JPS61186386A - Phythalocyanin compound and its preparation - Google Patents

Phythalocyanin compound and its preparation

Info

Publication number
JPS61186386A
JPS61186386A JP2686385A JP2686385A JPS61186386A JP S61186386 A JPS61186386 A JP S61186386A JP 2686385 A JP2686385 A JP 2686385A JP 2686385 A JP2686385 A JP 2686385A JP S61186386 A JPS61186386 A JP S61186386A
Authority
JP
Japan
Prior art keywords
compound
phthalocyanine
lithium
reaction
dbu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2686385A
Other languages
Japanese (ja)
Inventor
Shoichi Kinoshita
正一 木下
Yoshitomo Yonehara
祥友 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP2686385A priority Critical patent/JPS61186386A/en
Publication of JPS61186386A publication Critical patent/JPS61186386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

NEW MATERIAL:A compound that is composed of monolithium phthalocyanin and 1,8-diazabicyclo[5.4.0]undecene-7: appearance; reddish violet crystals, chemical formula; LiH(C32H16N8).(C9H16N2), elementary analyses; C 73%, H 4.94%, N 20.9%, Li 1.03%. USE:Intermediate for preparation of non-metallic phthalocyanin. It decomposes readily in a dilute mineral acid to give non-metallic phthalocyanin of high purity in high yield. PREPARATION:The reaction of phthalonitrile with metallic lithium is carried out in the presence of 1,8-diaza-bicyclo[5.4.0]undecene-7 (DBU) in a solvent preferably in ethanol at 65-195 deg.C. It is preferred that more than 0.1mol of DBU and metallic lithium, respectively, and more than 200ml of the solvent are used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新規なフタロシアニン化合物及びその製造方
法に関するものであり、更に詳しくは化学式がLiH(
CsJ+JJ ・(C9HIJ富g)で示し得ると考え
られる、モノリチウムフタロシアニンと1.8−ジアザ
−ビシクロ〔5゜4.0〕ウンデセン−7とより成る高
次化合物である新規フタロシアニン化合物に関するもの
で、この化合物は無金属フタロシアニン(以下HgPc
と略称することもある)を製造する為の重要な中間体で
ある。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a novel phthalocyanine compound and a method for producing the same.
This relates to a novel phthalocyanine compound which is a higher-order compound consisting of monolithium phthalocyanine and 1,8-diaza-bicyclo[5°4.0]undecene-7, which is thought to be represented by CsJ+JJ (C9HIJ rich g). This compound is metal-free phthalocyanine (hereinafter referred to as HgPc).
It is an important intermediate for manufacturing (sometimes abbreviated as).

フタロシアニン系化合物は、大きい着色力、優れた耐熱
性、耐光性などの特徴をもつため、色材工業に於いて広
く顔料として利用されている。又、フタロシアニン系化
合物は、半導体性及び光導電性を有することから、近年
、このものにつき多くの研究がなされ、電子写真感光体
あるいは半導体レーザープリンター用感光体として使用
されており、その重要さが年々増加している。その中で
も無金属フタロシアニンは、顔料としては黄味の強い青
色で、特有の色相を有しており、又、電子材料としては
、優れた光導電性を有しており、工業的に非常に価値の
高い素材である。
Phthalocyanine compounds have characteristics such as high coloring power, excellent heat resistance, and light resistance, and are therefore widely used as pigments in the color material industry. In addition, since phthalocyanine compounds have semiconducting properties and photoconductivity, a lot of research has been done on them in recent years, and they are being used as electrophotographic photoreceptors or photoreceptors for semiconductor laser printers, and their importance is increasing. It is increasing every year. Among them, metal-free phthalocyanine has a unique hue with a strong yellowish blue color as a pigment, and has excellent photoconductivity as an electronic material, making it extremely valuable industrially. It is a high quality material.

〈従来の技術〉 従来、無金属フタロシアニンの製造方法としては、例え
ばフタロニトリルとアルコラード又は有機強塩基即ち、
1゜8−ジアザ−ビシクロ(5,4,0〕ウンデセン−
7の如きものとを反応させて合成する方法が知られてい
る(特開昭58−105962号公報)。しかし、この
方法では14時間の反応に於いて、収率はたかだか63
%と低い値に止まる。
<Prior art> Conventionally, as a method for producing metal-free phthalocyanine, for example, phthalonitrile and alcoholade or a strong organic base, that is,
1゜8-Diaza-bicyclo(5,4,0]undecene-
A method of synthesizing the compound by reacting with compounds such as No. 7 is known (Japanese Unexamined Patent Publication No. 105962/1982). However, with this method, the yield was only 63% in 14 hours of reaction.
It stays at a low value of %.

又、モーザー及びトーマス著の「フタロシアニンコンパ
ウンズJ  (ACS sonagraph  Ilh
 157. Re1nhold Publ−ishin
g Corp、 New York(1963) )に
よれば、硫酸等の酸によって脱金属できるフタロシアニ
ンたとえば、ジリチウムフタロシアニン、ジナトリウム
フタロシアニン、マグネシウムフタロシアニン等を酸処
理することで無金属フタロシアニンを製造できるが、こ
の方法は元の金属フタロシアニンの収率がそれほど高い
ものではなく、又、その分解に濃硫酸を用いる為、フタ
ロシアニンの分解等が起こり、高純度品を収得すること
が困難である。
In addition, "Phthalocyanine Compounds J" (ACS sonagraph Ilh) by Moser and Thomas.
157. Re1nhold Publ-ishin
G Corp, New York (1963)), metal-free phthalocyanines can be produced by acid-treating phthalocyanines that can be demetallized with acids such as sulfuric acid, such as dilithium phthalocyanine, disodium phthalocyanine, and magnesium phthalocyanine. This method does not provide a very high yield of the original metal phthalocyanine, and since concentrated sulfuric acid is used for its decomposition, the phthalocyanine decomposes, etc., making it difficult to obtain a highly purified product.

このように、従来技術に於いては収率が低い、高純度品
の収得が困難であるという問題点があった。
As described above, the conventional techniques have the problems of low yields and difficulty in obtaining highly purified products.

〈発明が解決しようとする問題点〉 このように、従来技術は、無金属フタロシアニンの製造
に長時間を要したり、その目的物の収率および純度が低
いなど、工業的な製法として不満足なものであった。又
、純度が低いということは電子材料分野にとっては致命
的な欠点であり望ましい電気的、電子的特性が得難いと
いう重大な問題点がある。
<Problems to be solved by the invention> As described above, the conventional technology is unsatisfactory as an industrial production method, such as requiring a long time to produce metal-free phthalocyanine and having low yield and purity of the target product. It was something. Furthermore, low purity is a fatal drawback in the field of electronic materials, and there is a serious problem in that it is difficult to obtain desired electrical and electronic properties.

〈問題を解決する為の手段〉 本発明者らは従来技術に於けるこのような不都合を除去
すべく、鋭意検討した処、従来公知のいずれのフタロシ
アニン系化合物とも異なる新規フタロシアニン化合物を
見出し、しかもこの新規フタロシアニン化合物は容易に
無金属フタロシアニンに分解できること、又無金属フタ
ロシアニンの収率及び純度も格段に向上できることを見
出し、本発明に到達した。
<Means for Solving the Problems> In order to eliminate such inconveniences in the prior art, the present inventors conducted intensive studies and discovered a novel phthalocyanine compound that is different from any of the conventionally known phthalocyanine compounds. The present invention was achieved by discovering that this new phthalocyanine compound can be easily decomposed into metal-free phthalocyanine, and that the yield and purity of metal-free phthalocyanine can be significantly improved.

すなわち、第1の発明は、モノリチウムフタロシアニン
(以下LtHPcと略称することもある)と1,8−ジ
アザ−ビシクロ(5,4,0〕ウンデセン−7(以下D
BUと略称することもある)とより成る高次化合物で、
次の化学式%式%) で示し得るフタロシアニン化合物(以下本発明化合物と
略称することもある)に関し、第2の発明は、本発明化
合物を製造する方法において、 A)フタロニトリルと金属リチウムもしくはリチウム化
合物とを、DBUの存在下に溶媒中で加熱反応せしめる
か、B)無金属フタロシアニンと金属リチウムもしくは
リチウムアルコラートとを、又はLiHPcを、DBU
の存在下に溶媒中で反応させることを特徴とするもので
ある。
That is, the first invention consists of monolithium phthalocyanine (hereinafter sometimes abbreviated as LtHPc) and 1,8-diaza-bicyclo(5,4,0]undecene-7 (hereinafter D
(sometimes abbreviated as BU) is a higher-order compound consisting of
Regarding the phthalocyanine compound (hereinafter sometimes abbreviated as the compound of the present invention) that can be represented by the following chemical formula (% formula %), the second invention provides a method for producing the compound of the present invention, comprising: A) phthalonitrile and metallic lithium or lithium. B) metal-free phthalocyanine and metallic lithium or lithium alcoholate, or LiHPc and DBU.
It is characterized in that the reaction is carried out in a solvent in the presence of.

木筆2の発明を更に詳しく述べると以下の通りである。The invention of the wood brush 2 will be described in more detail as follows.

゛すなわち、フタロニトリル1モルに対し、DBUを0
.1モル以上、金属リチウム又はリチウム化合物を0.
1モル以上及び溶媒を200m1以上用い、65〜19
5℃の温度で通例30分〜24時間反応せしめる。ある
いは無金属フタロシアニン1モルに対し、金属リチウム
又はリチウムアルコラードを0.5モル以上、DBUを
0.5モル以上及び溶媒を800mj!以上用い、室温
〜200℃の温度で通例30分〜lO時間反応せしめる
か、モノリチウムフタロシアニン1モルに対し、DBU
を0.5モル以上及び溶媒を800m11以上用い、室
温〜200℃の温度で通例30分〜10時間反応せしめ
る。
゛That is, for 1 mole of phthalonitrile, DBU is 0.
.. 1 mole or more, metallic lithium or lithium compound is 0.
Using 1 mol or more and 200 ml or more of solvent, 65 to 19
The reaction is typically carried out for 30 minutes to 24 hours at a temperature of 5°C. Or, for 1 mol of metal-free phthalocyanine, 0.5 mol or more of metallic lithium or lithium alcolade, 0.5 mol or more of DBU, and 800 mj of solvent! The DBU
Using 0.5 mol or more of the solvent and 800 ml or more of the solvent, the reaction is usually carried out at a temperature of room temperature to 200° C. for 30 minutes to 10 hours.

反応に際して用いる溶媒としては水酸基を育する有機化
合物が好適であり、1級及び2級のアルコールが好まし
く、特にエタノール以上の炭素数のアルコールが好まし
く、例エバ、エタノール、n−プロパツール、130−
プロパツール、n−ブタノール、 1so−ブタノール
、5ec−ブタノール、n−ペンタノールなどであるが
、2−メトキシエタノール、2−エトキシエタノールの
如きエチレングリコールモノアルキルエーテルであって
もよい。
As the solvent used in the reaction, organic compounds that grow hydroxyl groups are suitable, primary and secondary alcohols are preferred, and alcohols with carbon numbers greater than or equal to ethanol are particularly preferred; examples include Eva, ethanol, n-propanol, 130-
Examples include propatool, n-butanol, 1so-butanol, 5ec-butanol, n-pentanol, and ethylene glycol monoalkyl ethers such as 2-methoxyethanol and 2-ethoxyethanol.

リチウム化合物としては、リチウムの鉱酸塩、有機酸塩
、アルコラード等が用いられ、それを例示するならば、
塩化リチウム、臭化リチウム、ヨウ化リチウム、酢酸リ
チウム、リチウムエチラート等である。
As lithium compounds, lithium mineral acid salts, organic acid salts, alcolades, etc. are used, and examples thereof include:
These include lithium chloride, lithium bromide, lithium iodide, lithium acetate, and lithium ethylate.

また、反応方法については特に制限はないが、フタロニ
トリルを原料として用いる反応に於いて、フタロニトリ
ルとリチウムもしくはリチウム化合物と溶媒との混合系
を所定温度に加熱した後、DBUを分割して加えていく
ことは、本発明化合物の純度を高める上で好ましい方法
である。
Although there are no particular restrictions on the reaction method, in a reaction using phthalonitrile as a raw material, after heating a mixed system of phthalonitrile and lithium or a lithium compound and a solvent to a predetermined temperature, DBU is added in portions. This is a preferred method for increasing the purity of the compound of the present invention.

この様にして得られる本発明化合物は、赤紫色の結晶で
あり、水や有機溶媒に対し安定であるが、希鉱酸水溶液
に対しては不安定であり、容易に分解し定量的に無金属
フタロシアニンとなる。
The compound of the present invention obtained in this way is a reddish-purple crystal, and is stable in water and organic solvents, but is unstable in dilute mineral acid aqueous solutions, easily decomposes, and is quantitatively ineffective. Becomes metal phthalocyanine.

本発明の化合物は、後述の実施例1に示される通り、L
iHPcおよびDBUのいずれとも異なることはもとよ
り、両者の混合物とも相違し、両者より成る高次化合物
と認められ、 LiH(CstH+hNm) ・(C9H+Jm)の化
学式で単一化合物として示し得るものと認められる。
As shown in Example 1 below, the compound of the present invention is L
Not only is it different from both iHPc and DBU, but it is also different from a mixture of the two, and it is recognized as a higher-order compound consisting of both, and it is recognized that it can be expressed as a single compound with the chemical formula of LiH(CstH+hNm) ・(C9H+Jm).

本発明化合物は、アルコール溶媒中で希鉱酸水溶液を加
えることで容易に分解してLPcを生成する。このため
本発明化合物はH,Pcを製造するための中間体として
有意義であり、H,Pcを製造するに当たっては、本発
明化合物の製造のための反応終了液中で分解反応を行う
こともできるが、H,Pcを高純度で得るには、本発明
化合物を一旦単離精製した後分解することが好ましい。
The compound of the present invention is easily decomposed to produce LPc by adding a dilute mineral acid aqueous solution in an alcohol solvent. Therefore, the compound of the present invention is useful as an intermediate for producing H, Pc, and in producing H, Pc, a decomposition reaction can also be carried out in the reaction completed solution for producing the compound of the present invention. However, in order to obtain H and Pc with high purity, it is preferable to isolate and purify the compound of the present invention once and then decompose it.

更に、後述の実施例に示す如く、n−ブタノールを溶媒
に用い、沸点下6時間という短時間の反応で82%とい
う高収率でHtPcを収得することができ、得られたH
、Pcの純度は通例の製造方法に比して高いものが収得
できる。
Furthermore, as shown in the Examples below, using n-butanol as a solvent, HtPc could be obtained in a high yield of 82% in a short reaction time of 6 hours below the boiling point, and the obtained HtPc
, Pc can be obtained with higher purity than with conventional production methods.

〈発明の効果〉 本発明化合物は、上記の如く簡単な手法により高収率で
製造でき、次いで、そのものは定量的に容易に無金属フ
タロシアニンに分解することができる。更に得られた無
金属フタロシアニンは通例の合成法に比して高純度で得
られ、顔料あるいは電子材料用素材として良好なる性質
を有する。
<Effects of the Invention> The compound of the present invention can be produced in high yield by a simple method as described above, and then it can be easily quantitatively decomposed into metal-free phthalocyanine. Furthermore, the obtained metal-free phthalocyanine can be obtained with higher purity than that obtained by conventional synthesis methods, and has good properties as a pigment or a raw material for electronic materials.

従って本発明化合物は、高純度の無金属フタロシアニン
を高収率で製造するための中間体として極めて有用性が
高い。
Therefore, the compound of the present invention is extremely useful as an intermediate for producing high-purity metal-free phthalocyanine in high yield.

〈実施例等〉 以下に本発明を実施例、比較例及び参考例により更に具
体的に説明するが、これにより本発明の範囲が限定され
るものではない。
<Examples, etc.> The present invention will be explained in more detail below using Examples, Comparative Examples, and Reference Examples, but the scope of the present invention is not limited thereby.

実施例1 攪拌器、滴下ロート、還流冷却器、温度計及び窒素ガス
導入管を備えた31のガラス製画ツロフラスコに、フタ
ロニトリル512.6g、塩化リチウム50.8 g及
び2−メトキシエタノール2j1を仕込み、窒素ガス雰
囲気下、油浴上で加熱し、還流温度に保持した。還流温
度に達した時から、滴下ロートよりDBUを滴下し始め
、2時間を要して608.6gを加えた。更に還流下、
6時間反応を行った。
Example 1 512.6 g of phthalonitrile, 50.8 g of lithium chloride, and 2j1 of 2-methoxyethanol were added to a 31-piece glass tube flask equipped with a stirrer, a dropping funnel, a reflux condenser, a thermometer, and a nitrogen gas inlet tube. The mixture was charged and heated on an oil bath under a nitrogen atmosphere and maintained at reflux temperature. When the reflux temperature was reached, DBU was started to be added dropwise from the dropping funnel, and 608.6 g was added over a period of 2 hours. Further under reflux,
The reaction was carried out for 6 hours.

反応後、直ちに濾過を行い、赤紫色の結晶を得、これを
2−メトキシエタノールII1,次いで水411更にア
セトン17で洗浄し、乾燥することで赤紫色の結晶54
7.6 gを得た。
Immediately after the reaction, filtration was performed to obtain reddish-purple crystals, which were washed with 2-methoxyethanol II1, then with 411 parts of water, and then with 17 parts of acetone, and dried to give reddish-purple crystals 54.
7.6 g was obtained.

元素分析値 LiH(C3J+Js)・CCqH+hN
t)としてCHN     Li 計算値(%)   73.2  4.95  20.8
  1.03実測値(%)  ?3.0  4.94 
 20.9  1.03I R(KBr)am−’(±
33−9.740. 752.1060.1330.1
486.1645  など NMR(重水素化ピリジン)δ値 0.5〜0.8 (8H,CHz ) H〜1.3(2H,とH口 1.8〜2.1 (6H、N −CH* )8.0〜8
.2(8H,\CH,ベンゼン環−H)〆 9.7〜9.9 (8H,”CH,ベンゼン環−H)り またこのもののX線回折図は図示の通りである。
Elemental analysis value LiH (C3J+Js)/CCqH+hN
t) as CHN Li Calculated value (%) 73.2 4.95 20.8
1.03 Actual value (%)? 3.0 4.94
20.9 1.03I R(KBr)am-'(±
33-9.740. 752.1060.1330.1
486.1645, etc. NMR (deuterated pyridine) δ value 0.5-0.8 (8H, CHz) H-1.3 (2H, and H port 1.8-2.1 (6H, N -CH* )8.0~8
.. 2(8H, \CH, benzene ring-H)〆9.7-9.9 (8H,"CH, benzene ring-H) and the X-ray diffraction pattern of this product is as shown in the figure.

更にこの結晶0゜5gを精秤し、0.1NHC1水溶液
30m1に加え室温で30分攪拌した後、余剰の塩酸を
0. I N NaOH水溶液で滴定した処、結晶中2
当量の塩基を含有していた。
Furthermore, 0.5 g of this crystal was accurately weighed, added to 30 ml of 0.1N HCl aqueous solution, and stirred at room temperature for 30 minutes, and excess hydrochloric acid was removed by 0.5 g. After titration with I N NaOH aqueous solution, 2 in the crystals
It contained an equivalent amount of base.

又、熱重量分析の結果、分解点334℃でその22.6
wt%が減少した。この値はLiH(C3J+Js) 
’ (CJtJt)からC41l14N!(D B U
)が減少したことと一致する。又、DBUは、室温で液
体であり、常圧下では約250℃で気化するから、DB
UがLiHPcとの混合物の場合には、この分解点に至
る前にDBUの気化による重量減少が起こることになる
。従って分解点が334℃であることは、この結晶がモ
ノリチウムフタロシアニンとDBUの混合物ではなく、
単一化合物であることは明らかである。
In addition, as a result of thermogravimetric analysis, the decomposition point was 334℃, and the temperature was 22.6℃.
wt% decreased. This value is LiH(C3J+Js)
'(CJtJt) to C41l14N! (D B U
) is consistent with the decrease. In addition, DBU is a liquid at room temperature and vaporizes at about 250°C under normal pressure.
In the case of a mixture of U and LiHPc, weight loss due to vaporization of DBU will occur before this decomposition point is reached. Therefore, the fact that the decomposition point is 334°C means that this crystal is not a mixture of monolithium phthalocyanine and DBU.
It is clear that it is a single compound.

以上から、上記赤紫色の結晶は、化学式LiH(C3J
+Js)・(CJ+、、Nz)で示されるモノリチウム
フタロシアニンと[]BUからなるフタロシアニン化合
物である(以後、LiHPc −DBtlと略記する)
From the above, the reddish-purple crystal has the chemical formula LiH(C3J
+Js)・(CJ+,,Nz) It is a phthalocyanine compound consisting of monolithium phthalocyanine and []BU (hereinafter abbreviated as LiHPc-DBtl).
.

参考例1 実施例1で得たLiHPc−DBU S、 OOgを四
ツ目フラスコに入れ、5%HCI水溶液100mlを加
え、室温で30分攪拌を行った。
Reference Example 1 LiHPc-DBUS and OOg obtained in Example 1 were placed in a four-eye flask, 100 ml of a 5% HCI aqueous solution was added, and the mixture was stirred at room temperature for 30 minutes.

結晶を濾別し、水100m&、次いでアセトン100m
1で洗浄を行い乾燥することで赤紫色の微結晶3.73
gを得た。このX線回折並びに赤外吸収スペクトルの測
定から、得られたものは無金属フタロシアニン()It
Pcと略記する)であった、更に純度分析の結果、H2
Pcは98.6%含有していた。従って、実施例1から
のH,Pcの収率は78.3molχであり、比較例1
に比して高収率であり、かつ高純度のHtPcが収得で
きる。
Filter the crystals, add 100ml of water and then 100ml of acetone.
After washing and drying in step 1, reddish-purple microcrystals 3.73
I got g. What was obtained from this X-ray diffraction and infrared absorption spectrum measurement was metal-free phthalocyanine ()It
Furthermore, as a result of purity analysis, H2
It contained 98.6% Pc. Therefore, the yield of H, Pc from Example 1 was 78.3 molχ, and Comparative Example 1
It is possible to obtain HtPc with a higher yield and higher purity than that of the conventional method.

参考例2 参考例1と同様にしてLiHPc・DBU5.00gの
分解反応を5回行った。得られたthPcの量は、それ
ぞれ、3.71g、3、73 g、3.73 g、 3
.70 g、3.74 gであり、分解はほぼ定量的に
進行している。
Reference Example 2 In the same manner as in Reference Example 1, a decomposition reaction of 5.00 g of LiHPc/DBU was carried out 5 times. The amounts of thPc obtained were 3.71 g, 3, 73 g, 3.73 g, and 3, respectively.
.. 70 g and 3.74 g, and decomposition is proceeding almost quantitatively.

実施例2 実施例1と同様の100mfの四ツ目フラスコにフタロ
ニトリル6.41g、塩化リチウム1.06g及び第1
表に示す各種アルコール36ml1を仕込み、窒素ガス
雰囲気下、油浴上で加熱し、還流温度に保持した。還流
温度に達した時から滴下ロートよりDBtJを添加し始
め、30分を要して7.61gを加えた。更に還流下、
6時間反応を行った。
Example 2 In a 100 mf four-eye flask similar to Example 1, 6.41 g of phthalonitrile, 1.06 g of lithium chloride, and the
36 ml of each alcohol shown in the table was charged, heated on an oil bath under a nitrogen gas atmosphere, and maintained at reflux temperature. Addition of DBtJ was started from the dropping funnel when the reflux temperature was reached, and 7.61 g was added over 30 minutes. Further under reflux,
The reaction was carried out for 6 hours.

反応後、直ちに濾過を行い、LiHPc−DBUの結晶
を得、これをメタノール100mJ、次いで1%塩酸1
00m1,水100mj!、更にアセトン100mJ!
で洗浄し、乾燥することでLiHPc・口811の結晶
を得た。
Immediately after the reaction, filtration was performed to obtain crystals of LiHPc-DBU, which were mixed with 100 mJ of methanol and then 1% hydrochloric acid (1%).
00m1, water 100mj! , and 100mJ of acetone!
By washing with water and drying, crystals of LiHPc 811 were obtained.

次いで参考のため、参考例1と同様にLiHPc−DB
Uの分解を行い、HzPcを得た。これらの結果を第1
表に示した。
Next, for reference, LiHPc-DB was prepared in the same manner as Reference Example 1.
U was decomposed to obtain HzPc. These results are the first
Shown in the table.

第     1     表 実施例3 アルコールとして、2−メトキシエタノールを用いる以
外は実施例2と同様に反応を行った。ただし、反応時間
は、3時間、6時間、12時間とした。この時のLiH
Pc−DBUの得量はそれぞれ6.72 g、 6.8
5 g、 6.53 gであり、HtPcとしての収率
はそれぞれ73.4%、74.8%、68.4%であっ
た。すなわちLiHPc −Dullの反応速度は2−
メトキシエタノール還流下では速く、3時間程度でほぼ
完結している。
Table 1 Example 3 The reaction was carried out in the same manner as in Example 2 except that 2-methoxyethanol was used as the alcohol. However, the reaction times were 3 hours, 6 hours, and 12 hours. LiH at this time
The amount of Pc-DBU obtained was 6.72 g and 6.8 g, respectively.
The yields as HtPc were 73.4%, 74.8%, and 68.4%, respectively. In other words, the reaction rate of LiHPc-Dull is 2-
Under refluxing of methoxyethanol, the reaction is fast and is almost completed in about 3 hours.

実施例4 アルコールとして2−メトキシエタノールを用いる以外
は実施例2と同様に反応を行い、LiHPc・DBIJ
を合成した(200mlの四ツロフラスコを使用した)
。反応終了後、室温に冷却し、5%塩酸110mlを加
え、室温下、3時間攪拌を行った。これを濾過し、実施
例2と同様に洗浄、乾燥を行うことでHtPc5.01
 g (純度95.1%)を得た(収率74.3%)。
Example 4 A reaction was carried out in the same manner as in Example 2 except that 2-methoxyethanol was used as the alcohol, and LiHPc/DBIJ
was synthesized (using a 200ml Yotsuro flask)
. After the reaction was completed, the mixture was cooled to room temperature, 110 ml of 5% hydrochloric acid was added, and the mixture was stirred at room temperature for 3 hours. By filtering this, washing and drying in the same manner as in Example 2, HtPc5.01
g (purity 95.1%) was obtained (yield 74.3%).

比較例1 攪拌器、滴下ロート、還流冷却器、温度計及び窒素ガス
導入管を備えた3iのガラス製画ツロフラスコに、フタ
ロニトリル512.6g及び2−メトキシエタノール2
1を仕込み、窒素ガス雰囲気下、油浴上で加熱し、還流
温度に保持した。還流温度に達した時から、滴下ロート
よりDBUを滴下し始め、2時間を要して608.6 
gを加えた。更に還流下、14時間反応を行った0反応
後、室温に冷却し、濾過することで赤紫色の結晶を得、
これを2−メトキシエタノール1j!、次いで水41、
更にアセトン11で洗浄し、乾燥することで赤紫色の微
結晶359.3 gを得た。このX線回折並びに赤外吸
収スペクトルの測定から、得られたものはβ−〇、Pc
であった。更に純度分析の結果、H,Pcは92.5%
含有していた。従ってフタロニトリルに対するHよPc
の収率は64.8%である。
Comparative Example 1 512.6 g of phthalonitrile and 2.2 g of 2-methoxyethanol were placed in a 3i glass flask equipped with a stirrer, a dropping funnel, a reflux condenser, a thermometer, and a nitrogen gas inlet tube.
1 was charged, heated on an oil bath under a nitrogen gas atmosphere, and maintained at reflux temperature. When the reflux temperature was reached, DBU was started dropping from the dropping funnel, and it took 2 hours to reach 608.6
g was added. After further reaction under reflux for 14 hours, red-purple crystals were obtained by cooling to room temperature and filtering.
Add this to 1j of 2-methoxyethanol! , then water 41,
It was further washed with 11 acetone and dried to obtain 359.3 g of reddish-purple microcrystals. What was obtained from this X-ray diffraction and infrared absorption spectrum measurement was β-〇, Pc
Met. Furthermore, as a result of purity analysis, H and Pc were 92.5%.
It contained. Therefore, H for phthalonitrile Pc
The yield is 64.8%.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例で得られた結晶のX線回折図を
示す。
The drawing shows an X-ray diffraction pattern of a crystal obtained in an example of the present invention.

Claims (1)

【特許請求の範囲】 1、モノリチウムフタロシアニンと1,8−ジアザ−ビ
シクロ〔5,4,0〕ウンデセン−7とより成る高次化
合物で、次の化学式 LiH(C_3_2H_1_6N_8)・(C_9H_
1_6N_2) で示し得るフタロシアニン化合物。 2、A)フタロニトリルと金属リチウムもしくはリチウ
ム化合物とを、1,8−ジアザ−ビシクロ〔5,4,0
〕ウンデセン−7の存在下に溶媒中で加熱反応せしめる
か、 B)無金属フタロシアニンと金属リチウムもしくはリチ
ウムアルコラートとを、又はモノリチウムフタロシアニ
ンを、1,8−ジアザ−ビシクロ〔5,4,0〕ウンデ
セン−7の存在下に溶媒中で反応させること、 を特徴とする、モノリチウムフタロシアニンと1,8−
ジアザ−ビシクロ〔5,4,0〕ウンデセン−7とより
成る高次化合物で、次の化学式 LiH(C_3_2H_1_6N_8)・(C_9H_
1_6N_2) で示し得るフタロシアニン化合物の製造方法
[Claims] 1. A higher order compound consisting of monolithium phthalocyanine and 1,8-diaza-bicyclo[5,4,0]undecene-7, which has the following chemical formula LiH(C_3_2H_1_6N_8)・(C_9H_
1_6N_2) A phthalocyanine compound that can be represented by: 2.A) Phthalonitrile and metallic lithium or lithium compound are combined into 1,8-diaza-bicyclo[5,4,0
[B) Metal-free phthalocyanine and metallic lithium or lithium alcoholate, or monolithium phthalocyanine, 1,8-diaza-bicyclo[5,4,0] monolithium phthalocyanine and 1,8-, characterized by reacting in a solvent in the presence of undecene-7.
A higher order compound consisting of diaza-bicyclo[5,4,0]undecene-7, with the following chemical formula LiH(C_3_2H_1_6N_8)・(C_9H_
1_6N_2) Method for producing a phthalocyanine compound that can be represented by
JP2686385A 1985-02-14 1985-02-14 Phythalocyanin compound and its preparation Pending JPS61186386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2686385A JPS61186386A (en) 1985-02-14 1985-02-14 Phythalocyanin compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2686385A JPS61186386A (en) 1985-02-14 1985-02-14 Phythalocyanin compound and its preparation

Publications (1)

Publication Number Publication Date
JPS61186386A true JPS61186386A (en) 1986-08-20

Family

ID=12205126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2686385A Pending JPS61186386A (en) 1985-02-14 1985-02-14 Phythalocyanin compound and its preparation

Country Status (1)

Country Link
JP (1) JPS61186386A (en)

Similar Documents

Publication Publication Date Title
EP0492508B1 (en) Method for preparing alkoxyphthalocyanine
Domaille et al. Synthesis and tungsten-183 NMR characterization of vanadium-substituted polyoxometalates based on B-type tungstophosphate PW9O349-precursors
CA1176646A (en) Co-ordination compound of platinum
Albert et al. Lewis-base adducts of Group 11 metal (I) compounds. 49. Structural characterization of hexameric and pentameric (triphenylphosphine) copper (I) hydrides
JPS61186386A (en) Phythalocyanin compound and its preparation
JP2005145896A (en) Method for producing metal phthalocyanine
Anchisi et al. Studies on the synthesis of heterocyclic compounds. Synthesis of 1, 3, 2‐benzoxathia‐and 1, 3, 2‐benzodioxastibole derivatives
JPH04193882A (en) Production of oxytitatnium phthalocyanine
US2772285A (en) Process for producing copper-phthalocyanine precursor
Braun et al. Complexes of N-aryltriphenylphosphinimines with mercury (II) halides
JPS61218555A (en) Manufacture of acids substituted with trifluorodichloroethylgroup and zinc compounds
JPH10147590A (en) Quaternary phosphonium inorganic acid salt and its production
Che et al. Synthesis and structure of the [(. eta. 5-C5H5) Ti (Mo5O18)] 3-and [(. eta. 5-C5H5) Ti (W5O18)] 3-anions
US2795588A (en) Process for producing copper-phthalocyanine precursor
Wang et al. Preparations and Characterization of Five-Coordinate Zinc (II) Complexes of H2Tmtaa,(Zn (Tmtaa) L [L [dbnd] Pph3, Opph3 and Ch3Cn]) and Crystal Structure of Zn (Tmtaa) Opph3
KR890000640B1 (en) Co-ordination compoune of platinum
JPH03109389A (en) Production of bis(3,4-dimethylphenyl)dimethylsilane
JP2715693B2 (en) Method for producing naphthophthalocyanine derivative
JPH03251591A (en) Production of tetrakis(triphenylphosphine)palladium
Nomiya et al. Synthesis and spectroscopic characterization of a Keggin α-1, 4, 9-trivanadium-substituted polyoxotungstate-supported Cp* Rh 2+ complex,[(Cp* Rh)(α-1, 4, 9-PW 9 V 3 O 40)] 4−
JPH02308863A (en) Production of oxytitanium phthalocyanine
JPH02298557A (en) Phthalocyanine compound and production thereof
JPS58216160A (en) Production of quinoline derivative
Orlov et al. Aziridinyl ketones and their heteroanalogs: 2. Synthesis and study of 5, 7-diaryl-l, 4-diazabicyclo [4.1. 0] hepta-4-enes
Dong‐Mei et al. Synthesis of Substituted Indenyl Lanthanide Chloride and Molecular Structure of [(C5H9C9H6) 2Yb (μ‐Cl) 2Li (Et2O) 2]