 82.5 and 45.

表  2 比較例1 実施例1の装入炭を用い空気中で140℃で水分5%ま
で乾燥し、乾燥装入炭を調製し、装入密度0.75でコ
ークスを製造し、DI   およびC8Rを測定した結
果81.5および37を得た。
Table 2 Comparative Example 1 The charged coal of Example 1 was dried in air at 140°C to a moisture content of 5% to prepare dry charged coal, and coke was produced with a charging density of 0.75, and DI and C8R The results of measurement were 81.5 and 37.

比較例2゜ 実施例1と同一条件で−0,5mmの微粉炭部分と+ 
0.5 mWの粗粒子炭部分に分離した後、微粉炭をロ
ールコンパクタ−で塊成炭とした後解砕して3〜10m
mの解砕炭とした後粗粒子炭部分と混合し、乾燥装入炭
とした。
Comparative Example 2゜Under the same conditions as Example 1, -0.5mm pulverized coal portion and +
After separating into coarse particles of 0.5 mW, the pulverized coal is made into agglomerated coal using a roll compactor, and then crushed into 3 to 10 m
The crushed coal was mixed with coarse particle coal to obtain dry charging coal.

この乾燥装入炭を装入密度0.82でもって、実施例1
と同様にしてコークスを製造し、DI   およびC8
Rを測定した結果、82.2および40を得た。
Example 1 This dry charged coal was prepared with a charging density of 0.82.
Coke is produced in the same manner as DI and C8
As a result of measuring R, 82.2 and 40 were obtained.

〔発明の効果〕〔Effect of the invention〕

以上実権例および比較例に示したようK、本発明の方法
によると、コークス強度DI  は1.7〜2.6と向
上し、CSRは10〜13と著しい上昇を示した。
As shown in the practical examples and comparative examples above, according to the method of the present invention, the coke strength DI was improved to 1.7 to 2.6, and the CSR was significantly increased to 10 to 13.

また、利用価値の低い非粘結炭を使用しても、通常の水
分5%の乾燥炭装入法よシ良質のコークスを製造するこ
とができる。
Furthermore, even if non-caking coal, which has low utility value, is used, it is possible to produce high-quality coke compared to the usual method of charging dry coal with a moisture content of 5%.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素濃度を抑制した雰囲気下で装入炭水分を6重
量%以下に調製し、微粉炭と粗粒子炭部分に分離し、分
離した微粉炭部分をさらに酸素濃度を抑制した雰囲気中
で結合剤なしに加圧成型し塊成炭とした後、そのままあ
るいは解砕して、前記粗粒子部分と混合し、コークス炉
に装入して乾留することを特徴とするコークス製造法。
(1) Adjust the moisture content of the charged coal to 6% by weight or less in an atmosphere that suppresses oxygen concentration, separate it into pulverized coal and coarse coal, and then separate the separated pulverized coal in an atmosphere that suppresses oxygen concentration. A method for producing coke, which comprises pressurizing the coal without using a binder to form lump coal, which is then mixed with the coarse particles either as it is or after being crushed, and then charged into a coke oven and carbonized.
(2)微粉炭部分に利用価値の低い炭素物質を混合し塊
成化することを特徴とする特許請求の範囲第(1)項記
載のコークス製造法。
(2) The coke manufacturing method according to claim (1), characterized in that a carbon material with low utility value is mixed into the pulverized coal portion and agglomerated.
JP2760685A 1985-02-15 1985-02-15 Coke manufacturing method Expired - Fee Related JPH0689334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2760685A JPH0689334B2 (en) 1985-02-15 1985-02-15 Coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2760685A JPH0689334B2 (en) 1985-02-15 1985-02-15 Coke manufacturing method

Publications (2)

Publication Number Publication Date
JPS61188487A true JPS61188487A (en) 1986-08-22
JPH0689334B2 JPH0689334B2 (en) 1994-11-09

Family

ID=12225582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2760685A Expired - Fee Related JPH0689334B2 (en) 1985-02-15 1985-02-15 Coke manufacturing method

Country Status (1)

Country Link
JP (1) JPH0689334B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156382A (en) * 2006-12-20 2008-07-10 Nippon Steel Corp Method for pretreatment of high-temperature coal
KR101019438B1 (en) 2002-02-07 2011-03-07 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 Production of metallurgical coke
JP2013047297A (en) * 2011-08-29 2013-03-07 Nippon Steel & Sumitomo Metal Corp Agglomeration apparatus
CN111029576A (en) * 2019-11-12 2020-04-17 山西沁新能源集团股份有限公司 Method for blending crystalline carbon precursor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019438B1 (en) 2002-02-07 2011-03-07 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 Production of metallurgical coke
JP2008156382A (en) * 2006-12-20 2008-07-10 Nippon Steel Corp Method for pretreatment of high-temperature coal
JP2013047297A (en) * 2011-08-29 2013-03-07 Nippon Steel & Sumitomo Metal Corp Agglomeration apparatus
CN111029576A (en) * 2019-11-12 2020-04-17 山西沁新能源集团股份有限公司 Method for blending crystalline carbon precursor
CN111029576B (en) * 2019-11-12 2023-09-29 山西沁新能源集团股份有限公司 Method for blending crystalline carbon precursor coal

Also Published As

Publication number Publication date
JPH0689334B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US10773962B2 (en) Preparation method for binder-free, coal-based, briquetted activated carbon
JP3027084B2 (en) Method for producing molded coke for metallurgy
CN110241273A (en) A kind of iron coke and preparation method thereof using west place in Hubei iron ore and bottle coal preparation
US3960543A (en) Process of producing self-supporting briquettes for use in metallurgical processes
KR100276344B1 (en) Smelting reduction process
JPS61188487A (en) Production of coke
RU2713143C1 (en) Carbonaceous reducing agent for production of technical silicon and method of its production
EP0070321B1 (en) Process for preparing carbonaceous material for use in desulfurization
US4181502A (en) Method of producing form coke
US4824438A (en) Process for producing smokeless, cured fuel briquettes
JPS61188488A (en) Production of coke
DE4241245A1 (en) Calcium carbide prodn. from calcium oxide and carbonaceous cpd. - derived from crushed plastics waste in presence of granular calcium oxide by pyrolysis and calcination
US4288293A (en) Form coke production with recovery of medium BTU gas
SU920066A1 (en) Method of producing lump coke from unsintering or weakly sintering coal
JPH0259196B2 (en)
SU852952A1 (en) Method of producing iron ore carbon-containing briquettes
RU2771203C1 (en) Method for preparation of charge for the production of silicon carbide
JPS5891024A (en) Manufacture of fully burden moldings for calcium carbide
KR102288801B1 (en) Method of manufacturing coke
JPH0292815A (en) Production of activated coke
JPH0948977A (en) Production of blast furnace coke
JPH01317113A (en) Production of activated carbon
JPS6191286A (en) Control of optically anisotropic structure of coke
JPH10265788A (en) Production of coal briquette containing iron mill dust
JPH0421511A (en) Production of activated carbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees