JPS61187677A - Ultrasonic apparatus - Google Patents

Ultrasonic apparatus

Info

Publication number
JPS61187677A
JPS61187677A JP2785785A JP2785785A JPS61187677A JP S61187677 A JPS61187677 A JP S61187677A JP 2785785 A JP2785785 A JP 2785785A JP 2785785 A JP2785785 A JP 2785785A JP S61187677 A JPS61187677 A JP S61187677A
Authority
JP
Japan
Prior art keywords
baffle
sound waves
angle
effect
ultrasonic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2785785A
Other languages
Japanese (ja)
Inventor
Yoshitada Tominaga
富永 美忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2785785A priority Critical patent/JPS61187677A/en
Publication of JPS61187677A publication Critical patent/JPS61187677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the effect of a noise wave, by refracting the noise wave by buffle. CONSTITUTION:When an ultrasonic apparatus performs the measurement of a signal on a horizontal plane, directionality has max. sensitivity to the horizontal plane. Then, buffle 1 is provided to refract a noise wave A to generate the same effect as the blocking effect of a sonic wave and the effect of the noise wave is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海洋において目的物の距離や方位或は観測物体
の発生する音波を計測する超音波装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic device that measures the distance and direction of an object in the ocean, or the sound waves generated by an observation object.

〔従来の技術〕[Conventional technology]

従来、この種の超音波装置はこれを搭載する船の回転機
、プロペラ等が発生する特定の方位上シ到来する雑音音
波を遮断するために音波の透過か少ないバッフルを設け
ていた。
Conventionally, this type of ultrasonic device has been provided with a baffle that allows only a small amount of sound wave to pass through in order to block noise sound waves arriving in a specific direction generated by the rotating machine, propeller, etc. of the ship on which the device is mounted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のバッフルに音波の透過を防ぐ性、 質の
ために反面、音波を反射する性質がある。そのため超音
波装置が発生する音波を反射して超音波装置に彰舎を与
えたシ、雑音音波の方向とは違った方向の信号音波を反
射してあたかも違った方向からの信号が伝搬してくるか
のように誤認させたシする。
While the conventional baffles mentioned above have the property of preventing the transmission of sound waves, they also have the property of reflecting sound waves. Therefore, by reflecting the sound waves generated by the ultrasonic device and giving the ultrasound device a special effect, it reflects the signal sound waves in a direction different from the direction of the noise sound waves, making it appear as if the signal was propagating from a different direction. I misunderstood it as if it were coming.

これらの影響を避けるためバッフルは超音波装置に近接
させず、これとの間隔をあけたり超音波装置側の面に凸
面を設は音波を散乱さ姦たすする。
In order to avoid these effects, the baffle should not be placed close to the ultrasonic device, and should be spaced apart from the baffle or provided with a convex surface on the side facing the ultrasonic device to prevent the sound waves from being scattered.

しかし、一般に水中の雑音音波は波長が長いため回折現
象が顕著であシバッフルで覆われた超音波装置の方まで
音波がまわシ込んで行き、バッフルの効果を低下させる
欠点があった。
However, because noise sound waves in water generally have long wavelengths, the diffraction phenomenon is noticeable, and the sound waves penetrate into the ultrasonic device covered with the baffle, reducing the effectiveness of the baffle.

或は回折現象によるまわシ込みを軽減するためにバッフ
ルを更に大きくする必要があり、装置が大型化する欠点
があった。
Alternatively, it is necessary to make the baffle even larger in order to reduce the distortion caused by the diffraction phenomenon, which has the disadvantage of increasing the size of the device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の超音波装置は、雑音音波をバックルによって屈
析させ超音波装置の指向性によってその屈析した雑音音
波の影響を軽減させるものである。
The ultrasonic device of the present invention refracts noise sound waves using a buckle, and reduces the influence of the refracted noise sound waves using the directivity of the ultrasonic device.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

wJ1図は本発明の一実施例の外観図であシ、第2図は
第】図のx−x’面の断面図である。
Fig. wJ1 is an external view of one embodiment of the present invention, and Fig. 2 is a sectional view taken along the line xx' in Fig. wJ1.

1はバッフルであシ、海水等の音波伝搬体の音速より早
いもの例えはアクリル樹脂材から成シ、伝搬体との音速
差によって水平に入射した雑音音波は屈折して水平面よ
り俯角をもつ。2は超音波装置としての送受波器でメジ
円ちゅう体の放射面である。水平方向には無指向性であ
シ全方位に等分に感度がある。垂直方向には指向性を持
っておシ水平面が最大でありそれよシ角度差を持つと感
度が低下する。
Reference numeral 1 is a baffle, made of an acrylic resin material, which is faster than the speed of sound of a sound wave propagating body such as seawater. Due to the difference in sound speed with the propagating body, horizontally incident noise sound waves are refracted and have an angle of depression from the horizontal plane. 2 is a transducer as an ultrasonic device, which is a radiation surface of a medicinal cone. It is omnidirectional in the horizontal direction and is equally sensitive in all directions. It has directivity in the vertical direction and is greatest in the horizontal plane, and sensitivity decreases when there is an angular difference.

バッフル1の作用により屈折した雑音音波Aは見掛上超
音波装ff2からは上り低レベルの出力となシ音波の遮
断と同じ効果を生じる。バッフル1は音波を透過させて
もよいから、それからの反射の程度は低くすることがで
きるので、送受波器2に近づけてもその影響は小さい。
The noise sound wave A refracted by the action of the baffle 1 appears to output from the ultrasonic device ff2 at a low level, producing the same effect as blocking sound waves. Since the baffle 1 may transmit sound waves, the degree of reflection from the baffle 1 can be reduced, so even if the baffle 1 is placed close to the transducer 2, its influence is small.

第3図は本発明の第2の実施例の外観図である。FIG. 3 is an external view of a second embodiment of the present invention.

受波器3は2ヶ以上多数個が水平面に垂直に直線上に配
列されている。受波器は全方位に無指向性である。各受
波器の信号は超音波装置の信号処理器に入力される。こ
れらの信号は信号処理器で垂直方向に指向性を付与され
、第一の実施例と同様に屈折した雑音音波に対して感度
を下げ音波の遮断と同じ効果を生じる。
Two or more receivers 3 are arranged in a straight line perpendicular to the horizontal plane. The receiver is omnidirectional in all directions. The signal from each receiver is input to the signal processor of the ultrasonic device. These signals are given directivity in the vertical direction by a signal processor, and as in the first embodiment, the sensitivity to refracted noise sound waves is reduced, producing the same effect as blocking sound waves.

以上第1と第2の実施例の超音波装置はほぼ水平面上の
方位の信号の計測を行うものである。従りて垂直方向の
指向性は水平面に最大の感度をもつようになっているか
俯仰角をもった計測を行う場合は、その角度で最大の感
度をもつので、その角度から遠ざけるようにバッフルに
よシ雑音音波を屈析させることにする。例えば雑音音波
が水平面から到来するのであれは計測の角度側と反対の
角度(俯角に対しては仰角、仰角に対しては俯角)K屈
折させる。又計測の角度と同じ角度で雑音音波が到来す
るのであれば実施例と同じくその角度を屈折させること
によシ変えてやればよいことになる。
The ultrasonic devices of the first and second embodiments described above measure signals in directions on a substantially horizontal plane. Therefore, the directivity in the vertical direction is designed to have the maximum sensitivity in the horizontal plane.When measuring at an elevation angle, the maximum sensitivity is at that angle, so the baffle should be placed away from that angle. We decided to refract the noise sound waves. For example, if a noise sound wave comes from a horizontal plane, it is refracted at an angle K opposite to the angle of measurement (elevation angle for depression angle, depression angle for elevation angle). Furthermore, if the noise sound waves arrive at the same angle as the measurement angle, the angle can be changed by refraction, as in the embodiment.

第4図は第3の実施例の外観図、第5図は第4図のX−
X/断面図である。
Figure 4 is an external view of the third embodiment, and Figure 5 is the
It is an X/sectional view.

この実施例はか−の実施例にバッフル4を追加した構成
である。バッフル4は従来のバッフルと同じ動作のもの
で雑音音波の透過を遮断するものである。例えば発泡樹
脂(内部に空気粒をもつ)を使用する。
This embodiment has a configuration in which a baffle 4 is added to the previous embodiment. The baffle 4 operates in the same way as a conventional baffle and blocks the transmission of noise sound waves. For example, use foamed resin (with air particles inside).

バッフル4は送受波器2との間隔をあけて且つ俯角をも
たせる。これは送受波器2自身が発生する音波の反射或
は信号音波の反射による誤認を軽減するためである。従
って既述のように回折効果によって雑音音波の遮音の効
果の低下がある。第5図に雑音音波の進行の様子を示す
。到来した雑音音波人はバッフル4で遮断され、その一
部aが透過及び回折によって洩れてくる。その雑音音波
はバッフル1によシ屈折され第一の実施例で述べた作用
により遮断の効果を生じる。即ち、第3の実施例はバッ
フル1及び4の作用によってそれらの相乗効果を生じ雑
音音波の遮断の効果はよシ完全になる。
The baffle 4 is spaced apart from the transducer 2 and has an angle of depression. This is to reduce misidentification due to reflection of sound waves generated by the transducer 2 itself or reflection of signal sound waves. Therefore, as described above, the effect of insulating noise sound waves is reduced due to the diffraction effect. Figure 5 shows the progress of the noise sound waves. The arriving noise sound wave is blocked by the baffle 4, and a portion a of it leaks through transmission and diffraction. The noise sound waves are refracted by the baffle 1 and produce a blocking effect by the action described in the first embodiment. That is, in the third embodiment, a synergistic effect is produced by the effects of the baffles 1 and 4, and the effect of blocking noise sound waves is more complete.

以上の説明Vこおいて、バッフル1及び4の形状は特に
ふれていないが超音波装置の指向性に合せて3次元の曲
面にしたときがより効果があるときもある。例えはバッ
フル1は第一の実施例の場合のように送受波器lが円ち
ゆう形でおるとき、−面のテーパーの面をもつ板状のも
のでなく、送受波器lの円ちゅうの表面に沿うように湾
曲させ近づけると回折による雑音音波に対してその効果
はより完全になる。
In the above explanation, the shapes of the baffles 1 and 4 are not particularly mentioned, but it may be more effective to form them into three-dimensional curved surfaces in accordance with the directivity of the ultrasonic device. For example, when the transducer l has a circular shape as in the case of the first embodiment, the baffle 1 is not a plate-like member with a tapered surface on the negative side, but a circular baffle of the transducer l. If it is curved along the surface of the surface and brought closer, its effect against noise sound waves due to diffraction becomes more complete.

又、バクフル4は球面に近い曲面にすると送受波器1が
発生する音の反射の影響は散乱によって軽減する。或は
バッフルの材料についてふれればバッフル4の送受波器
2の面に吸音性をもった音響用材料を使用すれはその反
射量は小さくなる。
Furthermore, when the backflush 4 is made to have a curved surface close to a spherical surface, the influence of reflection of the sound generated by the transducer 1 is reduced by scattering. Regarding the material of the baffle, if an acoustic material with sound absorption properties is used on the surface of the transducer 2 of the baffle 4, the amount of reflection will be reduced.

このような場合はよシ送受波器2に近づけることができ
て回f(Kよる遮断の効果の低下を軽減することもでき
る。
In such a case, it can be moved closer to the transducer 2 to reduce the reduction in the blocking effect due to the frequency f(K).

バッフルlの屈折角度の計算について説明する。Calculation of the refraction angle of the baffle l will be explained.

簡便な計算は承知のスネルの法則によって行うことがで
きる。第一の実施例のバッフルlについて、第6図に示
す角度と速度の関係においてその屈折v2   。
A simple calculation can be performed using the well-known Snell's law. Regarding the baffle l of the first embodiment, its refraction v2 in the relationship between angle and velocity shown in FIG.

の角度Δθは、Δθ=θ−5in ’ (−5tn e
 )である。図中、θはバッフルのテーパーの角度、v
iはバッフルの音速、v2は海水の音速を示す。
The angle Δθ of is Δθ=θ-5in' (-5tne
). In the figure, θ is the taper angle of the baffle, v
i represents the sound speed of the baffle, and v2 represents the sound speed of seawater.

尚、説明では屈折の角度は俯仰の角度について述べたか
、他に左右(水平面内での偏角)の角度或は俯仰の角度
と左右の角度の両角度の屈折を行う場合も陶様の作用原
理であシ、超音波装置の指向性によってはより大きい効
果を得るときもある。
In addition, in the explanation, the angle of refraction refers to the angle of elevation, but it also applies to cases where refraction is performed at left and right angles (declination angle in the horizontal plane) or both angles of elevation and left and right angles. Although this is true in principle, greater effects can sometimes be obtained depending on the directivity of the ultrasonic device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明は雑音音波のNA杼により
、遮断と同じ効果を得ることができることよシ音波を屈
折させる材料に−f#の透過性のよいものを使用すれば
超音波装置とバッフルとは近接して設置できる。よって
回折現象による遮断の効果の低下を軽減できる。更に従
来の非透過性のバッフルと組合せればそのバッフルを反
射の影響を許容できる範囲まで遠ざけてもその回咋した
雑音音波を遮断することになり両者の相乗効果でより秀
れた遮断の成果を得ることができる。
As explained above, 1) the present invention is capable of obtaining the same effect as blocking noise sound waves by using the NA shuttle; Can be installed close to the baffle. Therefore, it is possible to reduce the reduction in the blocking effect due to the diffraction phenomenon. Furthermore, when combined with a conventional non-transparent baffle, the reflected noise waves can be blocked even if the baffle is moved far enough to allow for the influence of reflection, and the synergistic effect of the two will result in even better blocking results. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例の外観図、第2図は第1
図のX−X/線断面図、第3図は第二の実施例の外観図
、第4図は第3の実施例の外観図、第5図は第4図のx
−x’線断面図、第6図は屈折角の計算式例を示す図で
ある。 1・・・・・・バッフル、2・・・・・・送受波器、3
・・・・・・受波器、4・・・・・・バッフル。 $1 1!1 革 2 菌 第 4(!l 茅 S 図
Fig. 1 is an external view of the first embodiment of the present invention, and Fig. 2 is an external view of the first embodiment of the present invention.
3 is an external view of the second embodiment, FIG. 4 is an external view of the third embodiment, and FIG. 5 is a cross-sectional view of the
-x' line cross-sectional view, FIG. 6 is a diagram showing an example of a calculation formula for a refraction angle. 1... Baffle, 2... Transmitter/receiver, 3
...Receiver, 4...Baffle. $1 1!1 Leather 2 Bacteria No. 4 (!l Kaya S Figure

Claims (2)

【特許請求の範囲】[Claims] (1)音波を屈折するバッフルを超音波装 置に対向して設けて成ることを特徴とする超音波装置。(1) Ultrasonic equipment is equipped with baffles that refract sound waves. 1. An ultrasonic device characterized in that the ultrasonic device is provided opposite to the device. (2)音波を遮断する第1のバッフルと音波を屈折する
第2のバッフルを超音波装置に対向して並置して成るこ
とを特徴とする超音波装置。
(2) An ultrasonic device characterized in that a first baffle that blocks sound waves and a second baffle that refracts sound waves are juxtaposed to face the ultrasonic device.
JP2785785A 1985-02-15 1985-02-15 Ultrasonic apparatus Pending JPS61187677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2785785A JPS61187677A (en) 1985-02-15 1985-02-15 Ultrasonic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2785785A JPS61187677A (en) 1985-02-15 1985-02-15 Ultrasonic apparatus

Publications (1)

Publication Number Publication Date
JPS61187677A true JPS61187677A (en) 1986-08-21

Family

ID=12232582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2785785A Pending JPS61187677A (en) 1985-02-15 1985-02-15 Ultrasonic apparatus

Country Status (1)

Country Link
JP (1) JPS61187677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724203B1 (en) 1997-10-30 2004-04-20 International Business Machines Corporation Full wafer test configuration using memory metals
JP2020186942A (en) * 2019-05-10 2020-11-19 株式会社日立製作所 Underwater acoustic survey device and underwater acoustic propagation cutoff structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724203B1 (en) 1997-10-30 2004-04-20 International Business Machines Corporation Full wafer test configuration using memory metals
JP2020186942A (en) * 2019-05-10 2020-11-19 株式会社日立製作所 Underwater acoustic survey device and underwater acoustic propagation cutoff structure

Similar Documents

Publication Publication Date Title
Mori et al. Design and convergence performance analysis of aspherical acoustic lens applied to ambient noise imaging in actual ocean experiment
US3699805A (en) Ultrasonic testing apparatus
CN108572367A (en) Sonar unit
US4063214A (en) Lens transducer for use in marine sonar doppler apparatus
JPS61187677A (en) Ultrasonic apparatus
Fujiwara et al. Noise control by barriers—part 2: noise reduction by an absorptive barrier
Mori et al. Finite difference time domain analysis of underwater acoustic lens system for ambient noise imaging
JP2008216125A (en) Ultrasonic probe
CN114965696A (en) Method and system for measuring equivalent acoustic parameters of soft ultrasonic gel material
Rubin et al. Phase cancellation: a cause of acoustical shadowing at the edges of curved surfaces in B-mode ultrasound images
JPS63173981A (en) Ultrasonic sensor
Goodman et al. Observation of circumferential waves on solid aluminum cylinders
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
JPH04157360A (en) Supersonic probe
JP2558637B2 (en) Sound source position measurement method
JP3367841B2 (en) Ultrasonic sensor
Tortoli et al. Flow imaging with pulsed Doppler ultrasound and flow phantoms
US20080210011A1 (en) System and Method for Determining Properties of Tubular Cavity
SU1201752A1 (en) Ultrasound transducer
Fox Vertical directionality of ambient noise in the ocean
Tanabe et al. 3Pa6-3 Transmission Characteristics of Wedge-shaped Medium with Evanescent Field
SU1163252A1 (en) Ultrasonic transducer for measuring velocity of transverse ultrasonic vibrations
JP2022166745A (en) ultrasonic sensor
Talham Ambient Sea‐Noise Model
KR20230077521A (en) Ultrasonic transmission apparatus and control method of waves