JPS6118796A - Preparation of adenosine 5'-triphosphate - Google Patents

Preparation of adenosine 5'-triphosphate

Info

Publication number
JPS6118796A
JPS6118796A JP14014284A JP14014284A JPS6118796A JP S6118796 A JPS6118796 A JP S6118796A JP 14014284 A JP14014284 A JP 14014284A JP 14014284 A JP14014284 A JP 14014284A JP S6118796 A JPS6118796 A JP S6118796A
Authority
JP
Japan
Prior art keywords
atp
adp
adenosine
beta
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14014284A
Other languages
Japanese (ja)
Inventor
Kenjiro Hattori
憲治郎 服部
Keiko Takahashi
高橋 圭子
Keiichi Sasao
笹尾 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP14014284A priority Critical patent/JPS6118796A/en
Publication of JPS6118796A publication Critical patent/JPS6118796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To obtain the titled compound [adenosine triphosphate (ATP)] industrially and advantageously in high yield with ease, by reacting adenosine 5'-diphosphate (ADP) with beta-cyclodextrin (beta-CD) in the presence of a magnesium salt in an aqueous solution. CONSTITUTION:Adenosine 5'-diphosphate is reacted with beta-cyclodextrin (beta-CD) in a molar amount of preferably 0.1-2 times that of the ADP and if necessary creatine in a molar amount of usually 0.1-10 times that of the ADP in the presence of a magnesium salt, e.g. magnesium chloride, in an aqueous solution, e.g. phosphoric acid buffer solution of 7pH, usually at 20-50 deg.C for 20-120hr to give the aimed ATP.

Description

【発明の詳細な説明】 [発明の目的] 産’J J−、@木」L之責一 本発明は、生体反応において、また工業的に重要なアデ
ノシン5′−三リン酸の水溶液中での新規な製造方法に
関する。
[Detailed Description of the Invention] [Object of the Invention] The present invention is directed to the production of adenosine 5'-triphosphate in aqueous solution, which is important in biological reactions and industrially. This invention relates to a new manufacturing method.

従来の技術 アゾ/シン5′−三リン酸(A T P )は生体内に
おいて、アゾ/シン5′−二リン酸(A D P )と
リン酸基との結合により生成することがよく知られてお
り、その代表的なシステムとして光リン酸化、酸化的リ
ン酸化、ベントースリン酸回路等がある。
Prior Art It is well known that azo/syn 5'-triphosphate (ATP) is produced in vivo by the combination of azo/syn 5'-diphosphate (ADP) and a phosphate group. Typical systems include photophosphorylation, oxidative phosphorylation, and the bentose phosphate cycle.

近年、この高エネルギー化合物であるATPをピリジン
等の非水溶液中でカルバミルホスフェート又はメルカプ
トアセテートとブロム酸化剤を用いてADPから有数合
成する方法(T h、W 1eland。
In recent years, one of the most popular methods for synthesizing this high-energy compound, ATP, from ADP using carbamyl phosphate or mercaptoacetate and a bromine oxidizing agent in a non-aqueous solution such as pyridine (Th, W 1eland).

E 、 B 1iuenlein、 A rgeur、
 Chem+ 1nternal、 E dit、 7
89.3(1968))やバイオリアクターの一環とし
て酵素を用いるATP再生のモデルシステムの開発等多
くの提案がなされている(今堀、近藤。
E, B 1iuenlein, A rgeur,
Chem+ 1internal, Edit, 7
89.3 (1968)) and the development of a model system for ATP regeneration using enzymes as part of a bioreactor (Imahori, Kondo, et al.).

中島、岩崎、特開昭58−209990.村田、木村。Nakajima, Iwasaki, JP-A-58-209990. Murata, Kimura.

蛋白質、核酸、酵素 26 915  (1981))
Proteins, Nucleic Acids, Enzymes 26 915 (1981))
.

しかし、有機合成による方法では収率が低いうえに非水
溶液を使用すため分離、精製に煩雑な工程を要し、また
酵素によるATP再生システムでは、温度、pH等の反
応条件を厳しく管理する必要があり、生産性も低いとい
う問題があった。
However, methods based on organic synthesis have low yields and require complicated separation and purification steps due to the use of non-aqueous solutions, and enzymatic ATP regeneration systems require strict control of reaction conditions such as temperature and pH. There was a problem of low productivity.

発明が  しようとする間 、弘 本発明は、従来のような非水溶液や酵素を要せずに、水
溶液中でATPをADPから簡便かつ高い収率で工業的
に有利に製造する方法を提供することを目的とする。
While the invention is intended, the present invention provides an industrially advantageous method for producing ATP from ADP in a simple and high yield in an aqueous solution without requiring conventional non-aqueous solutions or enzymes. The purpose is to

[発明の構成] 司題点を肖、決するための手段 β−シクロデキストリン(以下、β−CDという。)は
、疎水性の空洞を有し、かつ水溶液中で種々の化合物を
包接する能力を有する物質として知られ、この性質を利
用して種々の有機反応が行われている。本発明者らは、
このβ−17cDに着目し、水溶液中でマグネシウム塩
の存在下ADPと作用せしめることによりATPが生成
することを見出し、本発明に至った。
[Structure of the invention] Means for determining the problem β-cyclodextrin (hereinafter referred to as β-CD) has a hydrophobic cavity and the ability to include various compounds in an aqueous solution. Various organic reactions are carried out using this property. The inventors
Focusing on this β-17cD, it was discovered that ATP was generated by reacting it with ADP in the presence of a magnesium salt in an aqueous solution, leading to the present invention.

即ち、本発明によるATPの製造方法は、ADPを水溶
液中でマグネシウム塩の存在下β−シクロデキストリン
と作用せしめることを特徴とするもので、このATPの
生成に要する時間及び生成率はクレアチンの存在により
促進される。
That is, the method for producing ATP according to the present invention is characterized by allowing ADP to react with β-cyclodextrin in the presence of a magnesium salt in an aqueous solution, and the time required for producing ATP and the production rate are determined by the presence of creatine. facilitated by

本発明において原料としてのADPは、微量のAMTや
ATPを含有する市販品も好適に使用することができる
。また、β−CDは上記疎水性の空洞の存在が必須であ
り、例えば反応系にシクロヘキサノールを添加するとβ
−CDと即座にコンプレックスを形成し、上記包接効果
に伴う反応を阻害し、ATPの生成は全く認められなく
なる。
As ADP as a raw material in the present invention, commercially available products containing trace amounts of AMT and ATP can also be suitably used. In addition, β-CD requires the presence of the above-mentioned hydrophobic cavity, and for example, when cyclohexanol is added to the reaction system, β-CD
- It immediately forms a complex with CD, inhibiting the reaction associated with the above-mentioned inclusion effect, and no ATP production is observed at all.

塩化マグネシウム、臭化マグネシウム、硫酸マグネシウ
ム、リン酸マグネシウム、過塩素酸マグネシウム等のマ
グネシウム塩の添加は、反応初期におけるADPとの相
互作用及び生成後のATPの安定化にとって重要である
。即ち、反応初期においては、ADP−β−CD系にマ
グネシウム塩が存在しない場合にはA D P、A T
 Pの生成が殆ど起こらず、また反応後生酸したATP
の収率が減少する。一方、クレアチンは、高エネルギー
リン酸結合を形成しうる物質として知られ、その添加に
より、ATPの生成時間及び生成率が向上するが、AD
Pに刻する基準添加量の 0.1〜10倍モルの範囲で
は、生成率に影響がなく、触媒的に早いリサイクルをす
ると推定される。
Addition of magnesium salts such as magnesium chloride, magnesium bromide, magnesium sulfate, magnesium phosphate, and magnesium perchlorate is important for interaction with ADP in the early stage of the reaction and for stabilizing ATP after generation. That is, in the early stage of the reaction, if there is no magnesium salt in the ADP-β-CD system, ADP, AT
Almost no P is produced, and ATP is produced as a raw acid after the reaction.
yield decreases. On the other hand, creatine is known as a substance that can form high-energy phosphate bonds, and its addition improves the production time and production rate of ATP, but AD
It is estimated that in the range of 0.1 to 10 times the standard addition amount in terms of moles, the production rate is not affected and recycling is catalytically rapid.

本発明において、ADPからATPを製造するには、A
DPepH7のリン酸緩衝液中、上記マグネシウム塩の
存在下、20〜50℃、20〜120時間、β−CDと
作用させればよく、クレアチンの添加により反応時間の
短縮及び生成率の向上を図ることができる。
In the present invention, to produce ATP from ADP, A
It is sufficient to react with β-CD in a phosphate buffer of DPe pH 7 in the presence of the above magnesium salt at 20 to 50°C for 20 to 120 hours, and the addition of creatine aims to shorten the reaction time and improve the production rate. be able to.

ADPの濃度は特に制限されないが、0.25〜250
mMの範囲が適当である。ADPに則するβ−CDの使
用割合は0.01〜4倍モル、好ましくは0.1〜2倍
モルの範囲である。0.01倍モルより低濃度では、A
TP生成の誘導期間が長くなり、急激にATPの増加及
び減少が起こる。
The concentration of ADP is not particularly limited, but is between 0.25 and 250.
A range of mM is suitable. The usage ratio of β-CD based on ADP is in the range of 0.01 to 4 times the mole, preferably 0.1 to 2 times the mole. At concentrations lower than 0.01 times molar, A
The induction period for TP production becomes longer, and rapid increases and decreases in ATP occur.

一方、4倍モルより高濃度では、ATPの生成及び減少
もゆっくりとなる。また、マグネシウム塩の濃度は、A
TPの生成量には殆ど影響しないが、前述の如< AT
Pの減少防止のため、ADPに対して0.1〜50倍モ
ル添加するのが好ましい。
On the other hand, at a concentration higher than 4 times molar, the production and decrease of ATP are also slow. Also, the concentration of magnesium salt is A
Although it has little effect on the amount of TP produced, as mentioned above,
In order to prevent a decrease in P, it is preferable to add 0.1 to 50 times the mole of ADP.

反応混合物よりATPを単離するには、例えば液体高速
クロマトグラフィー、薄層クロマトグラフィー(TLC
)により分離精製し、ナトリウム等のアルカリ塩水溶液
中に保存する。
In order to isolate ATP from the reaction mixture, for example, liquid high performance chromatography, thin layer chromatography (TLC) can be used.
) and stored in an aqueous solution of alkaline salts such as sodium.

また、工業的には、通常のイオン交換樹脂を用いるこ、
とができる。例えば、Dou+ex IX4  (ギ酸
型)を用い、ギ酸濃度及びそのアンモニウム塩濃度を上
げることよりAMP  ADP ATPをそれぞれ分離
精製する。
In addition, industrially, it is possible to use ordinary ion exchange resins.
I can do that. For example, using Dou+ex IX4 (formic acid type), AMP, ADP, and ATP are separated and purified by increasing the concentration of formic acid and its ammonium salt.

制−■ ATP生成の反応機構は、 1)  2ADP  ≠ A M P +A TP2)
ADP十Pi # ATP のいずれの過程を経るか不明であるが、疎水性空洞を有
するβ−CDとADP−Mg結合体との相互作用により
、水溶液中でATPが生成する。
Control -■ The reaction mechanism for ATP production is as follows: 1) 2ADP ≠ A M P + A TP2)
ATP is produced in an aqueous solution by the interaction between β-CD, which has a hydrophobic cavity, and the ADP-Mg conjugate, although it is unclear which process takes place.

実施例 次に、本発明を実施例により具体的に説明する。Example Next, the present invention will be specifically explained using examples.

実施例1 クレアチン、β−CD、MgCl2及びADPをそれぞ
れ表1記載の濃度となるように、pH7,0に調整した
1715M−+7ン酸緩衝液を容れた試験管に添加し、
37℃の水浴に浸け、振とうした。
Example 1 Creatine, β-CD, MgCl2, and ADP were added to a test tube containing 1715M-+7 phosphate buffer adjusted to pH 7.0 so as to have the concentrations shown in Table 1, respectively.
It was immersed in a 37°C water bath and shaken.

表1 各反応試薬の濃度 Uffi      2i度(Lr1M)クレアチン 
    2.50 β−CD       2.50 MgCl、      0.25 ADP        2.50 反応液を7ニオン交換型充填剤[TSKIEX−540
−DEAEJのカラム(4,0mm l、DX250m
+n)にかけて分離精製し、5%アセトニトリルを含む
1/10M−リン酸緩衝液(pH7,0)で溶離し、各
成分をU V 26Or+mにて検出した。第1図及び
第2図は、それぞれ反応開始後0時間及び40時間経過
後の吸収特性を示し、40時間後にATPピークの増大
が確認された。尚、展開溶媒としてイン酪酸−アンモ=
7−水=66:1:33を用いたTl−1cでの標準A
TPのピークと新たに生成したピークのRfは、表2に
示すように一致する。
Table 1 Concentration of each reaction reagent Uffi 2i degree (Lr1M) Creatine
2.50 β-CD 2.50 MgCl, 0.25 ADP 2.50 The reaction solution was treated with a 7-ion exchange packing material [TSKIEX-540
-DEAEJ column (4.0 mm l, DX250 m
+n) for separation and purification, elution with 1/10M phosphate buffer (pH 7,0) containing 5% acetonitrile, and each component was detected at UV 26Or+m. FIGS. 1 and 2 show the absorption characteristics after 0 and 40 hours, respectively, from the start of the reaction, and an increase in the ATP peak was confirmed after 40 hours. In addition, imbutyric acid-ammo=
Standard A in Tl-1c using 7-water = 66:1:33
The Rf of the TP peak and the newly generated peak match as shown in Table 2.

表2   TLCデータ 1け1−−− Rf値 AMP  ・・・・・・  ・・・・・・  0.45
ADP  ・・・・・・  0,28 0.45ATP
  O,120,270,44 成   0.13  0.25  0.42=(呈色は
UV照射による) 表3は第1図及び第2図の相対ピーク面積より算出した
ATPの生成量を示し、出発物質のADP量を基準にと
ると、13%のATP生成を示すことが分かる。
Table 2 TLC data 1 digit 1 --- Rf value AMP ...... 0.45
ADP ・・・・・・ 0.28 0.45ATP
O,120,270,44 Formation 0.13 0.25 0.42 = (Color development is due to UV irradiation) Table 3 shows the amount of ATP produced calculated from the relative peak areas in Figures 1 and 2, It can be seen that 13% of ATP was produced based on the amount of ADP in the starting material.

表3  ATP収率 一生一威一吻一      収車ニー11=/l、彰0
−ATP        13.7 ADP       −29,4 AMP        12.4 [尭明の効果コ 本発明によれば、アデノシン5′−三リン酸をアデノシ
ン5′−二リン酸を出発原料として水溶液中、極めて穏
やかな反応条件により一段で製造することができ、工業
的価値が大きい。
Table 3 ATP yield lifetime 1 1 1 1 1 1 = / l, Akira 0
-ATP 13.7 ADP -29,4 AMP 12.4 [Effects of Gyomei According to the present invention, adenosine 5'-triphosphate is produced in an extremely mild aqueous solution using adenosine 5'-diphosphate as a starting material. It can be produced in one step under suitable reaction conditions and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図及び第2図はそ
れぞれ反応開始後0,40時間後の反応液のクロマトグ
ラフィー吸収特性を示すグラフである。
The drawings show an example of the present invention, and FIGS. 1 and 2 are graphs showing the chromatographic absorption characteristics of the reaction solution 0 and 40 hours after the start of the reaction, respectively.

Claims (1)

【特許請求の範囲】[Claims] アデノシン5′−二リン酸を水溶液中でマグネシウム塩
及び要すればクレアチンの存在下β−シクロデキストリ
ンと作用せしめることを特徴とするアデノシン5′−三
リン酸の製造方法。
A method for producing adenosine 5'-triphosphate, which comprises reacting adenosine 5'-diphosphate with β-cyclodextrin in the presence of a magnesium salt and, if necessary, creatine in an aqueous solution.
JP14014284A 1984-07-06 1984-07-06 Preparation of adenosine 5'-triphosphate Pending JPS6118796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14014284A JPS6118796A (en) 1984-07-06 1984-07-06 Preparation of adenosine 5'-triphosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14014284A JPS6118796A (en) 1984-07-06 1984-07-06 Preparation of adenosine 5'-triphosphate

Publications (1)

Publication Number Publication Date
JPS6118796A true JPS6118796A (en) 1986-01-27

Family

ID=15261848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14014284A Pending JPS6118796A (en) 1984-07-06 1984-07-06 Preparation of adenosine 5'-triphosphate

Country Status (1)

Country Link
JP (1) JPS6118796A (en)

Similar Documents

Publication Publication Date Title
Hughes Progress in the Mitsunobu reaction. A review
Shapiro et al. Reactions of uracil and cytosine derivatives with sodium bisulfite
Borchardt Mechanism of alkaline hydrolysis of S-adenosyl-L-methionine and related sulfonium nucleosides
Kozarich et al. Ribonucleoside phosphates via phosphorimidazolidate intermediates. Synthesis of pseudoadenosine 5'-triphosphate
EP0248256A3 (en) Process for the manufacture of monopotassium phosphate
ES2153897T3 (en) INCLUSION COMPLEXES FORMED BY N-MORFOLINO-N-NITROSAMINO ACETONITRILE AND CYCLODEXTRINE.
JPS6118796A (en) Preparation of adenosine 5'-triphosphate
US4282352A (en) Adenosine triphosphate derivative
BR8903445A (en) PROCESS FOR THE PRODUCTION OF S-CYANIDRINES
MARUMOTO et al. A new method for synthesis of nucleoside 3', 5'-cyclic phosphates. Cyclization of nucleoside 5'-trichloromethylphosphonates
US4209589A (en) Enzymatic process for preparing [γ-32 P]-labeled nucleotides
JPS5940823B2 (en) Amino acid production method
JPS6337635B2 (en)
JPS629598B2 (en)
Graham et al. Enzymatic synthesis and reactions of uridine 5′-(5-thio-α-d-glucopyranosyl pyrophosphate)
JPH0335913B2 (en)
WO1993023416A1 (en) Chemical synthesis of 2',3'-dideoxynucleoside 5'-triphosphates
SU710929A1 (en) Method of producing lead fluorophosphate
Muthukumaran et al. A “Cleanup Procedure” involving periodate oxidation in the enzymatic synthesis of chemically pure α-32P and α-33P labelled deoxyribonucleotides
TACHIBANA STUDIES ON A NEW TYPE FLAVINNUCLEOTIDE
Smit et al. Synthesis of 5‐deazaflavine adenine dinucleotide (5‐dFAD) by a modified triester approach
Zakirova et al. The effect of pyrophosphate analogues on the activity of the inorganic pyrophosphatase from Escherichia coli
JPS5939B2 (en) Production method of high purity adenosine triphosphate
Moyed [84] Intermedites in histidine synthesis: The formation of imidazole glycerolphosphate
ATE58721T1 (en) PURE CRYSTALLIZED ANHYDROUS ACRYLAMIC DOGLYCOLIC ACID AND PROCESS FOR ITS PRODUCTION.