JPS61186516A - Spinning of aromatic polyester fiber - Google Patents

Spinning of aromatic polyester fiber

Info

Publication number
JPS61186516A
JPS61186516A JP2611585A JP2611585A JPS61186516A JP S61186516 A JPS61186516 A JP S61186516A JP 2611585 A JP2611585 A JP 2611585A JP 2611585 A JP2611585 A JP 2611585A JP S61186516 A JPS61186516 A JP S61186516A
Authority
JP
Japan
Prior art keywords
melt
spinning
polymer
aromatic polyester
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2611585A
Other languages
Japanese (ja)
Other versions
JPH0633526B2 (en
Inventor
Hiroaki Sugimoto
杉本 宏明
Toshiyuki Kobashi
小橋 利行
Seiji Takao
高尾 精二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Japan Exlan Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd, Sumitomo Chemical Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP60026115A priority Critical patent/JPH0633526B2/en
Publication of JPS61186516A publication Critical patent/JPS61186516A/en
Publication of JPH0633526B2 publication Critical patent/JPH0633526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:A melt-spinning unit in which its polymer pathes are filled with meltal or ceramic is used to effect melt-spinning of a specific polyester whereby the residence time of the polymer is controlled to produce polyester fiber of high strength and high elasticity. CONSTITUTION:The inside of the polymer paths in the melt-spinning unit is filled with granules of a metal such as gold or silver or ceramic such as alumina or zirconia, then an aromatic polyester which shows optical anisotropy, when melted and has a flowing temperature of 280-380 deg.C is melt-extruded through the above-stated unit so that the residence time of the polymer in the unit is controlled less than 30min, preferably for 2-20min to prevent the melted polymer from bubbling and deteriorating and give aromatic polyester fiber of high strength and elasticity with improved operation stability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度、高弾性率を有する芳香族ポリエステル
繊維の溶融紡糸法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for melt spinning aromatic polyester fibers having high strength and high modulus of elasticity.

(従来の技術) 高強度、高弾性率を有する有機繊維としては芳香族ポリ
アミド(特公昭47−2489号他)が有名であり、各
種用途に使われ始めているが、重合に耳側な溶剤を必要
とし、紡糸も硫酸溶液を使うため、装を面、副生物等に
問題を有している。
(Prior art) Aromatic polyamides (Japanese Patent Publication No. 47-2489, etc.) are famous as organic fibers with high strength and high modulus of elasticity, and are beginning to be used for various purposes. Since sulfuric acid solution is used for spinning, there are problems with coating, by-products, etc.

近年、芳香族ポリエステルの中で、溶融時に光学異方性
を有するものを溶融紡糸することにより、高強度、高弾
性率を有する繊維が得られることが明らかとなってきた
。かかる技術は溶剤を用いない点や装置面で芳香族ポリ
アミドよりも優れているが、その反面で、粘度変化の温
度依存性が大きいとか紡糸温度がポリマーの分解温度に
近いため溶融紡糸時に分解、重合、架橋等の反応による
発泡を伴なうといった従来のポリマーとは異なる挙動を
示し、特に発泡によるポリマー組成の不均一化や機械的
な作用により可紡性が低下したり、変成したポリマーの
混入により繊維物性の低下や不均一化の問題を派手段は
、未だ見出されていない。
In recent years, it has become clear that fibers with high strength and high modulus of elasticity can be obtained by melt-spinning aromatic polyesters that exhibit optical anisotropy when melted. This technology is superior to aromatic polyamides in that it does not use solvents and in terms of equipment, but on the other hand, viscosity changes are highly dependent on temperature, and the spinning temperature is close to the decomposition temperature of the polymer, so it may decompose during melt spinning. It exhibits behavior different from conventional polymers in that it involves foaming due to reactions such as polymerization and crosslinking, and in particular, foaming makes the polymer composition non-uniform, mechanical action reduces spinnability, and denatured polymers No means have yet been found to solve the problems of deterioration of fiber properties and non-uniformity due to contamination.

(発明が解決しようとする問題点) 本発明の目的は、上述した問題点を解決し、溶融時に光
学異方性を示す芳香族ぼりエステルを、溶融体の発泡、
変成等を防止して操業安定性良く溶融防糸すると共に、
最終的に物性及びその均一性に優れた繊維を工業的有利
に製造する手段を提供することである。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems and to provide an aromatic ester that exhibits optical anisotropy when melted by foaming the melt.
In addition to preventing metamorphosis, etc., and providing good operational stability, it is melt-proof.
Finally, it is an object of the present invention to provide a means for producing fibers with excellent physical properties and uniformity in an industrially advantageous manner.

(8題点を解決するための手段) 本発明の目的は、溶融時に光学異方性を示し流動温度が
280〜880℃である芳香族ポリエステルを、溶融紡
糸装置の流路内に金属又はセラミックスの粒状体を充填
することにより前記芳香族ポリエステルの溶融体の該流
路内における滞留時間を80分間以下に制御して溶融紡
糸する手段により、工業的有利に達成される。
(Means for Solving the 8 Problems) An object of the present invention is to provide an aromatic polyester that exhibits optical anisotropy when melted and has a flow temperature of 280 to 880°C in a flow path of a melt spinning device using a metal or ceramic material. This can be achieved industrially advantageously by means of melt-spinning by controlling the residence time of the aromatic polyester melt in the flow path to 80 minutes or less by filling the aromatic polyester granules.

以下に本発明を詳述するが、先ず本発明における溶融時
に光学異方性を示す芳香族ポリエステルとは、90°直
交した2枚の偏光板の間にある加熱試料台上にポリエス
テル試料粉末を置いて昇温していった時に、流動可能な
温度域において光を透過しうる性質を有する°ものをい
う。
The present invention will be described in detail below, but first, the aromatic polyester that exhibits optical anisotropy when melted in the present invention is a polyester sample powder placed on a heated sample stand between two polarizing plates crossed at 90 degrees. A substance that has the property of being able to transmit light in the temperature range where it can flow when the temperature is increased.

このような芳香族ポリエステルは、特公昭56−180
16号特公昭55−20008号等に示される芳香族ジ
カルボン酸、芳香族ジオール及び/又は芳香族ヒドロキ
シカルボン酸やこれらの誘導体から成るもので、場合に
より、これらと指環族ジカルボン酸、指環族ジオール、
脂肪族ジオールやこれらの誘導体との共重合体も含まれ
る。ここで芳香族ジカルボン酸としてはテレフタル酸、
イソフタル酸、4,4゛−ジカルボキシジフェニル、2
.6−ジカルボキシナフタレン、1.2−ビス(4−カ
ルボキシフェノキシ)エタン等や、これらのアルキル、
ア13 +ル、アルコキシ、ハロゲン基の核置換体が挙
げられる。芳香族ジオールとしてはヒドロキノン、レゾ
ルシン、4.4″−ジヒドロキシジフェニル、4.4′
−ジヒドロキシベンゾフェノン、4.4’−ジヒドロキ
シジフエニルメタン、4.4’−ジヒドロキシジフェニ
ルエタン、2.2−ビス(4−ヒドロキシフェニル)プ
ロパン、 4 、4’−ジヒドロキシジフエニルエーテ
ル、4 、4’−ジヒドロキシフェニルスルホン、4.
4’−ジヒドロキシジフェニルスルフィド、2.6−ジ
ヒドロキシナフタレン、1.5−ジヒドロキシナフタレ
ン等や、これらのアルキル、アリール、アルコキシ、ハ
ロゲン基の核置換体が挙げられろう芳香族ヒドロキシカ
ルボン酸としてはp −ヒドロキシ安息香酸、m−ヒド
ロキシ安息香酸、2−ヒドロキシナフタレン゛−6−カ
ルボン酸、1−ヒドロキシナフタレン−5−カルボン酸
等や、これらのアルキル、アリール、アルコキシ、ハロ
ゲン基の核置換体が挙げられる。指環族ジカルボン酸と
してはtrans −1、4−ジカルボキシシクロヘキ
サン、cis−1,4−ジカルボキシシクロヘキサン等
や、これらのアルキル、アリール、ハロゲン基の置換体
が、また指環族及び脂肪族ジオールとしてはtrans
 −1、4−ジヒドロキシシクロヘキサン、cis−1
,4−ジヒドロキシシクロヘキサン、エチレングリコー
ル、1.4−ブタンジオール、キシリレンジオール等が
挙げられる。
Such aromatic polyester
Consisting of aromatic dicarboxylic acids, aromatic diols and/or aromatic hydroxycarboxylic acids shown in Japanese Patent Publication No. 16, No. 55-20008, etc., and derivatives thereof, in some cases, ring dicarboxylic acids, ring diols, etc. ,
Copolymers with aliphatic diols and derivatives thereof are also included. Here, the aromatic dicarboxylic acids include terephthalic acid,
Isophthalic acid, 4,4゛-dicarboxydiphenyl, 2
.. 6-dicarboxynaphthalene, 1,2-bis(4-carboxyphenoxy)ethane, etc., and their alkyls,
Nuclear substitution products of aryl, alkoxy, and halogen groups can be mentioned. Aromatic diols include hydroquinone, resorcinol, 4.4″-dihydroxydiphenyl, 4.4′
-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylethane, 2,2-bis(4-hydroxyphenyl)propane, 4,4'-dihydroxydiphenyl ether, 4,4' -dihydroxyphenylsulfone, 4.
Examples of the aromatic hydroxycarboxylic acids include 4'-dihydroxydiphenyl sulfide, 2.6-dihydroxynaphthalene, 1.5-dihydroxynaphthalene, etc., and their alkyl, aryl, alkoxy, and halogen-substituted products. Examples of aromatic hydroxycarboxylic acids include p- Examples include hydroxybenzoic acid, m-hydroxybenzoic acid, 2-hydroxynaphthalene-6-carboxylic acid, 1-hydroxynaphthalene-5-carboxylic acid, and nuclear substituted products of these alkyl, aryl, alkoxy, and halogen groups. . Examples of ring group dicarboxylic acids include trans-1,4-dicarboxycyclohexane, cis-1,4-dicarboxycyclohexane, and substituted products of these with alkyl, aryl, and halogen groups; ring group and aliphatic diols include trans
-1,4-dihydroxycyclohexane, cis-1
, 4-dihydroxycyclohexane, ethylene glycol, 1,4-butanediol, xylylene diol and the like.

これらの組合せの内で特に好ましい芳香族ポリエステル
としては、例えば、 (1)p−ヒドロキシ安息香酸残基40〜70モル%と
上記芳香族ジカルボン酸残基15〜80モル%と芳香族
ジオール残基15〜80モル%から成るコポリエステル
、 (2)  テレフタル酸及び/又はイソフタル酸とクロ
ルヒドロキノン、フェニルヒドロキノン及び/又はヒド
ロキノンから成るコポリエステJし、 ω) p−ヒドロキシ安息香酸残基20〜80モル%と
2−ヒドロキシ−ナフタレン−6−カルボン酸残基20
〜80モル%から成るコポリエステルなどを挙げること
ができる。
Particularly preferable aromatic polyesters among these combinations include, for example, (1) 40 to 70 mol% of p-hydroxybenzoic acid residues, 15 to 80 mol% of the above aromatic dicarboxylic acid residues, and aromatic diol residues; (2) a copolyester consisting of terephthalic acid and/or isophthalic acid and chlorohydroquinone, phenylhydroquinone and/or hydroquinone, and (ω) 20-80 mol% of p-hydroxybenzoic acid residues; and 2-hydroxy-naphthalene-6-carboxylic acid residue 20
Examples include copolyesters comprising up to 80 mol%.

これらの出発原料を用い本発明の目的とするポリエステ
ルに至るには、そのままで、あるいは脂肪族又は芳香族
モノカルボン酸又はそれらの誘導体、脂肪族アルコール
又はフェノール類又はそれらの誘導体等によるエステル
化により重縮合反応を行なう1重縮合反応法としては既
知の塊状重合、溶液重合、懸濁重合法等を採用すること
ができ、150〜350℃で、常圧又はl Q 〜Q、
 l torrの減圧下ニ8b 、 Ti 、 Ge化
合物等の重合触媒、リン系化合物等の安定剤、TiO2
,Caω8.タルク等の充てん剤等を場合により添加し
て行なうことができる。得られたポリマーはそのままで
、あるいは粉体状で不活性気体中、又は減圧下に熱処理
して紡糸用試料とする。あるいは一度押出機により造粒
して用いることもできる。
These starting materials can be used as they are, or by esterification with aliphatic or aromatic monocarboxylic acids or derivatives thereof, aliphatic alcohols, phenols, or derivatives thereof. Known bulk polymerization, solution polymerization, suspension polymerization, etc. can be adopted as the single polycondensation reaction method for carrying out the polycondensation reaction.
Under reduced pressure of l torr, polymerization catalysts such as Ti and Ge compounds, stabilizers such as phosphorus compounds, TiO2
, Caω8. This can be carried out by adding a filler such as talc if necessary. The obtained polymer is used as it is or in powder form and heat-treated in an inert gas or under reduced pressure to prepare a sample for spinning. Alternatively, it can be used after being granulated once using an extruder.

本発明における芳香族ポリエステルには紡糸に適した分
子量範囲が存在すると考えられるが、組成や構造によっ
ては均一に溶解しうる溶剤がなかったり、分子量測定法
の精度がないという問題があり、本発明に適した芳香族
ポリエステルの規格として使えないうそこで本発明者ら
は溶融紡糸条件に適する分子量に対応する物性値として
「流動温度」というものを導入した。
Although it is thought that the aromatic polyester used in the present invention has a molecular weight range suitable for spinning, there are problems such as the lack of a solvent that can uniformly dissolve it depending on the composition and structure, and the lack of precision in the molecular weight measurement method. Therefore, the present inventors introduced "flow temperature" as a physical property value corresponding to the molecular weight suitable for melt spinning conditions.

即ち、高滓製作所製のフローテスターC!FT−500
を用い、径1■、長さ10■のノズルで圧力1’0OK
p/dの状態で芳香族ポリエステル試料を4℃/min
で昇温したとき、試料がノズルを通って流動し、かつ4
8.000 poiseの見かけ粘度を与える温度とし
て「流動温度」を定義したう本発明の溶融紡糸に適した
芳香族ポリエステルの「流動温度J j! 250〜8
80℃、好ましくは280〜850℃である。かかる温
度域の下限を外れるものでは、溶融時の反応が起こり易
かったり、繊維伸度が出にくい等の問題があり、また上
限を越えるものでは、加工(紡糸)温度を高くせざるを
えないため分解や架橋反応を起こし易く、装置の負荷も
大きくなる等の問題があり、いずれにしても操業面、物
量部、紡糸口金を含む紡糸頭部を備えたものであればど
のようなものでも用いることができ、溶融部は加熱制御
機能を備えたプランジャー、スクリュー等を、また計量
部はギヤポンプ等を例示することができる。
That is, Flow Tester C manufactured by Takasu Seisakusho! FT-500
Using a nozzle with a diameter of 1 cm and a length of 10 cm, the pressure is 1'0 OK.
The aromatic polyester sample was heated at 4°C/min at p/d.
The sample flows through the nozzle when the temperature is increased at 4
The "flowing temperature" is defined as the temperature that gives an apparent viscosity of 8.000 poise.
The temperature is 80°C, preferably 280-850°C. If the temperature is outside the lower limit of this range, there are problems such as reactions during melting being likely to occur or fiber elongation being difficult to achieve, and if the temperature exceeds the upper limit, the processing (spinning) temperature must be increased. Therefore, there are problems such as decomposition and crosslinking reactions easily occurring, and the load on the equipment increases. The melting section can be exemplified by a plunger, screw, etc. with a heating control function, and the metering section can be exemplified by a gear pump, etc.

本発明において溶融紡糸に適した温度は280〜420
℃で、より好ましくは800〜400℃である。この温
度域より低いと装置への負荷が大きくなうたり、試料の
溶融均一化が不十分であったり、逆に高温であると分解
発泡による糸切れがおこったりする。
In the present invention, the temperature suitable for melt spinning is 280 to 420.
℃, more preferably 800 to 400℃. If the temperature is lower than this range, the load on the device will be large and the melting of the sample will be insufficient, and if the temperature is too high, thread breakage will occur due to decomposition and foaming.

本発明において最も重要な点は、溶融紡糸装置の流路内
に金属又はセラt mtクスの粒状体を充填することに
より、溶融体の流路内における滞留時間を80分間以下
、好ましくは2〜2・0分間に制御することである。か
かる滞留時間が本発明の上限を越えるときは、溶融体の
発泡、変成等を回避し得ないため、紡糸操業性並びに最
終繊維の物性及びその均一性において満足な結果を与え
ることができないっなお、かかる充填材の材料は金、銀
、銅、鉄、アルミニウム、錫、ニッケル、チタン等又は
これらを主成分とする合金等の金属、アルミナ、ジルコ
ニア、チタニア、シリケート、各種ガラス、海砂、陶器
、磁器等のセラミ−ガラスを例示することができ、また
、該充填剤のサイズとしては、平均粒径が0.8〜5■
のものが好ましい。
The most important point in the present invention is that the residence time of the melt in the flow path is 80 minutes or less, preferably 2 to It is to be controlled to 2.0 minutes. If the residence time exceeds the upper limit of the present invention, foaming, denaturation, etc. of the melt cannot be avoided, and it may not be possible to provide satisfactory results in terms of spinning operability and the physical properties and uniformity of the final fiber. The materials for such fillers include metals such as gold, silver, copper, iron, aluminum, tin, nickel, titanium, etc. or alloys containing these as main components, alumina, zirconia, titania, silicates, various glasses, sea sand, and ceramics. , ceramic glass such as porcelain can be exemplified, and as for the size of the filler, the average particle size is 0.8 to 5 cm.
Preferably.

なお、本発明でいう流路とは、ポリマーを定量輸送しつ
つ昇温して溶融させる装置の温度が前記ポリマーの「流
動温度」に達している部分以降紡糸口金に至る溶融体の
通過経路をいい、「流動温度」に到達していないポリマ
ーの輸送部分の経路は含まない、また、該流路内におけ
る滞留時間とは、流路の容積を溶融体の単位時間当り容
積流量で除したものをいう。
Note that the flow path as used in the present invention refers to the path through which the molten material passes from the part where the temperature of the device that transports the polymer quantitatively and raises the temperature to melt it reaches the "flow temperature" of the polymer to the spinneret. Yes, it does not include the path of the transport part of the polymer that has not reached the "flow temperature", and the residence time in the channel is the volume of the channel divided by the volumetric flow rate of the melt per unit time. means.

本発明に従って紡糸した繊維はそのままで、又は油剤を
付着させ巻取るなり、引落す。巻取り、又は引落しの速
度は10〜10 、000 シーinであるが、生産性
や安定紡糸からみて100〜2.000IQ/1nin
が好ましい、得られる繊維の太さや断面形状は用途によ
り選ばれるが、強度や弾性率からすると1〜10デニー
ルの太さや糸径が好ましいう得られる繊維はそのまま、
でも使用できるが熱処理や延伸やこれらの組合せの処理
を施してやることにより、さらに高強度、高弾性化する
ことができる。
The fibers spun according to the present invention can be rolled up as they are, or coated with an oil and then rolled up. The winding or drawing speed is 10 to 10,000 sea in, but from the viewpoint of productivity and stable spinning, it is 100 to 2,000 IQ/1 nin.
The thickness and cross-sectional shape of the obtained fibers are selected depending on the use, but from the viewpoint of strength and elastic modulus, the thickness and thread diameter of 1 to 10 deniers are preferable.
However, it can be further increased in strength and elasticity by heat treatment, stretching, or a combination of these treatments.

(作 用) 上述した本発明の製造方法、とりわけ溶融体の流路内に
金属又はセラミ・ソクスの粒状体を充填する技術手段を
採用することにより、分解温度に近い温度の溶融体が流
路内に滞留する時間を短縮することができ、以て溶融体
の発泡、変成等を効果的に防止すると共に、高い熱伝導
性を有する金属又はセラミックスの粒状充填材により形
成された複雑な経路を通過することにより溶融体の温度
や凝集状態の均一化が進み、その結果操業安定性の良好
な溶融紡糸が可能になると共に、最終的に物性及びその
均一性に優れた繊維を提供し得るものと考えられろう(
発明の効果) このように、従来のポリマーとは著しく異なった挙動を
示す芳香族ポリエステルを操業安定性良く溶融紡糸し得
、最終的に高強度、高弾性率を有しかつ物性の均一性に
優れた繊維を工業的有利に製造する手段を提供し得た点
が、本発明の特筆すべき効果であり、本発明により得ら
れる繊維は、タイヤコード、ローブ、ケーブル、FRF
lFRTP、スピーカーコーン、安全着、テンションメ
ンバー等に用いることができる。
(Function) By employing the above-described manufacturing method of the present invention, especially the technical means of filling the flow path of the melt with granular material of metal or ceramic sox, the melt at a temperature close to the decomposition temperature can flow into the flow path. It is possible to shorten the residence time of the molten material, effectively preventing foaming, metamorphosis, etc. of the molten material, and to prevent complex paths formed by granular fillers of metal or ceramics with high thermal conductivity. By passing through it, the temperature and agglomeration state of the melt progress to become uniform, and as a result, melt spinning with good operational stability becomes possible, and finally fibers with excellent physical properties and uniformity can be provided. It can be thought that (
Effects of the Invention) As described above, aromatic polyester, which exhibits a behavior significantly different from that of conventional polymers, can be melt-spun with good operational stability, resulting in high strength, high elastic modulus, and uniform physical properties. A noteworthy effect of the present invention is that it has provided a means for industrially advantageous production of excellent fibers, and the fibers obtained by the present invention can be used in tire cords, lobes, cables, FRF
It can be used for lFRTP, speaker cones, safety clothing, tension members, etc.

(実施例) 以下に本発明の詳細な説明するために実施例および比較
例を示すが、これらはあくまで例示的なものであり、こ
れらに限定するものではない。
(Examples) Examples and comparative examples are shown below to explain the present invention in detail, but these are merely illustrative and are not intended to limit the invention.

なお、例中の繊維の引張り試験はインストロン社万能試
験機7111180を用い、試料間隔20 wm 、引
張り速度0.5 m / miHで測定した。
In addition, the tensile test of the fiber in the example was performed using an Instron universal testing machine 7111180 at a sample interval of 20 wm and a tensile speed of 0.5 m/miH.

光学異方性の測定は加熱ステージ上に試料を置いて、偏
光下、25℃/minで昇温しで肉眼観察により行なっ
た。
The optical anisotropy was measured by placing the sample on a heating stage, raising the temperature at 25° C./min under polarized light, and observing it with the naked eye.

参考例 p−アセトキシ安息香酸7.204 (40モル)、テ
レフタル酸2.49〜(15モル)、イソフタル酸0.
88匂(5モル)、4.4′−ジアセトキシジフェニル
5.45〜(20,2モル)をくし型攪拌翼をもつ重合
槽に仕込み、窒素ガス雰囲気下で攪拌しながら昇温し、
830℃で8時間重合した。この間、生成する酢酸を除
去し、強力な攪拌で重合を行ない、その機微々に冷却し
、200℃で重合体を系外へ取出した。重合体の収量は
IQ、88にで理論収量の97.8%であった。これを
細組ミクロン社のハンマーミルで粉砕し2.5箇以下の
粒子とした。これをロータリーキルン中で窒素雰囲気下
に280℃で5時間処理したところ「流動温度」が82
6℃となった。850℃以上で光学異方性が観察された
Reference example p-acetoxybenzoic acid 7.204 (40 mol), terephthalic acid 2.49-(15 mol), isophthalic acid 0.
88 (5 moles) and 4.4'-diacetoxydiphenyl (5.45 to 20.2 moles) were charged into a polymerization tank with comb-shaped stirring blades, and the temperature was raised while stirring under a nitrogen gas atmosphere.
Polymerization was carried out at 830°C for 8 hours. During this time, the acetic acid produced was removed, the polymerization was carried out with strong stirring, the polymer was slightly cooled, and the polymer was taken out of the system at 200°C. The yield of polymer was 97.8% of the theoretical yield with an IQ of 88. This was ground into particles of 2.5 particles or less using a hammer mill manufactured by Hosogumi Micron. When this was treated in a rotary kiln at 280°C for 5 hours under a nitrogen atmosphere, the "flow temperature" was 82.
It became 6℃. Optical anisotropy was observed above 850°C.

実施例 参考例のポリエステルを、80■径のスクリュー、溶融
体計量用のギヤポンプ、紡糸口金の背面に一過材及び溶
融体貯めを有する紡糸頭からなるスクリュー押出型溶融
紡糸装置を用いて溶融紡糸を行なった。紡糸口金は孔径
0.12m。
Example The polyester of the reference example was melt-spun using a screw extrusion type melt-spinning device consisting of a screw with a diameter of 80 mm, a gear pump for measuring the melt, and a spinning head having a temporary material and a melt reservoir on the back side of the spinneret. I did this. The spinneret has a hole diameter of 0.12 m.

孔長/孔径=0.8.150孔数のものを用い、紡糸温
度は865℃である。なお、流路専横は827m(スク
リュ一部の溶融部分80−、スクリューから紡糸頭溶融
体貯めまで45−1溶融体貯め202d)である。
A material with a hole length/hole diameter of 0.8.150 holes was used, and the spinning temperature was 865°C. Note that the width of the flow path is 827 m (melting part 80- of a part of the screw, 45-1 melt storage 202d from the screw to the spinning head melt storage).

溶融体貯め の粒状体の充填及びギヤポンプの溶融体吐
出量を変えて溶融体の流路内滞留時間を下記第1表に示
す如く変化させて紡糸し、紡糸操業安定性及び繊維物性
を評価した。なお、紡糸操業安定性は最細単繊維繊度及
び5d紡糸における無切断紡糸継続時間で、また繊維物
性は紡糸後繊維(5d)のN2中820℃×8時間熱処
理系の強度及び強度変動率で評価した。
Spinning was performed by changing the filling of the granular material in the melt storage and the melt discharge rate of the gear pump to change the residence time of the melt in the channel as shown in Table 1 below, and the spinning operation stability and fiber physical properties were evaluated. . The spinning operation stability is determined by the fineness of the finest single fiber and the uncut spinning duration in 5d spinning, and the fiber properties are determined by the strength and strength fluctuation rate of the after-spun fiber (5d) heat treated in N2 at 820°C for 8 hours. evaluated.

結果を第1表に併記する。The results are also listed in Table 1.

上表より明らかなように、本発明に推奨する紡糸条件を
採用した場合(/L1〜8)には、紡糸操業安定性並び
に物性及び物性均一性が顕著に改善されるのに対し、滞
留時間を満たさない場合(ム4)及び滞留時間を満足し
ても充填材のない場合(ム5)には、操業性及び物性の
いずれも不満足である事実が理解される。なお、ム4の
()内殻値は、5dの試料が採取できなかったので、7
dの試料について評価したものである。
As is clear from the table above, when the spinning conditions recommended for the present invention are adopted (/L1 to 8), the spinning operation stability, physical properties, and physical property uniformity are significantly improved, while the residence time It is understood that both the operability and the physical properties are unsatisfactory in the case where the requirements are not satisfied (mu 4) and in the case where there is no filler even if the residence time is satisfied (mu 5). In addition, the inner shell value () of Mu4 was 7 because the sample of 5d could not be collected.
This is an evaluation of sample d.

Claims (1)

【特許請求の範囲】[Claims] 溶融時に光学異方性を示し流動温度が280〜380℃
である芳香族ポリエステルを、溶融紡糸装置の流路内に
金属又はセラミックスの粒状体を充填することにより前
記芳香族ポリエステルの溶融体の該流路内における滞留
時間を30分間以下に制御して溶融紡糸することを特徴
とする芳香族ポリエステルの紡糸法。
Exhibits optical anisotropy when melted and has a flow temperature of 280-380℃
The aromatic polyester is melted by filling the flow path of a melt spinning device with metal or ceramic granules and controlling the residence time of the aromatic polyester melt in the flow path to 30 minutes or less. A method for spinning aromatic polyester, which is characterized by spinning.
JP60026115A 1985-02-12 1985-02-12 Aromatic polyester spinning method Expired - Lifetime JPH0633526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026115A JPH0633526B2 (en) 1985-02-12 1985-02-12 Aromatic polyester spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026115A JPH0633526B2 (en) 1985-02-12 1985-02-12 Aromatic polyester spinning method

Publications (2)

Publication Number Publication Date
JPS61186516A true JPS61186516A (en) 1986-08-20
JPH0633526B2 JPH0633526B2 (en) 1994-05-02

Family

ID=12184580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026115A Expired - Lifetime JPH0633526B2 (en) 1985-02-12 1985-02-12 Aromatic polyester spinning method

Country Status (1)

Country Link
JP (1) JPH0633526B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138621A (en) * 1978-04-20 1979-10-27 Teijin Ltd Spinning of polyarylate
JPS5741934A (en) * 1980-07-15 1982-03-09 Celanese Corp Working of melting working liquid crystal polymer through control of thermal hysteresis
JPS5845224A (en) * 1981-09-11 1983-03-16 Teijin Ltd Aromatic polyester having melt anisotropy and its preparation
JPS5884821A (en) * 1981-11-16 1983-05-21 Asahi Chem Ind Co Ltd Copolyester fiber or film and preparation thereof
JPS58149324A (en) * 1982-03-01 1983-09-05 Toray Ind Inc Melt-spinning of silica-containing polyester into extremely fine fiber
JPS58149325A (en) * 1982-03-01 1983-09-05 Toray Ind Inc Melt-spinning of silica-containing polyester
JPS591712A (en) * 1982-06-23 1984-01-07 Toray Ind Inc Melt spinning of polyester fiber
JPS591711A (en) * 1982-06-23 1984-01-07 Toray Ind Inc Spinning of polyester fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138621A (en) * 1978-04-20 1979-10-27 Teijin Ltd Spinning of polyarylate
JPS5741934A (en) * 1980-07-15 1982-03-09 Celanese Corp Working of melting working liquid crystal polymer through control of thermal hysteresis
JPS5845224A (en) * 1981-09-11 1983-03-16 Teijin Ltd Aromatic polyester having melt anisotropy and its preparation
JPS5884821A (en) * 1981-11-16 1983-05-21 Asahi Chem Ind Co Ltd Copolyester fiber or film and preparation thereof
JPS58149324A (en) * 1982-03-01 1983-09-05 Toray Ind Inc Melt-spinning of silica-containing polyester into extremely fine fiber
JPS58149325A (en) * 1982-03-01 1983-09-05 Toray Ind Inc Melt-spinning of silica-containing polyester
JPS591712A (en) * 1982-06-23 1984-01-07 Toray Ind Inc Melt spinning of polyester fiber
JPS591711A (en) * 1982-06-23 1984-01-07 Toray Ind Inc Spinning of polyester fiber

Also Published As

Publication number Publication date
JPH0633526B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
JP2012158851A (en) Method for manufacturing aromatic polyester fiber
WO2019142692A1 (en) Liquid crystal polyester fibers
US4871501A (en) Process for melt spinning aromatic polyester
JPS61231218A (en) Production of aromatic polyester yarn
JPS61186516A (en) Spinning of aromatic polyester fiber
JPS61113821A (en) Melt-spinning method
JP2639807B2 (en) Method for producing aromatic polyester fiber
JPS62156313A (en) Production of aromatic polyester fiber
JPS61225312A (en) Production of aromatic polyester yarn
JP2565676B2 (en) Aromatic polyester fiber manufacturing method
JPS6245726A (en) Production of aromatic polyester fiber
JPH0585642B2 (en)
US4743416A (en) Melt spinning process of aromatic polyester
JPS6245718A (en) Polyester yarn
JPS62206017A (en) Melt spinning
JPH0726250B2 (en) Polyester fiber
JPH06104929B2 (en) Fiber for resin reinforcement
JPS61138719A (en) Melt-spinning process
JPH0633525B2 (en) Method for spinning aromatic polyester
JPS61138718A (en) Melt-spinning of aromatic polyester
JPS61296185A (en) Production of aromatic polyester fiber
JPS61138715A (en) Production of aromatic polyester yarn
JPS6399328A (en) Production of aromatic polyester yarn
JPS61138717A (en) Melt-spinning of aromatic polyester
JPS61113816A (en) Spinning method