JPS61186880A - Ultrasonic sensor - Google Patents

Ultrasonic sensor

Info

Publication number
JPS61186880A
JPS61186880A JP2718685A JP2718685A JPS61186880A JP S61186880 A JPS61186880 A JP S61186880A JP 2718685 A JP2718685 A JP 2718685A JP 2718685 A JP2718685 A JP 2718685A JP S61186880 A JPS61186880 A JP S61186880A
Authority
JP
Japan
Prior art keywords
circuit
amplification factor
distance
level
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2718685A
Other languages
Japanese (ja)
Inventor
Mineo Okamoto
峰雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2718685A priority Critical patent/JPS61186880A/en
Publication of JPS61186880A publication Critical patent/JPS61186880A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the detection of an object body at the boundary of a detection area when a reflected wave is detected by providing an amplification factor varying means which makes the amplification factor of an amplifying circuit smaller as the distance to an obstacle is shorter. CONSTITUTION:Amplifying circuits 6 and 8 and a transmitter receiver 7, a tuning amplifying circuit 9, a detecting circuit 11, a level detecting circuit 12, and switching circuit 17 and an integration circuit 18, etc., are provided. When a reflected wave returns. A fine-level signal passed through the transmitter receiver 7 is amplified by the circuit 8 of a receiving circuit 2 and further selected by the circuit 9. The signal from the circuit 9 is detected by the circuit 11 and the circuit 12 operates when the signal is higher than an operation level. When the circuit 17 operates, on the other hand, the integral output of the circuit 18 is inputted to the circuit 9 to improve the amplification factor of the circuit 9 according to the distance to the object body. In this case, the output of the circuit 18 is inputted to the circuit 9 to vary the increase rate of the amplification factor according to the distance. Namely, the amplification factor is made small for short distance and made large for long distance, and the amplification factor of a reverberation component is decreased to prevent malfunction due to the reverberation.

Description

【発明の詳細な説明】 [技術分野1 本発明は、車両に取り付けて障害物を検知する車両用の
超音波センサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to an ultrasonic sensor for a vehicle that is attached to a vehicle to detect obstacles.

[背景技術1 従来、反射式超音波センサーにおいて、検知物体からの
反射波は空気の流れ等の物理的条件で常にふらふらと増
減を繰り返しており、特に検知エリアのギリギ′すにお
いてはその変動がはげしいため、反射レベルが増えた瞬
間は動作するが、次の瞬間減少し、反射レベルが動作レ
ベル以下になるために動作しなくなり、この現象を繰り
返すため、超音波センサーは常にオン、オフを繰り返し
て不安定であった。
[Background technology 1] Conventionally, in reflection-type ultrasonic sensors, the reflected waves from the sensing object constantly increase and decrease due to physical conditions such as air flow, and the fluctuations are particularly noticeable at the very edge of the detection area. Because of this, the ultrasonic sensor works the moment the reflection level increases, but then decreases the next moment, and stops working because the reflection level falls below the operating level.This phenomenon repeats, so the ultrasonic sensor is constantly turned on and off. It was unstable.

最近では、この欠点を補うため一旦キャッチすれば(オ
ンすれば)増幅器の利得を一定値増幅率して、次の瞬間
に反射レベルが下がってもこの一定値によりオフレベル
まで下がり切らないようにし、安定する方法がとられる
ようになった。しかし、この方法であると常に一定値増
幅率をアップするため、変動の多い遠距離からの反射波
と、割と変動の少ない近距離からの反射波を同時に一定
値7ツブしており、この増幅率のアップにより残響成分
もアンプされるため、もともと大きがった残響成分を検
知して増幅率をアップすることにより、デート時間をオ
ーバーしてしまうまで残響成分を大きくしてしまい、そ
のため一旦検知すると、その検知物体を取り去っても残
響成分が大きくなり、デート時間内に入っているため、
オフしないという現象が生じていた。この状態を第3図
により説明する。第3図(a)は超音波センサーから送
波された送波信号S、を示し、第3図(b)は障害物か
らの反射波を示し、イは残響成分、口は近r離からの反
射波、ハは遠距離からの反射波を示している。この第3
図(b)に示す通常の状態の反射波a、ハは風等の影響
により破線で示すレベルと、実線で示すレベルとの間で
変動する。反射波口。
Recently, in order to compensate for this drawback, once the amplifier is caught (once it is turned on), the gain of the amplifier is amplified to a constant value, and even if the reflection level decreases at the next moment, this constant value prevents it from decreasing to the off level. , a method of stabilization has been adopted. However, with this method, in order to always increase the amplification factor by a constant value, the reflected waves from a long distance, which have a lot of fluctuation, and the reflected waves from a short distance, which have relatively little fluctuation, are simultaneously multiplied by a constant value of 7. Since the reverberation component is also amplified by increasing the amplification factor, by detecting the reverberation component that was originally large and increasing the amplification factor, the reverberation component becomes large until the date time is exceeded. When detected, the reverberation component becomes large even if the detected object is removed, and since it is within the date time,
There was a problem where it wouldn't turn off. This state will be explained with reference to FIG. Figure 3 (a) shows the transmitted signal S transmitted from the ultrasonic sensor, Figure 3 (b) shows the reflected wave from an obstacle, A is the reverberation component, and the mouth is from near and far. , and C shows the reflected wave from a long distance. This third
The reflected waves a and c in the normal state shown in FIG. 3(b) fluctuate between the level shown by the broken line and the level shown by the solid line due to the influence of wind and the like. Reflection wave mouth.

への破線のレベルは動作レベルvthを越えているため
動作信号を出力するが、実線のレベルでは動作しないこ
とになる。これを防止するため、増幅器の増幅率を一定
値アツブして反射波信号が変動してもtpJ3図(c)
に示すように動作レベルvthを必ず越えるようにして
いる。ところが、増幅率をアップすると、残響成分イも
増加し、上述のように検知物体を取り去っても残響成分
イは大きくなったままであり、この残響成分イが第3図
(d)に示すデート時間T1内に入り、検知物体がない
にもかかわらず動作してしまうという問題があった。
Since the level indicated by the broken line exceeds the operating level vth, an operating signal is output, but no operation occurs at the level indicated by the solid line. To prevent this, the amplification factor of the amplifier is increased to a constant value, so that even if the reflected wave signal fluctuates, tpJ3 (c)
As shown in the figure, the operating level vth is always exceeded. However, when the amplification factor is increased, the reverberation component A also increases, and even if the sensing object is removed as described above, the reverberation component A remains large, and this reverberation component A increases at the date time shown in Figure 3(d). There was a problem in that the sensor entered T1 and operated even though there was no object to be detected.

[発明の目的1 本発明は上述の点に鑑みて提供したものであって、必要
に応じた検知による増幅率のアップを行ない、検知エリ
アのギリギリの動作の安定化を図ることにより、残響成
分の不必要な増加を少なくし、一旦検知すればオフしな
いという不具合をなくすようにした超音波センサーを提
供することを目的とするものである。
[Objective of the Invention 1] The present invention has been provided in view of the above-mentioned points, and by increasing the amplification factor by detection as necessary and stabilizing the last-minute operation of the detection area, the reverberation component It is an object of the present invention to provide an ultrasonic sensor that reduces unnecessary increases in the amount of ultrasonic waves and eliminates the problem of not turning off the sensor once it has been detected.

[発明の開示1 以下、本発明の実施例を図面により説明する。[Disclosure of the invention 1 Embodiments of the present invention will be described below with reference to the drawings.

第1図は超音波センサーのブロック図を示すものであり
、送波回路1、送受波器7及び受波回路2から構成され
ている。送波回路1は、送波する超音波の間隔を決定す
る送波間隔制御回路3と、送波間隔制御回路3により駆
動されて超音波の送波信号幅を決める単安定マルチバイ
ブレータ4と、単安定マルチバイブレータ4により駆動
される発振回路5と、発振回路5出力を増幅する増幅回
路6とから構成されている。送受波器7は例えばマイク
ロフォンがちな9Mi音波の送波と反射波の受波とを兼
ねている。また、受波回路2は、送受波器7からの反射
波を増幅する増幅回路8と、増幅回路8の出力信号を選
択増幅する同調増幅回路9と、同調増幅回路9出力を検
波する検波回路11と、検波回路11出力が動作レベル
Vth以上であるかどうかを検出するレベル検出回路1
2と、レベル検出回路12出力とデート回路14出力と
をアンドデート13によって論Pl!積した出力により
報知乃至表示する表示回路15と、同調増幅回路9の増
1幅率を可変するスイッチング回路17と、デート回路
14がらのデート信号を積分した積分出力をスイッチン
グ回路17に入力する積分回路18等から構成されてい
る。尚、後述するように第1図の破線で囲まれた同調増
幅回路9、スイッチング回路17、積分回路18で増幅
率可変手段が構成される。
FIG. 1 shows a block diagram of an ultrasonic sensor, which is composed of a wave transmitting circuit 1, a wave transmitter/receiver 7, and a wave receiving circuit 2. The transmitter circuit 1 includes a transmitter interval control circuit 3 that determines the interval between transmitted ultrasound waves, and a monostable multivibrator 4 that is driven by the transmitter interval controller 3 and determines the width of the ultrasound transmitter signal. It is comprised of an oscillation circuit 5 driven by a monostable multivibrator 4 and an amplifier circuit 6 that amplifies the output of the oscillation circuit 5. The transducer/receiver 7 serves both to transmit 9Mi sound waves, which are often used with microphones, and to receive reflected waves. The wave receiving circuit 2 also includes an amplifier circuit 8 that amplifies the reflected wave from the transducer 7, a tuned amplifier circuit 9 that selectively amplifies the output signal of the amplifier circuit 8, and a detection circuit that detects the output of the tuned amplifier circuit 9. 11, and a level detection circuit 1 that detects whether the output of the detection circuit 11 is equal to or higher than the operating level Vth.
2, the output of the level detection circuit 12, and the output of the date circuit 14, and the logic Pl! by AND date 13! a display circuit 15 that notifies or displays the multiplied output; a switching circuit 17 that varies the amplification factor of the tuned amplifier circuit 9; and an integral circuit that inputs the integral output obtained by integrating the date signal from the date circuit 14 to the switching circuit 17. It is composed of a circuit 18 and the like. Incidentally, as will be described later, the tuned amplifier circuit 9, the switching circuit 17, and the integrating circuit 18 surrounded by the broken line in FIG. 1 constitute an amplification factor variable means.

次に、超音波センサーの通常の動作を説明する。今、超
音波センサーに電源が投入されると、送波間隔制御回路
3にて単安定マルチパイプレーク4が駆動され、この単
安定マルチパイプレーク4の出力にて発振回路5が駆動
される。この発振回路5は送受波器7を駆動する周波数
を発生させ、この発振回路5からの周波数が増幅回路6
にて増幅されて送受波器7に送り、送受波器10より検
知物体に向かりて超音波が送波される。反射波がはね返
ってくると、送受波器7を介した微弱な信号は受波回路
2の増幅回路8により増幅され、さらに同調増幅回路9
で選択される。同調増幅回路9からの信号は検波回路1
1で検波され、動作レベル以上であればレベル検出回路
12が働く。つまり、いわゆる動作レベルの検出がこの
レベル検出回路12で行なわれる。そして、検波出力が
動作レベルVthを越えておればアンドデート13にそ
の信号が送られ、アンドデート13ではデート回路14
のデート出力とで論理積が行なわれ、つまり、デート回
路14のデート時間内に検波出力があればアンドデート
13より48号が表示回路15に出力され、表示回路1
5が働き、表示乃至報知を行なう。
Next, the normal operation of the ultrasonic sensor will be explained. Now, when the ultrasonic sensor is powered on, the monostable multi-pipe lake 4 is driven by the wave transmission interval control circuit 3, and the oscillation circuit 5 is driven by the output of the monostable multi-pipe lake 4. This oscillation circuit 5 generates a frequency that drives a transducer 7, and the frequency from this oscillation circuit 5 is transmitted to an amplifier circuit 6.
The ultrasonic waves are amplified and sent to the transducer 7, and the ultrasonic waves are transmitted from the transducer 10 toward the object to be detected. When the reflected wave bounces back, the weak signal that has passed through the transducer 7 is amplified by the amplifier circuit 8 of the receiver circuit 2, and is further amplified by the tuned amplifier circuit 9.
is selected. The signal from the tuned amplifier circuit 9 is transmitted to the detection circuit 1
1, and if the level is above the operating level, the level detection circuit 12 is activated. That is, so-called operation level detection is performed by this level detection circuit 12. If the detected output exceeds the operating level Vth, the signal is sent to the AND-DATE 13, and in the AND-DATE 13, the date circuit 14 is
In other words, if there is a detection output within the date time of the date circuit 14, No. 48 is output from the AND date 13 to the display circuit 15, and the display circuit 1
5 operates to perform display or notification.

次に、本発明の要旨とするところについて説明する。尚
、f52図のA−Eは第1図のA−E点の波形を示す。
Next, the gist of the present invention will be explained. Note that A-E in Fig. f52 indicates the waveform at point A-E in Fig. 1.

まず、第2図(a)に示す信号が送受波器7を介して送
波され、この送受波器7から送波された超音波はその反
射波として第2図(b)に示すような波形を得る。イは
残響成分、口は近距離からの反射波、ハは遠距離からの
反射波を示している。このとき、反射波口、への破線は
変化のMAX、実線は変化のMINとする。近距離の検
知物体からの反射波口の方が、遠距離の検知物体からの
反射波ハよりその変動は少ない。また、この反射波(破
線の状態)がレベル検出回路12で設定した動作レベル
Vthを越えたとき、アンドデート13から出力信号が
出て、スイッチング回路17を動作させる。また、この
ときデート回路14からは第2図(c)に示すようにH
レベルのデート出力が出され、このデート出力が積分回
路18に入力される。そして、このデート出力は積分回
路18によって第2図(d)に示すような積分された信
号が出力され、スイッチング回路17に入力される。ア
ンドデート13からの信号にてスイッチング回路17が
動作すると、積分回路18の積分出力が同調増幅回路9
に入力され、検知物体との距離に応じて同調増幅回路9
の増幅率をアップさせる。すなわち、反射波が一旦動作
しベルvthを越えた時には、同調増幅回路9の増幅率
をアップして風等により反射波のレベルが変動しても、
最小となっても動作レベルVthを必ずオーバーするよ
うにして、動作を安定させるのであるが、本発明では、
同調増幅回路9の増幅率を一律に上げるのではなく、積
分回路18の出力を同調増幅回路9に入力して距離に応
じて増幅率のアップ率を変える、つまり、近距離は増幅
率を小とし、遠距離は増幅率を大となるようにして、残
響成分イの増幅率を小さくして、残響による誤動作を防
止するものである。
First, the signal shown in FIG. 2(a) is transmitted via the transducer 7, and the ultrasonic wave transmitted from the transducer 7 becomes a reflected wave as shown in FIG. 2(b). Get the waveform. A shows the reverberation component, the mouth shows the reflected wave from a short distance, and C shows the reflected wave from a long distance. At this time, the broken line to the reflected wave mouth is the MAX change, and the solid line is the MIN change. The wave reflected from a sensing object at a short distance has less fluctuation than the wave reflected from a sensing object at a long distance. Further, when this reflected wave (the state shown by the broken line) exceeds the operating level Vth set by the level detection circuit 12, an output signal is output from the AND date 13 and the switching circuit 17 is operated. At this time, the date circuit 14 outputs H as shown in FIG. 2(c).
A level date output is output, and this date output is input to the integrating circuit 18. Then, this date output is outputted by the integrating circuit 18 as an integrated signal as shown in FIG. 2(d), and is inputted to the switching circuit 17. When the switching circuit 17 is activated by the signal from the AND date 13, the integral output of the integrating circuit 18 is transmitted to the tuned amplifier circuit 9.
is input to the tuned amplifier circuit 9 according to the distance to the detected object.
Increase the amplification factor of In other words, once the reflected wave operates and exceeds the bell vth, the amplification factor of the tuned amplifier circuit 9 is increased so that even if the level of the reflected wave fluctuates due to wind etc.
In the present invention, the operation is stabilized by ensuring that the operation level Vth is exceeded even if it is the minimum.
Rather than uniformly increasing the amplification factor of the tuned amplifier circuit 9, the output of the integrating circuit 18 is input to the tuned amplifier circuit 9, and the increase rate of the amplification factor is changed according to the distance.In other words, the amplification factor is decreased at short distances. The amplification factor is increased at long distances, and the amplification factor of the reverberation component A is decreased to prevent malfunctions due to reverberation.

以下に詳述する。近距離にある反射波口の変動幅を比で
表すと、近距離の反射変動のMINとMAXの比X2/
X1は x2/に、  < b2/l+。
The details are explained below. Expressing the fluctuation range of the reflected wave opening at a short distance as a ratio, the ratio of MIN and MAX of the reflection fluctuation at a short distance is X2/
X1 becomes x2/, < b2/l+.

となる。尚、h2、h、は遠距離からの反射波へのMA
XとMINの幅を示している。従って、近距離の増幅率
は小さくてよく、すなわち、近距離にある検知物体は遠
距離にある検知物体に対し、少ない増幅率で動作レベル
vthを越えさせることができることになる。デート回
路14からのデート信号は積分回路18により第2図(
d)のよろに変換され、スイッチング回路17によりそ
の積分出力が同調増幅回路9に伝わったり伝わらなかっ
たりする。これは、検知物体の反射レベルが検知レベル
(動作レベル)VLhを越えたがどうかによる。
becomes. In addition, h2, h is the MA for reflected waves from a long distance.
It shows the width of X and MIN. Therefore, the amplification factor at a short distance may be small, that is, a sensing object located at a short distance can be made to exceed the operating level vth with a small amplification factor relative to a sensing object located at a long distance. The date signal from the date circuit 14 is processed by the integrating circuit 18 as shown in FIG.
d), and the integrated output is transmitted to the tuned amplifier circuit 9 or not by the switching circuit 17. This depends on whether the reflection level of the detection object exceeds the detection level (operation level) VLh.

また、同調増幅回路9に積分された電圧が加わったとき
、その電圧レベルによりその増幅率が変化するようにし
てあり、すなわち、遠距離に相当するほど積分回路18
の出力電圧が商くなるので、この積分回路18の出力電
圧が高くなるほど同調増幅回路9の増幅率が高くなるよ
うにしている。
Further, when an integrated voltage is applied to the tuned amplifier circuit 9, the amplification factor is changed depending on the voltage level.
Since the output voltage of the integrating circuit 18 becomes a quotient, the amplification factor of the tuned amplifier circuit 9 increases as the output voltage of the integrating circuit 18 increases.

第2図の波形はこの積分回路18の出力波形が同調増幅
回路9に入力されて増幅率がアップした状態であり、反
射波を一旦検知すると反射波の変動分のMIN値で動作
レベルVthまで持ち上げられることを示している。こ
れにより、残響成分イは増幅率のアップ率の少ない極近
距離に相当するために、はとんど検知により増幅される
ことはない。
The waveform in Fig. 2 is a state in which the output waveform of the integrating circuit 18 is input to the tuned amplifier circuit 9 and the amplification factor is increased, and once a reflected wave is detected, the operating level Vth is reached by the MIN value of the fluctuation of the reflected wave. It shows that it can be lifted. As a result, since the reverberation component A corresponds to a very close distance where the increase rate of the amplification factor is small, it is rarely amplified by detection.

また、反射波レベルの変動の大きな遠距離からの反射に
対しては検知時その分だけ同調増幅回路9による増幅率
のアップが大きいので、オン、オフの不安定状態を繰り
返すことはないものである。
In addition, for reflections from a long distance where the reflected wave level fluctuates greatly, the amplification factor by the tuned amplifier circuit 9 is increased by the amount at the time of detection, so there is no possibility of repeated unstable on/off states. be.

[発明の効果1 本発明は上述のように、超音波を送波する送波回路と該
超音波による障害物からの反射波を受波する受波回路と
を備え、反射波を検出して障害物の存在を検知したとき
上記受波回路の増幅回路の増幅率を上げて反射波レベル
を増大させるようにした超音波センサーにおいて、障害
物との距離が短い程上記増幅回路の増幅率を小さく可変
させる増幅率可変手段を設けたものであるから、増幅率
可変手段によって、反射波の検知時、検知エリアギリギ
リの検知物体の検知を安定させることができ、さらにそ
の変動に応じて増幅率を変化するために検知時残響成分
を検知してオン動作がしっばなしになるということもな
く、信頼性の高い動作を得ることができるという効果を
奏するものである。
[Effects of the Invention 1] As described above, the present invention includes a wave transmitting circuit that transmits ultrasonic waves and a wave receiving circuit that receives waves reflected by the ultrasonic waves from obstacles, and detects the reflected waves. In an ultrasonic sensor that increases the amplification factor of the amplification circuit of the receiving circuit to increase the reflected wave level when the presence of an obstacle is detected, the amplification factor of the amplification circuit increases as the distance to the obstacle becomes shorter. Since the amplification factor variable means is provided with a small amplification factor variable means, when detecting a reflected wave, it is possible to stabilize the detection of a detection object at the edge of the detection area, and furthermore, the amplification factor can be adjusted according to the variation. This has the effect that highly reliable operation can be achieved without the need for constant on operation due to the detection of reverberant components during detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図、@2図は同上の
動作波形図、第3図は従来例の動作波形図である。 1は送波回路、2は受波回路、9は同調増幅回路、18
は積分回路を示す。 代理人 弁理士 石 1)長 七 s2図 113図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an operational waveform diagram of the same as above, and FIG. 3 is an operational waveform diagram of a conventional example. 1 is a wave transmitting circuit, 2 is a wave receiving circuit, 9 is a tuned amplifier circuit, 18
indicates an integrating circuit. Agent Patent Attorney Stone 1) Chief 7s2 Figure 113

Claims (2)

【特許請求の範囲】[Claims] (1)超音波を送波する送波回路と該超音波による障害
物からの反射波を受波する受波回路とを備え、反射波を
検出して障害物の存在を検知したとき上記受波回路の増
幅回路の増幅率を上げて反射波レベルを増大させるよう
にした超音波センサーにおいて、障害物との距離が短い
程上記増幅回路の増幅率を小さく可変させる増幅率可変
手段を設けて成ることを特徴とする超音波センサー。
(1) Equipped with a wave transmitting circuit that transmits ultrasonic waves and a wave receiving circuit that receives waves reflected by the ultrasonic waves from obstacles, and when the presence of the obstacle is detected by detecting the reflected waves. In an ultrasonic sensor that increases the amplification factor of an amplification circuit of a wave circuit to increase a reflected wave level, an amplification factor variable means is provided that varies the amplification factor of the amplification circuit to a smaller value as the distance to an obstacle becomes shorter. An ultrasonic sensor characterized by:
(2)増幅回路の増幅率を可変する上記増幅率可変手段
は、デート出力信号を積分する積分回路と、この積分回
路の出力に応じて増幅率を設定する同調増幅回路とで構
成したことを特徴とする特許請求の範囲第1項記載の超
音波センサー。
(2) The amplification factor variable means for varying the amplification factor of the amplification circuit is composed of an integrator circuit that integrates the date output signal and a tuned amplification circuit that sets the amplification factor according to the output of this integrator circuit. An ultrasonic sensor according to claim 1, characterized in:
JP2718685A 1985-02-14 1985-02-14 Ultrasonic sensor Pending JPS61186880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2718685A JPS61186880A (en) 1985-02-14 1985-02-14 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2718685A JPS61186880A (en) 1985-02-14 1985-02-14 Ultrasonic sensor

Publications (1)

Publication Number Publication Date
JPS61186880A true JPS61186880A (en) 1986-08-20

Family

ID=12214043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2718685A Pending JPS61186880A (en) 1985-02-14 1985-02-14 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JPS61186880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769247B2 (en) * 1994-03-28 1998-06-25 村田工業株式会社 Manufacturing method of wire crimping harness

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159356A (en) * 1974-06-11 1975-12-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159356A (en) * 1974-06-11 1975-12-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769247B2 (en) * 1994-03-28 1998-06-25 村田工業株式会社 Manufacturing method of wire crimping harness

Similar Documents

Publication Publication Date Title
US7522472B2 (en) Obstacle detection system
JPS5952780A (en) Intrusion detector
KR20050075936A (en) Ultrasonic distance measuring method and device by frequency measurement with comparator
JPS61186880A (en) Ultrasonic sensor
JPS5845673B2 (en) Ultrasonic object detector
EP4184205A1 (en) Method and device for detecting an object using an ultrasonic transducer
JP2593566Y2 (en) Alarm device
JPH05232242A (en) Ultrasonic sensor
JP2903781B2 (en) Ultrasonic transducer drive circuit
KR0129846B1 (en) Measuring apparatus and method for distance by using ultra-sonic
JP2001235538A (en) Ultrasonic transmitting-receiving circuit and object detector for visually handicapped person
JP2002311129A (en) Receiver circuit of underwater detection apparatus
JPH05210391A (en) Muffler
KR0119925B1 (en) Measuring apparatus and method for distance by using ultra-sonic
JPH0483192A (en) Ultrasonic sensor
JPH08160060A (en) Method for controlling gain of reception wave in measuring device using ultrasonic wave
JPS6298281A (en) Detecting device for moving body
JPS5855775A (en) Object detector
JPH11258335A (en) Underwater detection device
JP2734279B2 (en) Transmitter for sonar
JPH03239979A (en) Receiving equipment for detecting ultrasonic wave
JPH05175880A (en) Transmitting power controller
JPH01311290A (en) Ultrasonic detecting device
JPH0772242A (en) Active sonar apparatus
JPH07140231A (en) Ultrasonic sensor