JPS6118733A - Recovery of 1,3-butadiene - Google Patents

Recovery of 1,3-butadiene

Info

Publication number
JPS6118733A
JPS6118733A JP59140105A JP14010584A JPS6118733A JP S6118733 A JPS6118733 A JP S6118733A JP 59140105 A JP59140105 A JP 59140105A JP 14010584 A JP14010584 A JP 14010584A JP S6118733 A JPS6118733 A JP S6118733A
Authority
JP
Japan
Prior art keywords
absorption tower
absorption
water
decarbonylation
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59140105A
Other languages
Japanese (ja)
Other versions
JPH0372209B2 (en
Inventor
Katsumi Ito
克美 伊藤
Yoshitaka Kawahara
義隆 川原
Masatoshi Arakawa
荒川 昌敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP59140105A priority Critical patent/JPS6118733A/en
Publication of JPS6118733A publication Critical patent/JPS6118733A/en
Publication of JPH0372209B2 publication Critical patent/JPH0372209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:In the recovery of the titled compound, the carbonyl compounds included in the reaction mixture gas resulting from the oxidative dehydrogenation of olefins is absorbed in water and the water is subjected to decarbonylation and a part of the resultant water is recycled whereby waste water is reduced. CONSTITUTION:n-Butene or C4 fraction containing n-butene, oxygen source and dilution gas which is inert to the reaction are fed into the reactor 1 in the presence of a catalyst to effect oxidative dehydrogenation. The reaction product is compressed, sent to the first absorption column 5 to effect absorption of by-products into water, then the other remaining by-products are fed into the second absorption column 6 to effect absorption by feeding the bottom fraction of the first absorption column 5 to the middle and the aqueous solution from the decarbonylation process 7 to the top of the second absorption column 6. Thus, 1,3-butadiene free from carbonyl compounds is recovered from the top and the aqueous solution containing by-products from the bottom of the column 6 is fed to the decarbonylation process 7. Then, decarbonylated water is fed partially to absorption columns 5, 6.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、1.3−ブタジエンの回収方法に関し、さら
に詳しくはオレフィンの酸化脱水素反応により得られる
反応生成ガス中に含まれるカルボニル化合物を水に吸収
し、主生成物の回収を容易にする、1.3−ブタジエン
の回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a method for recovering 1,3-butadiene, and more specifically to a method for recovering carbonyl compounds contained in a reaction product gas obtained by an oxidative dehydrogenation reaction of olefins. This invention relates to a method for recovering 1,3-butadiene, which facilitates the recovery of the main product.

(発明の背景) オレフィン類を酸化脱水素反応すると、微量のカルボニ
ル化合物(アセトアルデヒド・アクワレイン、ベンズア
ルデヒド等)が発生ずることが知られている。従来、こ
れらのカルボニル化合物を主生成物から分離、回収する
方法として、水により吸収除去する方法が行なわれてい
る(例えば特公昭4.5−17647号公報)。
(Background of the Invention) It is known that when olefins are subjected to an oxidative dehydrogenation reaction, trace amounts of carbonyl compounds (acetaldehyde, aqualein, benzaldehyde, etc.) are generated. Conventionally, as a method of separating and recovering these carbonyl compounds from the main product, a method of absorbing and removing them with water has been carried out (for example, Japanese Patent Publication No. 4.5-17647).

しかしながら、この方法は、高純度の製品を得る場合に
は、多量の水を用いる必要があり、またカルボニル化合
物を吸収した水溶液は、1 、 ”O00〜1.0.0
00ppm程度のカルボニル化合物を含んでいるため、
廃水処理が必要であり、この結果、多大の費用を要する
という欠点がある。
However, this method requires the use of a large amount of water in order to obtain a high-purity product, and the aqueous solution that has absorbed the carbonyl compound is
Because it contains about 00 ppm of carbonyl compounds,
The disadvantage is that wastewater treatment is required, resulting in high costs.

(発明の目的) 本発明の目的は、上記従来技術の欠点を除去し、カルボ
ニル化合物を含む廃水の量を大幅に低減せしめ、効率よ
<1.3−ブタジエンを回収することができる方法を提
供することにある。
(Objective of the Invention) The object of the present invention is to provide a method capable of eliminating the drawbacks of the above-mentioned prior art, significantly reducing the amount of wastewater containing carbonyl compounds, and efficiently recovering <1,3-butadiene. It's about doing.

(発明の概要) 本発明者らは、上記目的を達成するため種々研究の結果
、カルボニル化合物を吸収した水溶液を脱カルボニル処
理して得られる水溶液の一部を、再度、吸収塔に戻し、
反応ガス中のカルボニル化合物の除去に用いることによ
り、カルボニル化合物を含んだ廃水の量を大幅に削減せ
しめ、廃水処理にかかる費用をも大幅に低減せしめうろ
ことを見出し、本発明に到達した。
(Summary of the Invention) In order to achieve the above object, the present inventors have conducted various studies and found that a part of the aqueous solution obtained by decarbonylating an aqueous solution that has absorbed a carbonyl compound is returned to the absorption tower again.
The present invention has been achieved by discovering that scales can be used to remove carbonyl compounds from reaction gases, thereby significantly reducing the amount of wastewater containing carbonyl compounds and significantly reducing the cost of wastewater treatment.

本発明は、(a)n−ブテンまたはこれを含有するC4
留分を、酸化脱水素反応させて得られる反応生成ガスを
圧縮した後、第1吸収塔に供給し、副生成物を水に吸収
させる第1吸収工程と、(b)第1吸収塔で吸収されな
い副生成物を含む反応生成ガスを、さらに圧縮した後、
第2吸収塔に供給し、その中段から第1吸収塔の塔底液
を、その上段から後記脱カルボニル工程で得られる水溶
液を、さらに必要に応じてその塔頂付近から新鮮な水を
供給してml生成物を吸収させ、塔頂から実質的にカル
ボニル化合物を含まない1,3−ブタジエンを回収する
第2吸収塔工程と、および(c)第2吸収塔の塔底から
得られる、副生成物を含む水溶液を脱カルボニル処理す
る脱カルボニル工程と、該脱カルボニル工程で得られる
水溶液の一部を、第1吸収塔および、/または第2吸収
塔に吸収液として供給する工程とを含むことを特徴とす
る1、3−ブタジエンの回収方法である。
The present invention provides (a) n-butene or a C4 containing the same;
A first absorption step in which the reaction product gas obtained by subjecting the fraction to an oxidative dehydrogenation reaction is compressed and then supplied to a first absorption tower to absorb by-products in water; (b) in the first absorption tower; After further compression of the reaction product gas containing unabsorbed by-products,
The second absorption tower is supplied with the bottom liquid of the first absorption tower from the middle stage, the aqueous solution obtained in the decarbonylation step described later from the upper stage, and fresh water from near the top of the tower as necessary. (c) a second absorption column step in which 1,3-butadiene substantially free of carbonyl compounds is recovered from the top of the column; A decarbonylation step of decarbonylating an aqueous solution containing the product, and a step of supplying a portion of the aqueous solution obtained in the decarbonylation step to a first absorption tower and/or a second absorption tower as an absorption liquid. This is a method for recovering 1,3-butadiene.

本発明方法において、0−ブテンとはブテン−1および
/またはブテン−2を意味する。また、脱カルボニル処
理の方法としては、例えばエアレーション、蒸留等の方
法が挙げられる。
In the method of the invention, 0-butene means butene-1 and/or butene-2. Further, examples of the decarbonylation treatment include methods such as aeration and distillation.

以下、図面により本発明の詳細な説明する。第1図は本
発明方法の一実施例を示す工程図である。
Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a process diagram showing an embodiment of the method of the present invention.

本発明方法は、酸化脱水素反応後のガスからカルボニル
化合物を吸収除去する第1吸収塔工程、第2吸収塔工程
および脱カルボニル工程から主として構成される。図に
おいて、まずn−ブテンまたはn−ブテンを含有するC
4留分、酸素または空気等の酸素源、水蒸気および窒素
または二酸化炭素等の反応に不活性な希釈ガスは、例え
ばM。
The method of the present invention mainly comprises a first absorption tower step for absorbing and removing carbonyl compounds from the gas after oxidative dehydrogenation reaction, a second absorption tower step, and a decarbonylation step. In the figure, first, n-butene or C containing n-butene
4 fraction, an oxygen source such as oxygen or air, water vapor and a diluent gas inert to the reaction such as nitrogen or carbon dioxide, for example M.

−Bi系の固形触媒を充填した反応器1に供給され、酸
化脱水素反応が行なわれる。1qられた反応生成ガスは
、急冷塔2で冷却され、スクラバー3でヒユーム等の微
粉の副生成物を除去した後、圧縮ta4に導入される。
-It is supplied to a reactor 1 filled with a Bi-based solid catalyst, and an oxidative dehydrogenation reaction is carried out. The 1q reaction product gas is cooled in a quenching tower 2, and after removing fine powder by-products such as fume in a scrubber 3, it is introduced into a compressor TA4.

圧縮機としてはへ 2段または多段の圧縮機が用いられ
る。第1段目で0.1〜5kg/cnlGに圧縮された
ガスは、第1吸収塔5の塔底部に供給され、反応ガス中
のカルボニル化合物等が吸収除去される。第1吸収塔に
おける吸収液としては、後記脱カルボニル塔7の塔底液
が使用される。すなわち、該塔底液を第1吸収塔5て反
応生成ガスと接触させ、反応生成ガス中の一部カルボニ
ル化合物が吸収される。次いでカルボニル化合物が一部
除去された反応生成ガスは、第1吸収塔5の塔頂から再
度圧縮Ia4に導入され、3〜9 kg / crA 
cに圧縮された後、第2吸収塔6の塔底部に供給され、
さらにカルボニル化合物が吸収除去される。第2吸収塔
6における吸収液としては、(1)第1吸収塔の塔底液
(全量)、(2)後記脱カルボニル塔7の塔底ti、(
全量の30〜70%)および(3)追加供給する新鮮な
水(第2吸収塔6に供給される液全量00〜50%)が
使用される。これらの吸収液の供給場所としては、第2
吸収塔のより低い段か、ら、順次(1)第1吸収塔の塔
底液、(2)脱カルボニル塔の塔底液および塔頂付近に
追加供給する新鮮な水の順で供給されることが好ましい
。なお、第1吸収塔の塔底液を第2吸収塔の吸収液とし
て使用できるのは、第2吸収塔の操作圧力が第1吸収塔
の操作圧力の2〜10倍であるためである。
A two-stage or multi-stage compressor is used as the compressor. The gas compressed to 0.1 to 5 kg/cnlG in the first stage is supplied to the bottom of the first absorption tower 5, where carbonyl compounds and the like in the reaction gas are absorbed and removed. As the absorption liquid in the first absorption tower, the bottom liquid of the decarbonylation tower 7 described later is used. That is, the bottom liquid is brought into contact with the reaction product gas in the first absorption tower 5, and a portion of the carbonyl compound in the reaction product gas is absorbed. Next, the reaction product gas from which the carbonyl compound has been partially removed is introduced again into the compression Ia4 from the top of the first absorption tower 5, and is compressed at a rate of 3 to 9 kg/crA.
After being compressed to c, it is supplied to the bottom of the second absorption tower 6,
Furthermore, carbonyl compounds are absorbed and removed. The absorption liquid in the second absorption tower 6 includes (1) the bottom liquid of the first absorption tower (total amount), (2) the bottom ti of the decarbonylation tower 7 described later, (
(30 to 70% of the total amount) and (3) additionally supplied fresh water (00 to 50% of the total amount of liquid supplied to the second absorption tower 6). The supply location for these absorption liquids is the second
From the lower stage of the absorption tower, the liquid is supplied in this order: (1) the bottom liquid of the first absorption tower, (2) the bottom liquid of the decarbonylation tower, and fresh water that is additionally supplied near the top of the tower. It is preferable. The bottom liquid of the first absorption tower can be used as the absorption liquid of the second absorption tower because the operating pressure of the second absorption tower is 2 to 10 times the operating pressure of the first absorption tower.

第2吸収塔6では、反応生成ガス中のカルボニル化合物
が大部分吸収除去され、塔頂からは主生酸物である1、
3−ブタジエンが得られ、これは回収工程(図示せず)
へと送られる。
In the second absorption tower 6, most of the carbonyl compounds in the reaction product gas are absorbed and removed, and from the top of the tower, the main raw acids 1,
3-Butadiene is obtained, which undergoes a recovery step (not shown)
sent to.

一方、第2吸収塔6の塔底から得られるカルボニル化合
物を含んだ水溶液は、脱カルボニル塔7の上部へ供給さ
れ、脱カルボニル工程、すなわちエアーレションおよび
/または范留等の脱カルボニル処理手段によりカルボニ
ル化合物が塔頂から除去される。一方、脱カルボニル塔
7の塔底液の一部は、第1および/または第2吸収塔に
吸収液として供給循環される。脱カルボニル塔7の塔底
液の残部は気化器8に導入され、その一部は気化されて
ほとんど純粋な水となって反応ガスの希釈剤として使用
され、濃縮液(高沸カルボニルを含む水)は廃水処理工
程(図示せず)に送られる。
On the other hand, the aqueous solution containing the carbonyl compound obtained from the bottom of the second absorption tower 6 is supplied to the upper part of the decarbonylation tower 7 to perform a decarbonylation process, that is, decarbonylation treatment means such as aeration and/or decarbonization. The carbonyl compound is removed from the top of the column. On the other hand, a part of the bottom liquid of the decarbonylation tower 7 is supplied and recycled to the first and/or second absorption tower as an absorption liquid. The remainder of the bottom liquid of the decarbonylation column 7 is introduced into the vaporizer 8, where a part of it is vaporized to become almost pure water, which is used as a diluent for the reaction gas, and a concentrated liquid (water containing high-boiling carbonyls). ) is sent to a wastewater treatment process (not shown).

(発明の効果) 本発明方法によれば、反応ガス中のカルボニル化合物を
脱カルボニル工程からの回収水によって除去するように
したので、カルボニル化合物を含む廃水の処理量が、従
来の方法に比べて大幅に低減することができる。また本
発明においては、多段で反応生成ガスが圧縮されるため
、反応生成ガス中に含まれるカルボニル化合物、または
その重合物による圧縮機および関連配管内での閉塞を防
止する利点も得られる。
(Effects of the Invention) According to the method of the present invention, since the carbonyl compounds in the reaction gas are removed by the water recovered from the decarbonylation process, the amount of wastewater containing carbonyl compounds to be treated can be reduced compared to the conventional method. can be significantly reduced. Further, in the present invention, since the reaction product gas is compressed in multiple stages, there is also the advantage of preventing clogging in the compressor and related piping due to the carbonyl compound or its polymer contained in the reaction product gas.

(発明の実施例) 以下、本発明を実施例によりさらに詳細に説明する。(Example of the invention) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 第1図に示す工程図に従って本発明を実施した。Example The present invention was carried out according to the process diagram shown in FIG.

n−ブテン、空気および気化器8で発生し、た水蒸気を
混合して反応器1に供給し、M o −B i系。
n-butene, air, and steam generated in the vaporizer 8 are mixed and supplied to the reactor 1 to form a Mo-Bi system.

固形触媒を用いて、350 :Cで酸化脱水素反応を行
なった。次いで反応生成ガスを急冷浴2で急冷し、有機
酸、水等を除去した後、スクラバー3でヒユーム等の副
生成物を除去した。
The oxidative dehydrogenation reaction was carried out at 350:C using a solid catalyst. Next, the reaction product gas was quenched in a quenching bath 2 to remove organic acids, water, etc., and then by-products such as hume were removed in a scrubber 3.

次いでカルボニル化合物0.6544 m o 7!%
を含む反応生成ガス18.84 N rr? / Hr
を圧縮機4に導入して、3kg/cnlGに圧縮し、1
00°Cまで昇温した後、第1吸収塔5(塔径78.1
 in、多孔板段数15)の塔底部に供給した。
Then the carbonyl compound 0.6544 m o 7! %
Reaction product gas containing 18.84 N rr? / Hr
is introduced into compressor 4, compressed to 3 kg/cnlG, and
After raising the temperature to 00°C, the first absorption tower 5 (column diameter 78.1
in, the number of perforated plate plates was 15) at the bottom of the column.

第1吸収塔5においては、導管りを経て塔上部からカル
ボニル化合物を含む水溶液(cOD350ppm)が4
0℃、10j2/Hrで供給され、これを前記反応生成
ガスと接触させて、反応生成ガス中のカルボニル化合物
を吸収させた。カルボニル化合物が一部除去された反応
生成ガスは、塔頂から50℃で排出されるが、このガス
は再度、圧縮機4に導入され、9 kg / crA 
Gまで圧縮され、100°Cに昇温した状態で第2吸収
塔6(塔径78、1 璽m、多孔板段数40段)の塔底
部に供給される。
In the first absorption tower 5, an aqueous solution containing a carbonyl compound (cOD 350 ppm) is supplied from the upper part of the tower through a conduit.
It was supplied at 0° C. and 10j2/Hr, and was brought into contact with the reaction product gas to absorb the carbonyl compound in the reaction product gas. The reaction product gas from which carbonyl compounds have been partially removed is discharged from the top of the column at 50°C, but this gas is again introduced into the compressor 4 and compressed to 9 kg/crA.
It is compressed to G and heated to 100°C and then supplied to the bottom of the second absorption tower 6 (column diameter: 78, 1 m, number of perforated plates: 40).

第2吸収塔6においては、反応生成ガスは、第2吸収塔
のより低い段から供給される、第1吸収塔の塔底液(7
0℃)を40℃まで冷却した液10、3 A / Hr
と接触され、さらにこれより上部の段から供給される、
脱カルボニル塔7 (塔径78゜1ml、多孔板段数4
0段)の塔底液(40°C)IQ j! / Hrと接
触され、さらにその上部の塔頂付近の段から導管りによ
り追加供給される水(25’C)3j2/Hrと接触さ
れ、カルボニル化合物がほぼ完全に除去される。
In the second absorption tower 6, the reaction product gas is supplied from the lower stage of the second absorption tower, and the bottom liquid (7
0°C) cooled to 40°C 10.3 A/Hr
and is further supplied from the upper stage,
Decarbonylation column 7 (column diameter 78° 1 ml, number of perforated plates 4)
0 stage) tower bottom liquid (40°C) IQ j! /Hr, and further contacted with water (25'C)3j2/Hr which is additionally supplied via a conduit from a stage near the top of the column, and the carbonyl compound is almost completely removed.

第2吸収塔6の塔頂から50℃で1.3−ブタジエンを
主成分とする反応生成ガスが排出され、1.3−ブタジ
エン回収工程(図示せず)に送られる。
A reaction product gas containing 1,3-butadiene as a main component is discharged from the top of the second absorption tower 6 at 50° C. and sent to a 1,3-butadiene recovery step (not shown).

一方、第2吸収塔6の塔底から導管Fを経て排出される
カルボニル化合物を1.35 W t%含む水溶液(7
0°C)234/Hrは、脱カルボニル塔7の上部へ供
給される。脱カルボニル塔7では、塔底部から空気(2
5℃)を600 N e / Hr供給することにより
、大部分のカルボニル化合物が空気と共に塔頂部から排
出され(60℃)、カルボニル化合物回収工程(図示せ
ず)へ送られる。
On the other hand, an aqueous solution containing 1.35 W t% of a carbonyl compound (7
0°C) 234/Hr is fed to the upper part of the decarbonylation column 7. In the decarbonylation tower 7, air (2
Most of the carbonyl compounds are discharged from the top of the column (60°C) together with air and sent to a carbonyl compound recovery step (not shown).

一方、脱カルボニル塔7の塔底部より排出される、カル
ボニル化合物を含む水溶?Ii(cOD350ppm)
23j2/Hrのうち、大部分は第1吸収塔5および/
または第2吸収塔6に吸収液として、それぞれ導管りお
よびMを経て供給され、残部の37+/ Hrは、気化
器8(120℃)に供給される。120℃で気化された
水溶液のうち2.5A / Hrは、その高沸カルボニ
ル化合物が除去され、はとんど純粋な水となって希釈剤
として反応器1に供給される。一方、気化器8の底部よ
り抜き出された高沸カルボニル化合物(cOD2,10
100ppを含む水(L 20 ’C) 0.51! 
/ Hrは、廃水処理工程(図示せず)に送られる。
On the other hand, the aqueous solution containing the carbonyl compound discharged from the bottom of the decarbonylation column 7? Ii (cOD350ppm)
23j2/Hr, most of it is in the first absorption tower 5 and/or
Alternatively, it is supplied to the second absorption tower 6 as an absorption liquid through the conduit and M, respectively, and the remaining 37+/Hr is supplied to the vaporizer 8 (120°C). The 2.5 A/Hr of the aqueous solution vaporized at 120°C has its high-boiling carbonyl compounds removed, becomes almost pure water, and is supplied to the reactor 1 as a diluent. On the other hand, a high-boiling carbonyl compound (cOD2,10
Water containing 100 pp (L 20 'C) 0.51!
/Hr is sent to a wastewater treatment process (not shown).

第1表に上記本発明方法の工程における各導管中の成分
組成を示す。
Table 1 shows the composition of components in each conduit in the process of the method of the present invention.

以下余白 上記実施例によれば、廃水処理工程に入る水溶液の量は
、従来の1段吸収で、かつ脱カルボニル塔を使用しない
場合と比較して、例えば約97%減少させることができ
た。また圧縮機およびその関連配管でのカルボニル化合
物およびその重合物等による閉塞はほとんどみられず、
例えば3力月間の連続運転が可能であった。
According to the above example, the amount of aqueous solution entering the wastewater treatment process could be reduced by, for example, about 97% compared to the conventional one-stage absorption without using a decarbonylation column. In addition, there is almost no clogging caused by carbonyl compounds and their polymers in the compressor and related piping.
For example, continuous operation for three months was possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す工程図である。 ■・・・反応器、2・・・急冷塔、4・・・圧縮機、5
・・・第1吸収塔、6・・・第2吸収塔、7・・・脱カ
ルボニル塔、8・・・気化器。
FIG. 1 is a process diagram showing one embodiment of the present invention. ■... Reactor, 2... Quenching tower, 4... Compressor, 5
... first absorption tower, 6 ... second absorption tower, 7 ... decarbonylation tower, 8 ... vaporizer.

Claims (1)

【特許請求の範囲】[Claims] 1、(a)n−ブテンまたはこれを含有するC_4留分
を、酸化脱水素反応させて得られる反応生成ガスを圧縮
した後、第1吸収塔に供給し、副生成物を水に吸収させ
る第1吸収工程と、(b)第1吸収塔で吸収されない副
生成物を含む反応生成ガスを、さらに圧縮した後、第2
吸収塔に供給し、その中段から第1吸収塔の塔底液を、
その上段から後記脱カルボニル工程で得られる水溶液を
供給して副生成物を吸収させ、塔頂から実質的にカルボ
ニル化合物を含まない1,3−ブタジエンを回収する第
2吸収塔工程と、および(c)第2吸収塔の塔底から得
られる、副生成物を含む水溶液を脱カルボニル処理する
脱カルボニル工程と、該脱カルボニル工程で得られる水
溶液の一部を、第1吸収塔および/または第2吸収塔に
吸収液として供給する工程とを有することを特徴とする
1,3−ブタジエンの回収方法。
1. (a) After compressing the reaction product gas obtained by subjecting n-butene or the C_4 fraction containing it to an oxidative dehydrogenation reaction, it is supplied to the first absorption tower, and the by-products are absorbed in water. (b) After further compressing the reaction product gas containing by-products that are not absorbed in the first absorption tower,
The bottom liquid of the first absorption tower is supplied to the absorption tower, and the bottom liquid of the first absorption tower is supplied from the middle stage.
a second absorption tower step in which an aqueous solution obtained in the decarbonylation step described below is supplied from the upper stage to absorb byproducts, and 1,3-butadiene substantially free of carbonyl compounds is recovered from the top of the tower; c) A decarbonylation step in which the aqueous solution containing by-products obtained from the bottom of the second absorption tower is decarbonylated, and a part of the aqueous solution obtained in the decarbonylation step is transferred to the first absorption tower and/or the second absorption tower. 2. A method for recovering 1,3-butadiene, comprising the steps of supplying it as an absorption liquid to an absorption tower.
JP59140105A 1984-07-06 1984-07-06 Recovery of 1,3-butadiene Granted JPS6118733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140105A JPS6118733A (en) 1984-07-06 1984-07-06 Recovery of 1,3-butadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140105A JPS6118733A (en) 1984-07-06 1984-07-06 Recovery of 1,3-butadiene

Publications (2)

Publication Number Publication Date
JPS6118733A true JPS6118733A (en) 1986-01-27
JPH0372209B2 JPH0372209B2 (en) 1991-11-18

Family

ID=15261052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140105A Granted JPS6118733A (en) 1984-07-06 1984-07-06 Recovery of 1,3-butadiene

Country Status (1)

Country Link
JP (1) JPS6118733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082153A (en) * 2010-10-08 2012-04-26 Asahi Kasei Chemicals Corp Process for producing butadiene
JP2013213028A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing conjugated diene
US10329224B2 (en) 2012-03-13 2019-06-25 Asahi Kasei Chemicals Corporation Method for production of conjugated diolefin
JP2019123676A (en) * 2018-01-12 2019-07-25 三菱ケミカル株式会社 Production method of conjugated diene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082153A (en) * 2010-10-08 2012-04-26 Asahi Kasei Chemicals Corp Process for producing butadiene
JP2013213028A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing conjugated diene
US10329224B2 (en) 2012-03-13 2019-06-25 Asahi Kasei Chemicals Corporation Method for production of conjugated diolefin
JP2019123676A (en) * 2018-01-12 2019-07-25 三菱ケミカル株式会社 Production method of conjugated diene

Also Published As

Publication number Publication date
JPH0372209B2 (en) 1991-11-18

Similar Documents

Publication Publication Date Title
US6646141B2 (en) Process for the epoxidation of olefins
US4595788A (en) Process for producing butadiene
RU2639872C2 (en) Method for purifying propylenoxide
US4033617A (en) Process for the purification of ethylene oxide
JPS60126235A (en) Production of butadiene
JPS60115532A (en) Production of butadiene
JPH0665139A (en) Method for recovering acetic acid
JPH0276835A (en) Method for recovering methacrolein
JP2002514167A (en) Acrylic acid manufacturing method
JPH0397607A (en) Manufacture of hydrogen peroxide
KR101717817B1 (en) A method for preparing butadiene using oxidative dehydrogenation
JPH0414108B2 (en)
EP0325446A2 (en) Impurity removal from carbon monoxide and/or hydrogen-containing streams
JPS6118733A (en) Recovery of 1,3-butadiene
CN110072837A (en) The co-production of oxidative dehydrogenation of ethane and vinyl acetate
JPS6312458B2 (en)
KR100905267B1 (en) Peroxide Impurities Removal
JP2004359614A (en) Method for preparing acrylic acid
JPH04187657A (en) Purification of acrylic acid
JPH0834757A (en) Purification of acrylic acid
JPS6296447A (en) Recovery of methacrylic acid
CN112028017B (en) Dehydrogenation separation purification process for carbon monoxide raw material gas
NO992412D0 (en) Process for the preparation of saturated carboxylic acids having 1-4 C atoms and apparatus for use in the process
JP4483156B2 (en) Method for purifying gamma-butyrolactone
KR20050016815A (en) A high-efficient method for preparing acrylic acid