JPS6118741A - Preparation of high-purity hydroxypivalic aldehyde - Google Patents

Preparation of high-purity hydroxypivalic aldehyde

Info

Publication number
JPS6118741A
JPS6118741A JP59140139A JP14013984A JPS6118741A JP S6118741 A JPS6118741 A JP S6118741A JP 59140139 A JP59140139 A JP 59140139A JP 14013984 A JP14013984 A JP 14013984A JP S6118741 A JPS6118741 A JP S6118741A
Authority
JP
Japan
Prior art keywords
liquid
hpa
parts
water
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59140139A
Other languages
Japanese (ja)
Other versions
JPH0629206B2 (en
Inventor
Akiyuki Ninomiya
二宮 暎之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP59140139A priority Critical patent/JPH0629206B2/en
Publication of JPS6118741A publication Critical patent/JPS6118741A/en
Publication of JPH0629206B2 publication Critical patent/JPH0629206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:In reacting isobutylaldehyde with formaldehyde in the presence of an amine catalyst, and preparing the titled purified compound from the reaction solution, to improve yield and purity, by removing the amines from filtrates of solid-liquid separation and washing processes, using the filtrates as water to be added in crystallization or as washing water. CONSTITUTION:Isobutylaldehyde(IBA)2, formaldehyde 3, and an amine catalyst 4 are added to the reactor 1 to carry out an aldol reaction, the prepared reaction solution is fed to the low-boiling fraction cutting column 6, the low boiling fraction containing unreacted IBA is removed, and circulated through the storage tank 8 to the reactor 1. A solution at the bottom of the column 6 is sent to the crystallilizer 11, filtrates from which an amine is removed is sent from the passageway 26 in such a way that the resulting solution has 10-22wt% calculated as hydroxypivalic aldehyde(HPA) concentration, the solution is cooled and HPA is crystallized. The crystallized slurry is subjected to solid-liquid separation by the filter 13, the filtrate is circulated through the tank 28 to the reactor 1 and the column 6. The filtered cake is washed with the filtrate from which an amine is removed from the passageway 25, the filtrate is subjected to amine removal treatment by the ion exchange column 24 and circulated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアミン触媒存在下でイソブチルアルデヒド(以
下IBAと称する)とホルムアルデヒドを反応させてヒ
ドロキシピバルアルデヒド(以下HPAと称する)を製
造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is a method for producing hydroxypivalaldehyde (hereinafter referred to as HPA) by reacting isobutyraldehyde (hereinafter referred to as IBA) and formaldehyde in the presence of an amine catalyst. Regarding.

HPAは1分子内ζこメチロール基とアルデヒド基を有
するグリコールアルデヒドで、2.2−ジメチルプロパ
ンジオール、r−ブチルラクトン、ヒドロキシピバリン
酸等の原料として有用な物質である。
HPA is a glycolaldehyde having a ζ-methylol group and an aldehyde group in one molecule, and is a substance useful as a raw material for 2,2-dimethylpropanediol, r-butyllactone, hydroxypivalic acid, etc.

(従来の技術) IBAとホルムアルデヒドをアミン触媒存在下アルドー
ル縮合反応させてHPAを製造し、得られた反応生成液
番こ水を添加し、蒸留により低沸留分を留去したのち残
留液を冷却してHPAを晶析、分離、回収する方法は米
国特許第4゜0’66.888に開示されている。この
方法においてHPAを分離回収したのちの母液はIBA
と接触させ、母液中に残存する4〜696のHPAをI
BA相に抽出し、これを蒸留塔に循環することによって
HP Aを回収している。しかしか−る方法は多量のI
BAが蒸留塔を循環するのでエネルギー的に不利であり
、又抽残液きして得られる水相中に溶解しているHPA
、IBA、アミン等については全く考慮する処がなく系
外に廃棄されているので公害防止上及び原単位の低下の
観点から好ましくない。
(Prior art) HPA is produced by an aldol condensation reaction of IBA and formaldehyde in the presence of an amine catalyst, water is added to the resulting reaction product liquid, and after distilling off the low-boiling fraction, the residual liquid is A method for crystallizing, separating, and recovering HPA by cooling is disclosed in US Pat. No. 4,006,888. In this method, the mother liquor after separating and recovering HPA is IBA.
4 to 696 HPAs remaining in the mother liquor are brought into contact with I
HP A is recovered by extracting it into the BA phase and recycling it to the distillation column. However, such a method requires a large amount of I
Since BA circulates through the distillation column, it is disadvantageous in terms of energy, and HPA dissolved in the aqueous phase obtained by removing the raffinate.
, IBA, amines, etc., are disposed of outside the system without any consideration, so they are unfavorable from the viewpoint of pollution prevention and reduction of basic unit.

一方、IBAを留去した反応生成液は予め添加水によっ
てHPA濃度が26〜31]9り範囲になるよう調製し
ているが、このような高い濃度で15〜20℃まで冷却
して)IPAを晶析した場合、晶析缶内で固形化してし
まうか、もしくは極めて高粘度のクリーム状液となり流
動性を失ってしまい、次の分離・精製工程に大きな支障
をきたす。この結果、固液分離がスムースに行なえない
ばかりか、特に残存アミンの除去などのために行なう水
洗工程での洗浄効果が著しく失われる。
On the other hand, the reaction product liquid from which IBA has been distilled off is prepared in advance with added water so that the HPA concentration is in the range of 26 to 31]9, but at such a high concentration, it is cooled to 15 to 20 °C. When it is crystallized, it solidifies in the crystallizer or becomes an extremely viscous cream-like liquid and loses fluidity, which greatly impedes the subsequent separation and purification steps. As a result, not only the solid-liquid separation cannot be carried out smoothly, but also the cleaning effect particularly in the water washing step for removing residual amines is significantly lost.

HPA中にアミンが残存していると着色・熱分解などの
原因となり、HPAの品質上大きな問題となる。
If amine remains in HPA, it causes coloration, thermal decomposition, etc., and poses a major problem in terms of the quality of HPA.

(問題点を解決するための手段) 本発明はか\る欠点を解消し、高収率に且つ高純度のH
PAを製造するもので、イソブチルアルデヒドとホルム
アルデヒドをアミン触媒存在下アルドール縮合反応させ
てヒドロキシピバルアルデヒドを製造し、得られた反応
生成液に水を添加、冷却してヒドロキシピバルアルデヒ
ドを晶析、固液分離し、これを更に水で洗浄し高純度ヒ
ドロキシピバルアルデヒドとする方法において、固液分
離及び洗浄工程において得られたf液又は洗浄液に脱ア
ミン処理を施したものを晶析時の添加水及び/又は洗浄
水として使用し、高純度ヒドロキシピバルアルデヒドを
製造する方法である。
(Means for Solving the Problems) The present invention eliminates these drawbacks and produces high yield and high purity H
PA is produced by performing an aldol condensation reaction of isobutyraldehyde and formaldehyde in the presence of an amine catalyst to produce hydroxypivalaldehyde, adding water to the resulting reaction product liquid, and cooling it to crystallize hydroxypivalaldehyde. In the method of solid-liquid separation and further washing with water to obtain high-purity hydroxypivalaldehyde, the f-liquid or washing liquid obtained in the solid-liquid separation and washing step is deamined and then crystallized. This is a method for producing high-purity hydroxypivalaldehyde by using it as addition water and/or washing water.

本発明において使用するホルムアルデヒドはホルムアル
デヒド水溶液(ホルマリン)でモハラホルムでも良いが
、アミン触媒を使用したIBAとホルムアルデヒドのア
ルドール縮合反応は反応系の水濃度に極めて影響を受は
易<、IBA、ホルムアルデヒド濃度が希薄であると反
応速度が緩まんとなり一定の収率は得られないので、ホ
ルマリンの濃度は出来るだけ高い方が好ましい。
The formaldehyde used in the present invention may be an aqueous formaldehyde solution (formalin) or mohalaform, but the aldol condensation reaction of IBA and formaldehyde using an amine catalyst is extremely susceptible to the water concentration in the reaction system. If the formalin is diluted, the reaction rate slows down and a constant yield cannot be obtained, so it is preferable that the concentration of formalin be as high as possible.

特に本発明ではHPAとアミンの回収の目的から後工程
での晶析P液の一部を反応系に循環して使用する方法を
とるので、原料として希薄なホルマリンを使用すると、
このP液循環量に制限を受けそれだけ特にアミンの回収
量は減少してしまう結果となる。
In particular, in the present invention, a part of the crystallized P solution in the subsequent process is recycled to the reaction system for the purpose of recovering HPA and amines, so if dilute formalin is used as a raw material,
The amount of P liquid circulated is limited, which results in a corresponding decrease in the amount of amine recovered.

従って、原料ホルマリンとしては濃度67重量%以上で
、メタノールを含有しないものかまたはできるだけ少な
いものが好ましい。
Therefore, it is preferable that the raw material formalin has a concentration of 67% by weight or more and does not contain methanol or contains as little methanol as possible.

本発明におけるIBAとホルムアルデヒドのアルドール
縮合反応は回分式および連続式のどぢらでもよい。また
常圧下で空気しゃ断下もしくは窒素気流中で行なう方法
が好ましい。
The aldol condensation reaction of IBA and formaldehyde in the present invention may be carried out either batchwise or continuously. Further, it is preferable to carry out the method under normal pressure with no air exclusion or in a nitrogen stream.

ホルムアルデヒドに対するIBAの仕込モル当量は0.
95〜1.30の範囲で行なうが、好ましくは0゜98
〜1.10である。
The molar equivalent of IBA to formaldehyde is 0.
It is carried out within the range of 95 to 1.30, but preferably 0°98
~1.10.

回分式反応の場合反応開始より数分間は不均一系の反応
となるが、HPA生成の増大とともに均−系の反応に変
る。
In the case of a batch reaction, the reaction is heterogeneous for several minutes from the start of the reaction, but changes to a homogeneous reaction as HPA production increases.

反応温度は常圧下では40〜98℃、好ましくは80〜
95℃である。
The reaction temperature is 40-98°C under normal pressure, preferably 80-98°C.
The temperature is 95°C.

回分式反応の場合、常圧下ではIBAの還流点である6
2〜65℃で一旦停止するが、HPA生成の増大(IB
Aの消費)とともに徐々に上り最終的には94〜95℃
に達する。
In the case of a batch reaction, the reflux point of IBA is 6 under normal pressure.
Temporarily stops at 2-65°C, but increases in HPA production (IB
consumption of A) gradually rises to 94-95℃.
reach.

連続式反応の場合は反応は均−系であり、反応温度は9
4〜95℃となる。
In the case of continuous reaction, the reaction is homogeneous and the reaction temperature is 9
The temperature will be 4-95°C.

本発明では触媒としてアミンを使用する。アミン触媒の
種類には特に制′限はないが一般的には第3級アミンが
好ましい。
The present invention uses amines as catalysts. There are no particular restrictions on the type of amine catalyst, but tertiary amines are generally preferred.

例えば、トリメチルアミン、トリエチルアミン、トリプ
ロピルアミン、トリイソプロピルアミン、トリブチルア
ミン、トリイソブチルアミン、N−メチルピペリジン、
N−エチルピペリジン、N−エチルピペリジン、N−メ
チルモルホリン、N−エチルモルホリン、N−メチルピ
ロリジン、N−エチルピリジンなどが有効である。アミ
ン触媒の添加量はIBAに対しモル当量で0.01〜0
.1、好ましくは0.02〜0.05である。  、 かくして得ら第1たHPA反応生成液から常法に従って
未反応のIBAを主成分とする低沸留分を留去する。
For example, trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, triisobutylamine, N-methylpiperidine,
N-ethylpiperidine, N-ethylpiperidine, N-methylmorpholine, N-ethylmorpholine, N-methylpyrrolidine, N-ethylpyridine, and the like are effective. The amount of the amine catalyst added is 0.01 to 0 in molar equivalent to IBA.
.. 1, preferably 0.02 to 0.05. A low-boiling fraction containing unreacted IBA as a main component is distilled off from the thus obtained first HPA reaction product liquid according to a conventional method.

この留去した低沸留分は、全量を反応系へ循環して使用
する。
The entire amount of the distilled off low-boiling fraction is recycled to the reaction system for use.

次に、低沸留分を留去した後の反応生成液からHPAを
晶析するが、晶析および次の固液分離をスムースに行な
う為反応生成液を水で稀釈する。本発明においては特に
固液分離及び洗浄工程において得られたf液又は洗浄液
に脱アミン処理を施こして得た水を加えて稀釈する。稀
釈はHPA濃度が10〜22重量%になる様に行なうの
が好ましい。
Next, HPA is crystallized from the reaction product liquid after distilling off the low-boiling fraction, but the reaction product liquid is diluted with water in order to smoothly perform crystallization and subsequent solid-liquid separation. In the present invention, in particular, the f liquid or washing liquid obtained in the solid-liquid separation and washing steps is diluted by adding water obtained by deamine treatment. The dilution is preferably carried out so that the HPA concentration is 10 to 22% by weight.

HPA濃度が余り高い状態で晶析すると水をだき込んだ
形で固化してしまう。この状態では流動性が全く失われ
るため作業上取扱いにくいものになる。また、この状態
ではこの中に取り入れられたアミンなどの除去はきわめ
て困難なものになる。
If crystallization occurs when the HPA concentration is too high, it will solidify in a form that incorporates water. In this state, fluidity is completely lost, making it difficult to handle. Furthermore, in this state, it becomes extremely difficult to remove amines and the like incorporated therein.

晶析時のHPA濃度の調製は後工程の固液分離の際に出
るP液の反応系への循環、低沸留分カット塔への循環お
よび後工程のイオン交換樹脂塔で脱アミン処理をほどこ
したf液の晶析器への循環の三者の比率を調節して行な
う6゜晶析温度は5〜40℃、好ましくは15〜35℃
である。
To adjust the HPA concentration during crystallization, the P liquid produced during solid-liquid separation in the subsequent process is circulated to the reaction system, circulated to the low-boiling fraction cut column, and deamined in the ion exchange resin column in the subsequent process. The crystallization temperature is 5 to 40 degrees Celsius, preferably 15 to 35 degrees Celsius, which is carried out by adjusting the ratio of the three circulations of the applied F liquid to the crystallizer.
It is.

晶析操作により得られた結晶は固液分離(濾過)、洗浄
を行い、濾過ケーキ中に含有する残存アミンを除去する
The crystals obtained by the crystallization operation are subjected to solid-liquid separation (filtration) and washing to remove residual amines contained in the filter cake.

洗浄前の固液分離の際に出るf液(これをf液Iとす。Liquid f is produced during solid-liquid separation before washing (this is called liquid I).

)と洗浄の際に出るf液(これをf液■とする)とを区
別して処理する方が好ましい。
) and the f liquid (this will be referred to as f liquid ①) produced during cleaning are preferably treated separately.

すなわち、f液Iの中には高い濃度でアミンを含有して
いるのでその一部をそのま\アルドール縮合反応系へ循
環し、また一部を低沸留分カット塔へ循環してアミンの
回収を図る。
That is, since liquid I contains amine at a high concentration, a part of it is circulated as it is to the aldol condensation reaction system, and a part is circulated to the low boiling fraction cut column to remove the amine. Trying to recover.

一方、P液■はイオン交換樹脂塔を通し、残存のアミン
を吸着除去する。
On the other hand, P liquid (2) passes through an ion exchange resin tower to adsorb and remove remaining amines.

イオン交換樹脂で脱アミンをほどこしたP液は一部品析
の際の添加水として利用し、才た一部を洗浄水として利
用する。
Part of the P liquid that has been deamined with an ion exchange resin is used as added water during product analysis, and the remaining part is used as washing water.

脱アミンの際に使用するイオン交換樹脂はカチオン交換
樹脂が使用される。
A cation exchange resin is used as the ion exchange resin for deamination.

カチオン交換樹脂の種類に制限はなく、公知のものとし
ては、例えばスチレン系、フェノール系もしくはメタク
リル系などの樹脂母体にカチオン交換基たとえばスルホ
ン基、カルホキシル基、フェノール性水酸基、ホスホン
基もしくはアルソン基などを有するものである。
There are no restrictions on the type of cation exchange resin, and known examples include styrene, phenol, or methacrylic resins with cation exchange groups such as sulfone, carboxyl, phenolic hydroxyl, phosphonic, or arsone groups. It has the following.

これらのカチオン交換樹脂のうち、スチレン系の樹脂母
体にスルホン基を有するものが脱アミンの速度お・よび
吸着量が大きく好適に用いられる。
Among these cation exchange resins, those having sulfone groups in the styrene resin matrix are preferably used because of their high deamination rate and high adsorption amount.

脱アミン処理によって交換能力を失ったイオン交換樹脂
は通常の方法によって、例えば塩酸または硫酸水溶液で
再生を行えば再び使用できる。
Ion exchange resins that have lost their exchange ability due to deamine treatment can be reused by regenerating them using a conventional method, for example, with an aqueous solution of hydrochloric acid or sulfuric acid.

固液分離し洗浄して得たr過ケーキは次いで乾燥する。The filter cake obtained by solid-liquid separation and washing is then dried.

乾燥方法には特に制限はないが、乾燥温度は55℃以下
で行なうことが好ましい。
Although there are no particular restrictions on the drying method, it is preferable to carry out the drying at a temperature of 55° C. or lower.

すなわち、55′C以上では含水率の高い乾燥初期にお
いて、溶融し、乾燥とともにHPAの逸散が大きくなり
、また、後期において一部HPA同志の三量化化合物で
あるネオペンチルグリコール・ヒドロキシピバリン酸モ
ノエステルの生成を生じる可能性がある。
That is, at temperatures above 55'C, in the early stage of drying when the moisture content is high, HPA melts, and as it dries, HPA dissipates greatly, and in the latter stage, neopentyl glycol/hydroxypivalic acid mono, which is a trimerized compound of HPA, melts. May result in ester formation.

次に、添付した図面によって本発明をさらに詳しく説明
する。第1図は、本発明を実施するための工程の一例を
示す1J 図面1こおいて、経路2よりIBAを、経路3よりホル
ムアルデヒドを、経路4より触媒アミンを各々反応器1
に供給し、アルドール縮合反応を行なう。
Next, the present invention will be explained in more detail with reference to the attached drawings. Figure 1 shows an example of the process for carrying out the present invention.
and conduct the aldol condensation reaction.

反応生成液は経路5より低沸留分カット塔6に供給し、
こ\で未反応のIBAを含む低沸留分の除去回収を行な
う。回収された低沸留分は経路7より留め槽8に一旦留
められ、順次経路9より反応器1に循環供給される。
The reaction product liquid is supplied to a low-boiling fraction cut tower 6 from a route 5,
Here, low-boiling fractions containing unreacted IBA are removed and recovered. The recovered low-boiling fraction is temporarily retained in a retaining tank 8 via a route 7, and is sequentially circulated and supplied to the reactor 1 via a route 9.

一方、低加留分カット塔6の塔底液は経路10より晶析
器11に供給される。
On the other hand, the bottom liquid of the low fraction cut tower 6 is supplied to the crystallizer 11 through a route 10.

こ\で、HPA濃度換算で10〜22重量%になるよう
経路26より脱アミンしたr液を供給しHPAを晶析す
る。HPA晶析スラリー液は経路12よりf過器13に
供給し、こ\で固液の分離を行なう。
At this point, the deamined R liquid is supplied through the route 26 so that the HPA concentration becomes 10 to 22% by weight, and HPA is crystallized. The HPA crystallization slurry liquid is supplied to an f-filter 13 through a path 12, where it is separated into solid and liquid.

このとき抜き出されるf液の一部は経路27より1次r
液タンク28に一旦留め順次経路29より反応器1に供
給される。
A part of the f liquid extracted at this time is from the primary r
The liquid is temporarily stored in a liquid tank 28 and sequentially supplied to the reactor 1 through a route 29.

また、その残部は経路30より低沸留分カット塔6に供
給される。
Further, the remainder is supplied to the low-boiling fraction cut column 6 through the route 30.

一方、濾過ケーキとなったHPAは経路25より脱アミ
ンをほどこしたP液で洗浄され、経路14より乾燥器1
5に供給される。乾燥器では経路19より55℃以下の
温風を送りながら乾・燥する。乾燥によって生じた水分
は経路20より糸外に排出される。
On the other hand, the HPA that has become a filter cake is washed with the deamined P solution from route 25, and then from route 14 to the dryer 1.
5. In the dryer, hot air of 55° C. or lower is sent from path 19 to dry the material. Moisture generated by drying is discharged from the yarn through the path 20.

このようにして乾燥された精HPAは経路16より充填
機17へ送られ経路18より製品HPAとなる。
The purified HPA dried in this way is sent to a filling machine 17 through a path 16 and becomes a product HPA through a path 18.

一方、洗浄の際に排出されるr液は経路21、f液槽2
2、経路23を経てイオン交換樹脂塔24に供給され、
P液中に残存するアミンを吸着除去する。この脱アミン
化されたP液は再び一部は経路26より晶析器11に供
給し添加水として使用し、才た残部は経路25より濾過
器13へ供給して、濾過の際の洗浄水として使用する。
On the other hand, the R liquid discharged during cleaning is routed to the F liquid tank 2.
2, supplied to the ion exchange resin tower 24 via route 23;
The amine remaining in the P solution is adsorbed and removed. A part of this deaminated P liquid is again supplied to the crystallizer 11 through the route 26 and used as additive water, and the remaining part is supplied to the filter 13 through the route 25 to be used as washing water during filtration. Use as.

(発明の効果) 本発明によれば晶析器において反応生成液を稀釈する為
の稀釈水及び/又は固液分離器で分離したケーキの洗浄
液として、固液分離工程、洗浄工程で得られたろ液及び
洗浄液に脱アミン処理を施こしたものを使用するため、
f液、洗浄液中にHPAが溶解し損失することがなく、
又溶解しているIBA、アミン等の有効成分も回収され
るので原単位の向上のみならず公害防止上の観点からも
極めて有利に高純度のHPAを高収率に製造することが
出来る。
(Effect of the invention) According to the present invention, the filter obtained in the solid-liquid separation step and the washing step can be used as dilution water for diluting the reaction product liquid in the crystallizer and/or as a washing liquid for the cake separated in the solid-liquid separator. Because the liquid and cleaning liquid are deamined,
HPA is not dissolved and lost in f-liquid and cleaning solution,
In addition, since dissolved active ingredients such as IBA and amines are also recovered, highly purified HPA can be produced at a high yield, which is extremely advantageous not only from the viewpoint of improving the unit consumption but also from the viewpoint of pollution prevention.

(実施例) 次に、実施例を示して、本発明をさらに具体的に説明す
る。
(Example) Next, the present invention will be described in more detail by showing examples.

実施例において「%」および「部」は「重量%」および
「重量部」をそれぞれ意味する。
In the examples, "%" and "parts" mean "% by weight" and "parts by weight", respectively.

また実施例5において用いる装置を示す番号は第1図に
よる。
Further, the numbers indicating the devices used in Example 5 are as shown in FIG.

実施例1 1BA  59.5部と37%ホルマリン 65.7部
を混合[ッ45℃1こおいて窒素気流中で攪拌し、己、
5部のトリエチルアミン(TEA)を加えた。反応混合
液の温度は5〜7分で62〜64℃に上昇し、一旦激し
くIBAが還流するが、その波体々に還流はおだやかに
なる。反応液温度は20分間後に90Cに達した。さら
に30分間92〜94℃で反応させ、128゜5部の反
応生成液を得た。この反応生成液の組成をガスクロマト
グラフィーを用いて分析した結果法のような組成であっ
た。
Example 1 59.5 parts of 1BA and 65.7 parts of 37% formalin were mixed [stirred at 45°C in a nitrogen stream;
5 parts of triethylamine (TEA) were added. The temperature of the reaction mixture rises to 62 to 64° C. in 5 to 7 minutes, and the IBA refluxes violently, but the reflux gradually becomes gentler. The reaction solution temperature reached 90C after 20 minutes. The reaction was further carried out for 30 minutes at 92 to 94°C to obtain 5 parts of a reaction product solution of 128°C. The composition of this reaction product liquid was analyzed using gas chromatography, and the result was that it had a composition similar to that of the method.

HPA63.1096、IBAo、86%、TEA2.
56%、メタノールj、5596および水31.18% この反応生成液から温度60〜65℃、圧力400〜4
10龍Hg下で未反応のIBA等の低沸留分12.1部
を留去させた。
HPA63.1096, IBAo, 86%, TEA2.
56%, methanol j, 5596 and water 31.18% From this reaction product liquid, temperature 60~65℃, pressure 400~4
12.1 parts of low-boiling fractions such as unreacted IBA were distilled off under 10 dragons of Hg.

留出量は反応生成量に対して9,4%で、その組成はH
PA2.6496、IBA9.1796、TEA3.3
96、メタノール15.796および水7S9.17%
であった。゛ 低沸留分を留去した反応生成液にHPII度が16.5
96になるように373.3部の水を添加し、35℃ま
で冷却した。
The distillate amount is 9.4% of the reaction product amount, and its composition is H
PA2.6496, IBA9.1796, TEA3.3
96, methanol 15.796 and water 7S 9.17%
Met.゛The HPII degree of the reaction product liquid after distilling off the low boiling fraction is 16.5.
373.3 parts of water was added so that the temperature was 96°C, and the mixture was cooled to 35°C.

次に1時間攪拌下で保存した後上排型の遠心分離機を用
いて固液分離を行なった。このとき598.1部のF液
工が排出され、ケーキHPA  91.6部を得た。
Next, the mixture was stored under stirring for 1 hour, and then solid-liquid separation was performed using a top-discharge centrifuge. At this time, 598.1 parts of F liquid was discharged to obtain 91.6 parts of cake HPA.

f液工の組成を分析した結果、HPA6.5%、TEA
o、6%、水92.796、その他0゜296であった
As a result of analyzing the composition of f-liquid, HPA6.5%, TEA
o, 6%, water 92.796, others 0°296.

ケーキHPAは230部の真水で洗浄した。The cake HPA was washed with 230 parts of fresh water.

このとき246部のP液■が排出され、ケーキHPA 
 75.6部を得た。
At this time, 246 parts of P solution ■ is discharged, and the cake HPA
75.6 parts were obtained.

r液■の組成を分析した結果、HPA3.5%、TEA
o、8%、水95.696、その池0゜196であった
As a result of analyzing the composition of R liquid ■, HPA 3.5%, TEA
o, 8%, water 95.696, the pond 0°196.

洗浄されたケーキHP Aを分析した結果、HPA61
.4%、水38.696であった。
As a result of analyzing the washed cake HP A, HPA61
.. 4%, water 38.696.

このケーキHPAを棚段式乾燥器で50”C1減圧下で
乾燥し製品HPA  46.4部を得た。
This cake HPA was dried in a tray dryer under a 50" C1 vacuum to obtain 46.4 parts of product HPA.

これを製品層とした。This was the product layer.

一方、洗浄の際に出たf液「を商品名アバライ)IR−
120B(カチオン交換樹脂)を用いて脱アミンした。
On the other hand, the f-liquid (product name: Abarai) IR-
Deamination was performed using 120B (cation exchange resin).

次に、398.1部のf液Iを2分し、このうち21.
5部とまた低沸留分12.1部とを反応器へ循環し、こ
れにIBA、58.4部と60%ホルマリン 40.5
部を混合し、45℃において窒素気流中で攪拌し、TE
A  2゜77部を加え、上記同様に反応を行なった。
Next, 398.1 parts of liquid I was divided into two parts, of which 21.
5 parts and also 12.1 parts of the low boiling fraction are recycled to the reactor, to which are added 58.4 parts of IBA and 40.5 parts of 60% formalin.
TE
2.77 parts of A was added and the reaction was carried out in the same manner as above.

この反応生成液にP液Iの残部を添加して低沸留分を留
去した。
The remainder of P liquid I was added to this reaction product liquid, and the low boiling fraction was distilled off.

低沸留分を留去した後の反応生成液を上記同様に晶析お
よび固液分離した。
After distilling off the low boiling fraction, the reaction product liquid was crystallized and separated into solid and liquid in the same manner as above.

更にこのケーキHPAを先にイオン交換樹脂で脱アミン
して得たP液で洗浄した。
Furthermore, this cake HPA was washed with a P solution obtained by previously deaminating it with an ion exchange resin.

上記同様の方法で乾燥し製品HPAを78゜5部を得た
。これを製品■とした。
It was dried in the same manner as above to obtain 78.5 parts of product HPA. This was designated as product ■.

この製品「は第1表に示す通り製品層に劣らず高品質で
あった。
As shown in Table 1, this product was as high quality as the other products.

第1表 実施例 2 IBA  1,240部と4096ホルマリンi、32
8部を混合し45℃において窒素気流中で攪拌し、67
部のTEAを加え実施例1同様にアルドール縮合反応お
よび低沸留分カットを行ない反応生成液 2,371部
と低沸留分264部を得た。
Table 1 Example 2 1,240 parts of IBA and 4096 formalin i, 32
8 parts were mixed and stirred at 45°C in a nitrogen stream, and 67
of TEA was added, and the aldol condensation reaction and low boiling fraction were cut in the same manner as in Example 1 to obtain 2,371 parts of reaction product liquid and 264 parts of low boiling fraction.

この低沸留分を留去した反応生成液にHPA濃度が21
.6%になるように1.6,500部の3.5%HPA
水溶液を添加し、40”Cまで冷却した。
The HPA concentration in the reaction product liquid after distilling off this low-boiling fraction was 21.
.. 1.6,500 parts of 3.5% HPA to make 6%
Aqueous solution was added and cooled to 40''C.

次に1時間攪拌下で保存した後円筒型(シャープレス型
)の遠心分離器を用いて固液分離を行なった。
Next, the mixture was stored under stirring for 1 hour, and then solid-liquid separation was performed using a cylindrical (Sharpless type) centrifuge.

このとき5,895.2部のP液Iが排出され、ケーキ
HPA  2,775.8部を得た。
At this time, 5,895.2 parts of P liquid I was discharged to obtain 2,775.8 parts of cake HPA.

次にこのケーキHPAを5,400部の6゜5%HPA
水溶液で洗浄した。
Next, add 5,400 parts of this cake HPA to 6°5% HPA.
Washed with aqueous solution.

このとき5,525.8・部のf液■が排出され、ケー
キHPA  2,650.0部を得た。
At this time, 5,525.8 parts of liquid f was discharged to obtain 2,650.0 parts of cake HPA.

このケーキHPAを回分式箱型通気乾燥器を用いて40
〜45℃通気下で乾燥し、製品HPA  1,585部
を得た。これを製品Iとした。
This cake HPA was dried for 40 minutes using a batch-type box-type aerated dryer.
It was dried under ventilation at ~45°C to obtain 1,585 parts of product HPA. This was designated as Product I.

次に5,895.2部のF液層を2分し、このうち1,
769部とまた先の低沸留分 264部とを反応器へ循
環し、これにIBA  1゜215部と40%ホルマリ
ン 1.205部を混合し、45℃において窒素気流中
で攪拌し、TEA  48部を加え、上記同様に反応を
行なった。
Next, 5,895.2 parts of the F liquid layer was divided into two parts, of which 1,
769 parts and 264 parts of the previous low-boiling fraction were circulated to the reactor, 1.215 parts of IBA and 1.205 parts of 40% formalin were mixed therewith, stirred at 45°C in a nitrogen stream, and TEA 48 parts were added and the reaction was carried out in the same manner as above.

この反応生成液にP液Iの残部を添加して低沸留分を留
去した。
The remainder of P liquid I was added to this reaction product liquid, and the low boiling fraction was distilled off.

低沸留分を留去した後の反応生成液を上記同様に晶析お
よび同液分離した。
The reaction product liquid after distilling off the low boiling fraction was crystallized and separated in the same manner as above.

更iここのケーキHPAを先のイオン交換樹脂を用いて
脱アミンして得たP液で洗浄した。
Furthermore, the cake HPA was washed with the P solution obtained by deaminating it using the ion exchange resin.

上記同様の方法で乾燥し製品HPA’l、605部を得
た。これを製品■とした。
It was dried in the same manner as above to obtain 605 parts of product HPA'l. This was designated as product ■.

第2表に製品Iおよび製品層の品質試験結果を示した。Table 2 shows the quality test results for Product I and the product layer.

第2表 実施例 6 触媒をN−メチルピペリジンおよび晶析時ノHPAa度
を18.5%に調製したほかは実施例2と同様の方法で
行ない1.6Q1部の製品■と1,594部の製品Iを
得た。
Table 2 Example 6 The same method as in Example 2 was used except that the catalyst was N-methylpiperidine and the degree of HPAa during crystallization was adjusted to 18.5%. Product I was obtained.

第3表 実施例 4 触媒をトリプロピルアミンおよび晶析時ノHPA濃度を
15゜0%に調製したほがは実施例2と同様の方法で1
0回くり返し15,908部のHPAを製造した。
Table 3 Example 4 The catalyst was prepared using tripropylamine and the HPA concentration during crystallization was adjusted to 15.0%.
The process was repeated 0 times to produce 15,908 parts of HPA.

1回〜10回の製品をコンポジットして品質分析したと
ころ第4表に示す通り高品質であった。
The quality analysis of the composites of the 1st to 10th products revealed that they were of high quality as shown in Table 4.

第4表 実施例 5 IBA  666.2部/時は経路2より、40%ホル
マリン 381.4部/時は経路3より、トリエチルア
ミン 16.7部/時は経路4より、低沸留分 140
.0部/時は経路9よりおよびP液I、639.5部/
時は経路29よりそれぞれ反応器1に供給された。反応
器1では92〜94℃、常圧下、窒素気流中でアルドー
ル縮合反応が行なわれた。
Table 4 Example 5 IBA 666.2 parts/hour from route 2, 40% formalin 381.4 parts/hour from route 3, triethylamine 16.7 parts/hour from route 4, low boiling fraction 140
.. 0 parts/hour from route 9 and P solution I, 639.5 parts/hour
time was supplied to reactor 1 through route 29, respectively. In reactor 1, an aldol condensation reaction was carried out at 92 to 94° C. under normal pressure in a nitrogen stream.

反応器1の底部から抜き出された反応生成液1543.
8部/時は経路5より、またP液1.1433.5部/
時は経路30より低沸留分カット塔6へ供給された。
Reaction product liquid 1543. extracted from the bottom of reactor 1.
8 parts/hour is from route 5, and P liquid 1.1433.5 parts/hour.
The water was supplied to the low-boiling fraction cut column 6 through a route 30.

低沸留分カット塔6で留去された低沸留分140.0部
/時は経路7より一旦留め槽8を通り、経路9より反応
器3に戻されアルドール縮合反応に再使用された。
140.0 parts/hour of the low-boiling fraction distilled off in the low-boiling fraction cut tower 6 passed through a retaining tank 8 via a route 7, and was returned to the reactor 3 via a route 9 to be reused in the aldol condensation reaction. .

低沸留分カット塔6の底部から抜き出された反応生成液
 2697.2部/時は経路1oより晶析器11へ供給
された。一方この晶析器11には脱アミンしたP液It
  91.7部/時が経路26より供給され、HP、l
1度 21゜6%に調製された。
2697.2 parts/hour of the reaction product liquid extracted from the bottom of the low-boiling fraction cut tower 6 was supplied to the crystallizer 11 via route 1o. On the other hand, this crystallizer 11 contains the deamined P liquid It.
91.7 parts/hour is supplied from route 26, HP, l
Once adjusted to 21°6%.

晶析器11の温度を30℃に一定に保ちHPAを連続的
に晶析させた。
The temperature of the crystallizer 11 was kept constant at 30° C. to continuously crystallize HPA.

晶析器11の底部より抜き出されたHPAスラリー液 
2789.0部/時は経路12より遠心分離機13に供
給された。
HPA slurry liquid extracted from the bottom of crystallizer 11
2789.0 parts/hour was supplied to centrifuge 13 via path 12.

このタンプの遠心分離機13は固液分離部と洗浄部に区
分されており、脱アミンしたFF&+[,4241,8
部/時を経路24より洗浄部に供給しケーキHPAを洗
浄した。
The centrifugal separator 13 of this tamp is divided into a solid-liquid separation section and a washing section.
parts/hour were supplied to the washing section through path 24 to wash the cake HPA.

洗浄されたケーキHPA  720.0部/時は経路1
4より真空乾燥器に供給した。
Washed cake HPA 720.0 parts/hour is route 1
4 was supplied to the vacuum dryer.

乾燥されたHPA  502.0部/時は経路16より
充填機17に供給され順次袋詰されて経路18より製品
として抜き出された。
502.0 parts/hour of dried HPA was supplied to a filling machine 17 through a route 16, sequentially packed into bags, and extracted as a product through a route 18.

かくして、14日間連続的にHPAを製造した。Thus, HPA was produced continuously for 14 days.

得られた製品のi(P Aは第3表に示す通り高品質で
あった。
The i(PA) of the obtained product was of high quality as shown in Table 3.

第6表Table 6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって連続的にHPAを製造す
るための工程図の一例である。 図面において1は反応器、6は低沸分カット塔、8は低
沸留分留め槽、11は晶析器、13は固液分離器、22
および28はr液留め槽、24はイオン交換樹脂塔、1
5は乾燥器、17は充填機を示す。 時許出願人 三菱瓦斯化学株式会社 代表者 長野和吉
FIG. 1 is an example of a process diagram for continuously producing HPA by the method of the present invention. In the drawing, 1 is a reactor, 6 is a low-boiling fraction cut column, 8 is a low-boiling fraction retention tank, 11 is a crystallizer, 13 is a solid-liquid separator, and 22
and 28 is an r liquid holding tank, 24 is an ion exchange resin tower, 1
5 is a dryer, and 17 is a filling machine. Permit applicant Mitsubishi Gas Chemical Co., Ltd. Representative Kazuyoshi Nagano

Claims (1)

【特許請求の範囲】[Claims] イソブチルアルデヒドとホルムアルデヒドをアミン触媒
存在下アルドール縮合反応させてヒドロキシピバルアル
デヒドを製造し、得られた反応生成液に水を添加、冷却
してヒドロキシピバルアルデヒドを晶析、固液分離し、
これを更に水で洗浄し高純度ヒドロキシピバルアルデヒ
ドを得る方法において、固液分離及び洗浄工程において
得られたろ液及び洗浄液に脱アミン処理を施したものを
晶析時の添加水及び/又は洗浄水として使用することを
特徴とする高純度ヒドロキシピバルアルデヒドの製造方
Produce hydroxypivalaldehyde by subjecting isobutyraldehyde and formaldehyde to an aldol condensation reaction in the presence of an amine catalyst, adding water to the resulting reaction product liquid, cooling it to crystallize hydroxypivalaldehyde, and separating it into solid and liquid.
In the method of obtaining high-purity hydroxypivalaldehyde by further washing with water, the filtrate and washing liquid obtained in the solid-liquid separation and washing steps are deamined, and then the water added during crystallization and/or washed A method for producing high-purity hydroxypivalaldehyde, which is characterized in that it is used as water.
JP59140139A 1984-07-06 1984-07-06 Method for producing high-purity hydroxypivalaldehyde Expired - Lifetime JPH0629206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140139A JPH0629206B2 (en) 1984-07-06 1984-07-06 Method for producing high-purity hydroxypivalaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140139A JPH0629206B2 (en) 1984-07-06 1984-07-06 Method for producing high-purity hydroxypivalaldehyde

Publications (2)

Publication Number Publication Date
JPS6118741A true JPS6118741A (en) 1986-01-27
JPH0629206B2 JPH0629206B2 (en) 1994-04-20

Family

ID=15261783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140139A Expired - Lifetime JPH0629206B2 (en) 1984-07-06 1984-07-06 Method for producing high-purity hydroxypivalaldehyde

Country Status (1)

Country Link
JP (1) JPH0629206B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663023A (en) * 1984-04-02 1987-05-05 Exxon Research And Engineering Company Hydrotreating with self-promoted molybdenum and tungsten sulfide catalyst
US4705619A (en) * 1984-12-28 1987-11-10 Exxon Research And Engineering Company Hydroprocessing with self-promoted molybdenum and tungsten sulfide catalyst
EP1568678A1 (en) * 2004-02-25 2005-08-31 Mitsubishi Gas Chemical Company, Inc. Stabilized hydroxypivalaldehyde
EP1752439A1 (en) * 2005-08-08 2007-02-14 Mitsubishi Gas Chemical Company, Inc. Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
JP2007070339A (en) * 2005-08-08 2007-03-22 Mitsubishi Gas Chem Co Inc Method for producing high-purity hydroxypivalaldehyde and/or its dimer
WO2014120480A1 (en) * 2013-01-31 2014-08-07 Eastman Chemical Company Preparation of hydroxy aldehydes
CN110759821A (en) * 2019-11-23 2020-02-07 张家港市华昌新材料科技有限公司 Neopentyl glycol production raw material recovery system and recovery method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY146487A (en) 2007-03-02 2012-08-15 Basf Se Method for producing hydroxypivalaldehyde and neopentyl glycol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168514A (en) * 1974-10-30 1976-06-14 Charbonnages Ste Chimique

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168514A (en) * 1974-10-30 1976-06-14 Charbonnages Ste Chimique

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663023A (en) * 1984-04-02 1987-05-05 Exxon Research And Engineering Company Hydrotreating with self-promoted molybdenum and tungsten sulfide catalyst
US4705619A (en) * 1984-12-28 1987-11-10 Exxon Research And Engineering Company Hydroprocessing with self-promoted molybdenum and tungsten sulfide catalyst
EP1568678A1 (en) * 2004-02-25 2005-08-31 Mitsubishi Gas Chemical Company, Inc. Stabilized hydroxypivalaldehyde
JP2005239599A (en) * 2004-02-25 2005-09-08 Mitsubishi Gas Chem Co Inc Method for stabilizing hydroxypivalaldehyde
US7126030B2 (en) 2004-02-25 2006-10-24 Mitsubishi Gas Chemical Company, Inc. Stabilized hydroxypivalaldehyde
KR101145071B1 (en) 2004-02-25 2012-05-11 미츠비시 가스 가가쿠 가부시키가이샤 Stabilized Hydroxypivalaldehyde
EP1752439A1 (en) * 2005-08-08 2007-02-14 Mitsubishi Gas Chemical Company, Inc. Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
JP2007070339A (en) * 2005-08-08 2007-03-22 Mitsubishi Gas Chem Co Inc Method for producing high-purity hydroxypivalaldehyde and/or its dimer
US7368612B2 (en) 2005-08-08 2008-05-06 Mitsubishi Gas Chemical Company, Inc. Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
WO2014120480A1 (en) * 2013-01-31 2014-08-07 Eastman Chemical Company Preparation of hydroxy aldehydes
CN110759821A (en) * 2019-11-23 2020-02-07 张家港市华昌新材料科技有限公司 Neopentyl glycol production raw material recovery system and recovery method thereof

Also Published As

Publication number Publication date
JPH0629206B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0523931B1 (en) Process for the production of bisphenol A
US2971010A (en) Production of dicarboxylic acid anhydrides
US4209646A (en) Process for crystallizing an adduct of 2,2-di(4-hydroxyphenyl) propane and phenol
FR2552426A1 (en) PROCESS FOR OBTAINING AQUEOUS GLYOXYLIC ACID SOLUTIONS
RU2338737C2 (en) Method of obtaining formaldehyde raw material with low water content
KR20070017908A (en) Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
JPS6118741A (en) Preparation of high-purity hydroxypivalic aldehyde
JPS59231033A (en) Purification of bisphenol a
CA1291170C (en) Process for washing and obtaining solids of slurry
JP3340068B2 (en) Improved method for simultaneous production of propylene oxide and styrene monomer
FR2467185A1 (en) PROCESSES FOR SEPARATION AND PURIFICATION OF RESORCINOL AND HYDROQUINONE
JPH0725798A (en) Production of highly pure bisphenol a
WO2014010510A1 (en) Method for producing bisphenol a
KR100392740B1 (en) Manufacturing method of adipic acid
JPS582236B2 (en) Method for isolating 4,4'-dihydroxydiphenylsulfone from a mixture of dihydroxydiphenylsulfone isomers
FR2505202A1 (en) PROCESS FOR THE RECOVERY OF DISSOLVED SOLID MATERIALS FROM AN AQUEOUS SOLUTION CONTAINING THEM
JPS5817464B2 (en) Method for producing nicotinamide
JPH05500522A (en) Preparation method of relatively pure P,P-bisphenol S
WO2004035512A1 (en) Process for producing bisphenol a
JP3917201B2 (en) Method for producing bisphenol A
US3996336A (en) Purification of phosphoric acid
US3655781A (en) Crystallization of 2-nitro-2-methyl-1-propanol
JP2863437B2 (en) Purification of trioxane
JP2962441B2 (en) Method for producing bisphenol A with low coloring properties
JPS5851939B2 (en) Vanillin production method