JPS61185985A - Laser light reactyor - Google Patents

Laser light reactyor

Info

Publication number
JPS61185985A
JPS61185985A JP2515285A JP2515285A JPS61185985A JP S61185985 A JPS61185985 A JP S61185985A JP 2515285 A JP2515285 A JP 2515285A JP 2515285 A JP2515285 A JP 2515285A JP S61185985 A JPS61185985 A JP S61185985A
Authority
JP
Japan
Prior art keywords
laser light
cylindrical mirror
reactor
reaction
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2515285A
Other languages
Japanese (ja)
Inventor
Takeshi Sawazaki
毅 澤崎
Shigeru Morikawa
茂 森川
Kazumasa Takahashi
一正 高橋
Akira Katayama
章 片山
Takeshi Kobayashi
健 小林
Takeshi Udagawa
宇田川 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2515285A priority Critical patent/JPS61185985A/en
Publication of JPS61185985A publication Critical patent/JPS61185985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Abstract

PURPOSE:To contrive improvement of reaction effect by a method wherein the titled item consists of a cylindrical mirror and a freely adjustable mirror, while the upper end of the cylindrical mirror has a space under the stock liquid while the lower end thereof has a space between it and the reactor body. CONSTITUTION:Laser light l from a laser light generating device is introduced inside a reactor main body through a transparent member 3 of a laser inlet 2. The laser light l introduced into the reactor main body 1 is made to reflect repeatedly in spiral state at an inside peripheral face of a cylindrical mirror 4, then projection cubic volume of the laser light l is enlarged extremely, so photochemical reaction and thermochemical reaction of raw liquid 5 are caused effectively. Substance produced by reaction is generated by chemical reaction inside the cylindrical mirror 4 and is in the state of being mixed with unreacted raw liquid. Since laser light is made to repeat reflection at the inside peripheral face, laser light pass length through raw liquid comes to be long, and since projection cubic volume to raw liquid is increased, reaction effect of laser light is improved. Thereby, installation cost and operation cost can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザ光を利用して液体または液体と気体化学
の反応を行うレーザ光反応器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser light reactor that performs a chemical reaction of a liquid or a gas with a liquid using laser light.

[従来技術およびその問題点] 従来、化学反応は高温・高圧条件にすることにより分子
を活性化し、かつ分子同志の衝突頻度を高めることによ
り行われている。しかし近来レーザ光を照射することに
より物質を励起し、常温・常圧又はそれに近い低温・低
圧でも化学反応を誘起させるいわゆるレーザ誘起化学反
応の研究が各分野でなされている。即ちレーザ光は、エ
ネルギー強度、単色性、指向性が強く、コヒーレンスが
良いなどの大きな特色を持った光源であり、赤外領域、
可視領域、紫外領域内で特定波長のレーザ光の発生が可
能であり、レーザ光を直接原料物に照射することにより
、光化学反応や熱化学反応を生ぜしめ、これにより物質
の置換反応、離脱反応、付加反応、異性化反応或いは、
イオン化反応などを行って目的とする反応生成物を得る
ことができる。
[Prior art and its problems] Conventionally, chemical reactions have been carried out by activating molecules under high temperature and high pressure conditions and increasing the frequency of collisions between molecules. However, in recent years, research has been conducted in various fields on so-called laser-induced chemical reactions, in which substances are excited by irradiation with laser light and chemical reactions are induced even at room temperature and normal pressure, or at low temperatures and low pressures close to normal temperatures. In other words, laser light is a light source with major characteristics such as energy intensity, monochromaticity, strong directionality, and good coherence.
It is possible to generate laser light with a specific wavelength in the visible and ultraviolet regions, and by directly irradiating the raw materials with laser light, photochemical reactions and thermochemical reactions occur, resulting in substitution reactions and elimination reactions of substances. , addition reaction, isomerization reaction, or
A desired reaction product can be obtained by performing an ionization reaction or the like.

光化学反応は、レーザ光で分子内の電子を励起状態にし
て、それにより化合物の化学的性質を基底状態の分子と
異なったものとし、さらに励起状態の間における反応性
が異なっていることを利用したものであり、従来の水銀
灯等を利用した光反応の延長線上のものである。また熱
化学反応としては、赤外レーザで特定の振動単位を励起
して化学反応を起したり、強力なレーザから発生する^
熱を利用して化学反応を起したり、或いは通常の条件で
は反応しない2成分系にレーザ光を作用させて一方の成
分を活性にした上で他の成分と熱反応を起したりする場
合がある。
Photochemical reactions use laser light to excite the electrons in molecules, thereby making the chemical properties of the compound different from those of the molecule in its ground state, and taking advantage of the difference in reactivity between the excited states. This is an extension of the conventional photoreaction using a mercury lamp or the like. In addition, as a thermochemical reaction, a chemical reaction is caused by exciting a specific vibrational unit with an infrared laser, or it is generated by a powerful laser.
When a chemical reaction is caused using heat, or when a laser beam is applied to a two-component system that does not react under normal conditions to activate one component and then cause a thermal reaction with the other component. There is.

ところで化学品を合成する場合において反応効率を増大
させることが必然的に要請される。
By the way, when synthesizing chemical products, it is inevitably required to increase reaction efficiency.

第4因は従来のレーザ光を用いた反応器を示す。The fourth factor shows a reactor using conventional laser light.

この反応器あっては反応器本体a内の一端から照射し、
被反応原料を通過したレーザ光lを弛端に設けた、例え
ば、グラフフィトのごとき遮蔽材すで受ける構造となっ
ているため、被反応原料へのレーザ光の照射体積が少な
く、反応効率を十分に向上できないという不都合があっ
た。
In this reactor, irradiation is performed from one end inside the reactor body a,
Since the structure is such that the laser beam 1 that has passed through the raw material to be reacted is received by a shielding material such as graphite provided at the loose end, the volume of laser light irradiated onto the raw material to be reacted is small and the reaction efficiency is reduced. There was an inconvenience that they could not improve sufficiently.

又被反応原料へのレーザ光の照射が局部的であることに
より、反応が局部的であり、被反応原料と反応生成物の
割合が反応器本体内で不均一になる。このため反応器本
体内で均一な反応を進めるためには撹拌装置C,Cまた
は循環装置dを設ける必要があり、高温反応の場合には
反応器本体のみでなく循環装置dに加温手段を設ける必
要があった。このため設備コストも運転コストも高いと
いう問題があった。
Furthermore, since the laser beam is irradiated onto the raw material to be reacted locally, the reaction is localized, and the ratio of the raw material to be reacted to the reaction product becomes non-uniform within the reactor body. Therefore, in order to proceed with a uniform reaction within the reactor main body, it is necessary to provide stirring devices C, C or a circulation device d, and in the case of high-temperature reactions, a heating means is installed not only in the reactor main body but also in the circulation device d. It was necessary to set it up. Therefore, there was a problem in that the equipment cost and operating cost were high.

一方原料液(被反応物)と反応生成物との間にはほとん
どの場合比重差がある。
On the other hand, in most cases there is a difference in specific gravity between the raw material liquid (reactant) and the reaction product.

例えば塩素化反応: CH2= CH2+ CQz →CH2=CHCノ+HCノ 比重0,6246     0.9692の場合には、
反応生成物の方が被反応原料より重いし、 逆に分解反応: H202+Hz Q+  02 比重1.46   1.0 の場合には反応生成物の方が被反応原料よりも軽い。又
熱化学反応の場合にも温度上昇により局部的に比重が軽
くなるので比重差がでる。かかる比重差により自然対流
を惹起する場合もあるが反応器本体内で部分的なものに
止り、撹拌装置C1Cや循環装置dなどを省くことはで
きなかった。
For example, in the case of chlorination reaction: CH2= CH2+ CQz → CH2=CHC+HC specific gravity 0.6246 0.9692,
The reaction product is heavier than the raw material to be reacted, and conversely, in the case of decomposition reaction: H202+Hz Q+ 02 specific gravity 1.46 1.0, the reaction product is lighter than the raw material to be reacted. Also, in the case of a thermochemical reaction, the specific gravity locally decreases due to temperature rise, resulting in a difference in specific gravity. Although natural convection may be induced due to such a difference in specific gravity, it is limited to only a portion within the reactor main body, and the stirring device C1C and the circulation device d cannot be omitted.

[発明の目的] 本発明は従来技術のかかる問題点に鑑み案出されたもの
で、被反応原料へのレーザ光の照射体積を増大させて反
応効率を向上させることができ、また反応器本体内の被
反応原料に自然循環を起させて、全体的に均一に化学反
応させることができ、しかも撹拌装置または循環装置を
不用または小型化でき、設備コストと運転コストを下げ
ることができるレーザ光反応を提供することを目的とす
る。
[Object of the Invention] The present invention was devised in view of the problems of the prior art, and it is possible to increase the irradiation volume of the laser beam to the raw materials to be reacted, thereby improving the reaction efficiency, and to improve the reaction efficiency. A laser beam that causes natural circulation in the raw materials to be reacted in the reactor, allowing chemical reactions to occur uniformly throughout the body, eliminating the need for a stirring device or circulation device, or reducing the size of the device, and reducing equipment and operating costs. The purpose is to provide a reaction.

[問題点を解決するための手段] 上記目的を達成するため本願の第1発明のレーザ反応器
はレーザ光により化学反応を起す原料液を貯留する反応
器本体と、反応器本体に取りつけられレーザ光を反応器
本体内に導入するレーザ光導入口と、内面が鏡となって
いる上下端開放の筒状ミラーとからなり、筒状ミラーは
上端が原料液の液面下にあり、下端が反応器本体との間
に隙間を有しており、レーザ光導入口は、レーザ光が筒
状ミラーの内周面において反射を反復するように位置し
ていることを特徴とするものである。また本願の第2発
明のレーザ光反応器はレーザ光により化学反応を起す原
料液を貯留する反応器本体と、反応器本体に取りつけら
れレーザ光を反応器本体内に導入するレーザ光導入口と
、内面が鏡となっている上下端開放の筒状ミラーと、レ
ーザ光導入口より導入されるレーザ光を反射して、レー
ザ光が筒状ミラー内周面において反射を反復するように
導く、調節自在はミラーとからなり、筒状ミラーは、上
端が原料液の液面下にあり、下端が反応器本体との間に
隙間を有していることを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the laser reactor of the first invention of the present application includes a reactor main body that stores a raw material liquid to cause a chemical reaction by laser light, and a reactor body that is attached to the reactor main body and has a laser reactor. It consists of a laser beam introduction port that introduces light into the reactor body, and a cylindrical mirror with an open top and bottom end whose inner surface is a mirror.The top end of the cylindrical mirror is below the surface of the raw material liquid, and the bottom end is There is a gap between the mirror and the reactor body, and the laser beam inlet is located so that the laser beam is repeatedly reflected on the inner circumferential surface of the cylindrical mirror. Further, the laser light reactor of the second invention of the present application includes a reactor body that stores a raw material liquid that undergoes a chemical reaction by laser light, and a laser light inlet that is attached to the reactor body and that introduces laser light into the reactor body. , a cylindrical mirror whose inner surface is a mirror and whose upper and lower ends are open, and which reflects the laser light introduced from the laser light introduction port and guides the laser light so that it is repeatedly reflected on the inner peripheral surface of the cylindrical mirror; The cylindrical mirror is characterized in that its upper end is below the surface of the raw material liquid and its lower end has a gap between it and the reactor body.

[作    用] 本願のいずれの発明も、外部より反応器本体内に導入し
たレーザ光を筒状ミラー内周面で反射を反復させること
によりレーザ光の原料液への照射体積を増すと共に、原
料液中に没する上下端開放の筒状ミラーにより反応器本
体内部を、原料液が光反応を起す部分と、反応を起さな
い部分に区画し、液の筒状ミラーの内と外での比重差に
より、自然循環流を発生させ、それによって筒状ミラー
外側の原料液を内側に導くようにして反応器本体内の全
原料液に均一な化学反応を起させるようにしたものであ
る。尚、筒状ミラーは円筒状であっても角筒状であって
もよい。そして第1の発明ではレーザ光導入口の取付角
度を考慮しており、第2の発明ではレーザ光導入口と筒
状ミラーとの間にもう一つのミラーを設けることにより
、レーザ光導入口の取付位置、角度を自由にすると共に
、筒状ミラー内での照射体積を可変にしている。
[Function] In each of the inventions of the present application, the laser beam introduced from the outside into the reactor main body is repeatedly reflected on the inner circumferential surface of the cylindrical mirror, thereby increasing the irradiation volume of the laser beam onto the raw material liquid, and A cylindrical mirror with open top and bottom ends submerged in the liquid divides the inside of the reactor body into a part where the raw material liquid undergoes a photoreaction and a part where it does not. Due to the difference in specific gravity, a natural circulation flow is generated, which leads the raw material liquid on the outside of the cylindrical mirror to the inside, thereby causing a uniform chemical reaction in all the raw material liquid in the reactor body. Note that the cylindrical mirror may be cylindrical or rectangular. In the first invention, the mounting angle of the laser beam introduction port is taken into consideration, and in the second invention, by providing another mirror between the laser beam introduction port and the cylindrical mirror, the angle of the laser light introduction port is adjusted. The mounting position and angle are free, and the irradiation volume within the cylindrical mirror is variable.

[実  施  例  1 ] 第1発明のレーザ光反応器の好適実施例について第1図
および第2図参照しつつ説明する。
[Example 1] A preferred example of the laser light reactor of the first invention will be described with reference to FIGS. 1 and 2.

第1図は本発明のレーザ光反応器の断面図であり、第2
図は筒状ミラー内でレーザ光の反射状態を示す平面図で
ある。第1図で、1はレーザ光により化学反応を起す原
料液5を貯留する反応器本体であり、2は反応器本体に
取りつけられたレーザ光導入口であり、透明部材3を備
えていて、図示しないレーザ光発生装置からのレーザ光
lを導入するようになっている。4は反応器本体内に筒
軸を縦にして取りつけられ、導入口2から導入されるレ
ーザ光を、内周面において反射を反復させる上下端開放
の筒状ミラーであり、該筒状ミラー4は上端4aが原料
液の液面5aより高ざhlだけ下にあり、下端4bは反
応器本体との間に隙間h2を有している。
FIG. 1 is a sectional view of the laser photoreactor of the present invention, and FIG.
The figure is a plan view showing the state of reflection of laser light within a cylindrical mirror. In FIG. 1, 1 is a reactor main body that stores a raw material liquid 5 that undergoes a chemical reaction by laser light, 2 is a laser light inlet attached to the reactor main body, and is equipped with a transparent member 3. Laser light l from a laser light generator (not shown) is introduced. Reference numeral 4 denotes a cylindrical mirror with open upper and lower ends, which is installed in the reactor main body with its cylindrical axis vertical, and repeatedly reflects the laser light introduced from the inlet 2 on its inner peripheral surface. The upper end 4a is located below the liquid level 5a of the raw material liquid by a height hl, and the lower end 4b has a gap h2 between it and the reactor body.

上記レーザ光導入口2はレーザ光が第1図および第2図
の矢印で示すごとく筒状ミラ−4内周面において反射を
スパイラル状に反復するように位置されている。6は反
応器本体1に取りつけられ反応に関与する気体を導入す
る気体導入パイプで気体の噴出口6aは、上記筒状ミラ
ー4の内側又は下方に設けられて気泡が筒状ミラー4の
内側に浮上する。このバイブロは化学反応において気体
の関与を必要とする場合に使用される外、原料液の筒状
ミラー4の内外の循環を助長するため空気等反応に関与
しない気体の導入口としても使用される。11は原料液
5の入口であり、12は反応生成物の出口である。
The laser beam introduction port 2 is located so that the laser beam is repeatedly reflected in a spiral manner on the inner peripheral surface of the cylindrical mirror 4 as shown by the arrows in FIGS. 1 and 2. Reference numeral 6 denotes a gas introduction pipe that is attached to the reactor main body 1 and introduces gas involved in the reaction, and a gas jet port 6a is provided inside or below the cylindrical mirror 4 to prevent air bubbles from flowing inside the cylindrical mirror 4. surface. This vibro is used not only when a gas is required to participate in a chemical reaction, but also as an inlet for a gas that is not involved in the reaction, such as air, in order to promote circulation of the raw material liquid inside and outside the cylindrical mirror 4. . 11 is an inlet for the raw material liquid 5, and 12 is an outlet for the reaction product.

次に作用を説明する。Next, the action will be explained.

反応器本体1内にはレーザ光により化学反応を起す原料
液5がレーザ光の液面における反射を考えると好ましく
は実線のレベルまで満される。しかし点線のレベルでも
よい。図示しないレーザ光発生装置からのレーザ光lは
レーザ光導入口2の透明部材3を通して斜め下方に向っ
て反応器本体内に導入される。反応器本体1内に導かれ
たレーザ光lは筒状ミラー4の内周面でスパイラル状に
反射を反復する。このためレーザ光ノの照射体積がきわ
めて大きくなり、原料液5の光化学反応又は熱化学反応
が効率よく惹起する。−力筒状ミラー4の内部で化学反
応により反応生成物が発生し、筒状ミラー4の内部は反
応生成物と未反応原料液の混合した状態となる。今未反
応原料液と反応生成物との間に比重差があり、反応生成
物の方が原料液より軽いと、未反応原料液と反応生成物
の混合物は原料液自体より軽いので、上方に浮上し、代
って下方から筒状ミラー4の外側の未反応原料液が筒状
ミラー4内に入ってきて、矢印で示すように筒状ミラー
4の内部で上昇流、外側で下降流となる自然循環流が発
生する。また反応生成物が未反応原料液より比重が大き
い場合には、筒状ミラー4の内部で下降流、外側で上昇
流となる自然循環流が発生する。かかる自然循環は、反
応器本体1内での液の内レーザ光に当って光化学反応を
起す部分とレーザ光に当らず光化学反応を起さない部分
との間で撹拌作用をすることになり、撹拌装置または強
制循環装置を付設しなくて済む。そして内容物全体にレ
ーザ光が均一に照射されて、反応を進めることができる
The reactor main body 1 is preferably filled with the raw material liquid 5, which undergoes a chemical reaction by laser light, up to the level shown by the solid line, considering the reflection of the laser light on the liquid surface. However, it may also be at the level of the dotted line. Laser light l from a laser light generator (not shown) is introduced diagonally downward into the reactor main body through the transparent member 3 of the laser light introduction port 2. The laser beam l guided into the reactor body 1 is repeatedly reflected in a spiral manner on the inner peripheral surface of the cylindrical mirror 4. Therefore, the irradiation volume of the laser beam becomes extremely large, and the photochemical reaction or thermochemical reaction of the raw material liquid 5 is efficiently induced. - A reaction product is generated by a chemical reaction inside the cylindrical mirror 4, and the inside of the cylindrical mirror 4 becomes a mixed state of the reaction product and unreacted raw material liquid. Now, if there is a difference in specific gravity between the unreacted raw material liquid and the reaction product, and the reaction product is lighter than the raw material liquid, the mixture of the unreacted raw material liquid and the reaction product is lighter than the raw material liquid itself, so it will move upward. The unreacted raw material liquid outside the cylindrical mirror 4 floats up and instead enters the cylindrical mirror 4 from below, causing an upward flow inside the cylindrical mirror 4 and a downward flow outside the cylindrical mirror 4, as shown by the arrows. A natural circulation flow occurs. Further, when the reaction product has a higher specific gravity than the unreacted raw material liquid, a natural circulation flow is generated in which a downward flow occurs inside the cylindrical mirror 4 and an upward flow occurs outside the cylindrical mirror 4. This natural circulation creates a stirring effect between the part of the liquid in the reactor body 1 that is exposed to the laser beam and causes a photochemical reaction, and the part that is not exposed to the laser beam and does not cause a photochemical reaction. No stirring device or forced circulation device is required. Then, the entire contents are uniformly irradiated with laser light, allowing the reaction to proceed.

又光化学反応に気体が関与する場合がある。Gas may also be involved in photochemical reactions.

例えば C5Hs+6C&z →Cs He C,i2g +68Cノこの場合気体は
気体導入バイブロの気体噴出口6aから噴出し、気泡と
なって原料液中を上昇するがその際気泡に原料液が引き
ずられて上界流が発生する。そこで発生する気泡がすべ
て筒状ミラー4の内側に導入されるようにすれば、既に
のべたのと同様に筒状ミラー4を中心として自然循環が
発生する。尚反応生成物と未反応原料液との比重差だけ
では、自然循環が十分発生じない場合には、反応に気体
が関与しない場合でも、気体導入バイブロより気体を導
入すればよい。
For example, C5Hs+6C&z →Cs He C, i2g +68C In this case, the gas is ejected from the gas jet port 6a of the gas introduction vibro, becomes bubbles and rises in the raw material liquid, but at this time, the raw material liquid is dragged by the bubbles and an upper flow occurs. occurs. If all the air bubbles generated there are introduced inside the cylindrical mirror 4, natural circulation will occur around the cylindrical mirror 4, as described above. If the natural circulation is not sufficient due to the difference in specific gravity between the reaction product and the unreacted raw material liquid, gas may be introduced from a gas introduction vibrotube even if no gas is involved in the reaction.

[実  施  例  2] 本願の第2発明のレーザ光反応器の好適実施例について
、第3図を参照して説明する。尚第1発明と共通する部
分は同一の符号を使用しており、かつ説明は省略する。
[Example 2] A preferred example of the laser photoreactor of the second invention of the present application will be described with reference to FIG. 3. Note that the same parts as in the first invention are designated by the same reference numerals, and a description thereof will be omitted.

本発明で第1発明と異なる点はレーザ光導入口2から反
応器本体1内に導入されたレーザ光ノは、直接筒状ミラ
ーに導入されず、ミラー20により反射されてから筒状
ミラー4に投射される点である。一般にレーザ光lを原
料液に照射し、光化学反応を起すと、レーザ光は徐々に
吸収され減衰する。モしてレーザ光の減衰率はレーザ光
の波長、原料液、化学反応等の種類により異なる。そこ
でレーザ光の減衰率に応じて筒状ミラーへの投射角度を
調節することにより、筒状ミラー4内の反射回数を変化
させて、筒状ミラー4内におけるレーザ光のバス長さを
調節し、筒状ミラー4下端に達するときにレーザ光lが
消滅するようにするのがよい。即ちレーザ光ノの減衰率
が小さいときには、筒状ミラー4へ投射されるレーザ光
ノの角度を調節して、筒状ミラー4内における反射回数
を増し、レーザ光ノのバス長さを長くして、照射体積を
増すのがよく、逆に減衰率が大きいときは、筒状ミラー
4へのレーザ光の投射角度を調節し、筒状ミラー4内に
おける反射回数を減し、レーザ光ノが筒状ミラー4下端
附近まで達するようにして、筒状ミラー4内側の体積の
有効利用を図るのがよい。
The difference between the present invention and the first invention is that the laser light introduced into the reactor body 1 from the laser light introduction port 2 is not directly introduced into the cylindrical mirror, but is reflected by the mirror 20 and then reflected by the cylindrical mirror 20. This is the point projected onto. Generally, when a raw material liquid is irradiated with laser light l to cause a photochemical reaction, the laser light is gradually absorbed and attenuated. Furthermore, the attenuation rate of the laser beam varies depending on the wavelength of the laser beam, the raw material liquid, the type of chemical reaction, etc. Therefore, by adjusting the projection angle to the cylindrical mirror according to the attenuation rate of the laser beam, the number of reflections within the cylindrical mirror 4 is changed, and the bus length of the laser beam within the cylindrical mirror 4 is adjusted. It is preferable that the laser beam l disappears when it reaches the lower end of the cylindrical mirror 4. That is, when the attenuation rate of the laser beam is small, the angle of the laser beam projected onto the cylindrical mirror 4 is adjusted to increase the number of reflections within the cylindrical mirror 4, thereby increasing the bus length of the laser beam. Therefore, it is better to increase the irradiation volume. Conversely, when the attenuation rate is large, the projection angle of the laser beam to the cylindrical mirror 4 is adjusted to reduce the number of reflections within the cylindrical mirror 4, and the laser beam is It is preferable to reach near the lower end of the cylindrical mirror 4 to effectively utilize the volume inside the cylindrical mirror 4.

次に作用を説明する。Next, the action will be explained.

本実施例でミラー20は2軸に対し回転自在となってお
り、かつ、筒状ミラー4の筒軸に対し偏心して取りつけ
られている。そこでミラー20によって反射されて筒状
ミラー4に導入されるレーザ光lは、水平面に対する角
度および、筒状ミラ−4内周面での反射点における入射
光と内周面接線としのなす水平投射角度が調節可能であ
り、そのためスパイラル状の反射パターンおよびスパイ
ラル間の上下方向のピッチをレーザ光の減衰率に応じて
変更し、筒状ミラー4内で原料液中を通過するレーザ光
ノのバス長さを調節可能なので上記目的が達成できる。
In this embodiment, the mirror 20 is rotatable about two axes and is mounted eccentrically with respect to the cylindrical axis of the cylindrical mirror 4. Therefore, the laser beam l reflected by the mirror 20 and introduced into the cylindrical mirror 4 is projected at an angle with respect to the horizontal plane and a horizontal projection formed by the incident light at the reflection point on the inner circumferential surface of the cylindrical mirror 4 and the inner circumferential surface. The angle is adjustable, so the spiral reflection pattern and the vertical pitch between the spirals are changed according to the attenuation rate of the laser beam, and the laser beam passes through the raw material liquid in the cylindrical mirror 4. Since the length is adjustable, the above purpose can be achieved.

[発明の効果] 以上説明してきたように本願の第1発明および第2発明
のレーザ光反応器には以下の効果がある。
[Effects of the Invention] As explained above, the laser light reactors of the first invention and the second invention of the present application have the following effects.

(1)  本願のいずれの発明も反応器本体内に筒状ミ
ラーを設け、導入されたレーザ光を内周面で反射を反復
させているので、レーザ光の原料液内の通過長さが長く
なり、原料液への照射体積が増すので、レーザ光のエネ
ルギーが化学反応惹起のために有効に利用され、レーザ
光の反応効率が高まる。
(1) In both of the inventions of this application, a cylindrical mirror is provided inside the reactor body, and the introduced laser light is repeatedly reflected on the inner peripheral surface, so the passage length of the laser light through the raw material liquid is long. Since the volume of irradiation to the raw material liquid increases, the energy of the laser beam is effectively used to induce a chemical reaction, and the reaction efficiency of the laser beam increases.

■ 本願のいずれの発明も筒状ミラーにより、反応器本
体内部の液を、筒状ミラー内側の化学反応を起す部分と
、筒状ミラー外側の化学反応を起さない部分に区画した
ことにより、液の筒状ミラーの内と外での比重差により
自然循環流が発生するので、撹拌機や循環装置を設けな
(とも、反応器本体内で順次全原料液にレーザ光が均一
に照射され反応が促進される。
■ In each of the inventions of the present application, the liquid inside the reactor main body is divided into a part inside the cylindrical mirror where a chemical reaction occurs and a part outside the cylindrical mirror where a chemical reaction does not occur. Since a natural circulation flow occurs due to the difference in specific gravity of the liquid inside and outside the cylindrical mirror, a stirrer or circulation device is not installed (in other words, the laser beam is uniformly irradiated on all the raw material liquid in the reactor body). The reaction is accelerated.

■ 反応器本体内に導入されるレーザ光を反復反射させ
るだけであれば反応器本体の内壁を鏡面メッキするか、
鏡を内壁にライニングしてもよいがそうすると損傷又は
劣化したときの補修や取替がやっかいであるのに対し、
本願のいずれの発明も筒状ミラーを用いているので、損
傷又は劣化したときにそっくり取替えればよいのでメン
テナンスが容易である。
■ If the laser beam introduced into the reactor body is simply to be repeatedly reflected, the inner wall of the reactor body should be mirror-plated or
Mirrors can be lined with interior walls, but doing so would be troublesome to repair or replace when damaged or deteriorated.
Since both inventions of the present application use a cylindrical mirror, maintenance is easy because it can be replaced completely when it is damaged or deteriorated.

(至) 本願のいずれの発明も、筒状ミラーへのレーザ
光の投射角度を、レーザ光の原料液中での減衰率に応じ
て変化させることにより、筒状ミラー内の反射回数を調
節できるので、レーザ光のエネルギーの有効利用と、筒
状ミラー内側の化学反応を起す部分の有効利用が図られ
る。特に第2発明では角度調節ミラーが反応器本体内部
に設けられているので角度の調節自由度が大きい。
(To) In both inventions of the present application, the number of reflections within the cylindrical mirror can be adjusted by changing the projection angle of the laser beam onto the cylindrical mirror according to the attenuation rate of the laser beam in the raw material liquid. Therefore, it is possible to effectively utilize the energy of the laser beam and the portion inside the cylindrical mirror where a chemical reaction occurs. In particular, in the second invention, since the angle adjustment mirror is provided inside the reactor main body, the degree of freedom in adjusting the angle is large.

■ 撹拌装置や循環装置を設けなくとも済むので設備コ
ストと運転コストを低減できる。
■ Equipment costs and operating costs can be reduced because there is no need to install a stirring device or circulation device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の第1発明のレーザ光反応器の断面図、第
2図は筒状ミラー内でレーザ光の反射状態を示す平面図
、第3図は本願の第2発明のレーザ光反応器の断面図、
第4図は従来のレーザ光を用いた反応器の断面図である
。 1・・・反応器本体 2・・・レーザ光導入口 3 ・・・透  明  部  材 4・・・筒状ミラー 4a・・・筒状ミラー上端 4b・・・筒状ミラー下端 6・・・気体導入パイプ
FIG. 1 is a cross-sectional view of the laser light reactor of the first invention of the present application, FIG. 2 is a plan view showing the state of reflection of laser light within the cylindrical mirror, and FIG. 3 is a laser light reaction of the second invention of the present application. Cross-sectional view of the vessel,
FIG. 4 is a sectional view of a conventional reactor using laser light. 1... Reactor main body 2... Laser light introduction port 3... Transparent member 4... Cylindrical mirror 4a... Cylindrical mirror upper end 4b... Cylindrical mirror lower end 6... gas introduction pipe

Claims (5)

【特許請求の範囲】[Claims] (1)レーザ光により化学反応を起す原料液を貯留する
反応器本体と、反応器本体に取りつけられレーザ光を反
応器本体内に導入するレーザ光導入口と、内面が鏡とな
っている上下端開放の筒状ミラーとからなり、筒状ミラ
ーは上端が原料液の液面下にあり、下端が反応器本体と
の間に隙間を有しており、レーザ光導入口は、レーザ光
が筒状ミラーの内周面において反射を反復するように位
置していることを特徴とするレーザ光反応器。
(1) A reactor body that stores the raw material liquid that undergoes a chemical reaction with laser light, a laser light inlet that is attached to the reactor body and introduces the laser light into the reactor body, and upper and lower surfaces with mirror inner surfaces. The upper end of the cylindrical mirror is below the surface of the raw material liquid, and the lower end has a gap between it and the reactor body. A laser light reactor characterized in that the laser light reactor is positioned so that reflection is repeated on the inner peripheral surface of a cylindrical mirror.
(2)反応器本体は、気体導入パイプを、該パイプから
発生する気泡が筒状ミラーの内側に導入されるように備
えている特許請求の範囲第1項記載のレーザ光反応器。
(2) The laser light reactor according to claim 1, wherein the reactor main body is provided with a gas introduction pipe so that air bubbles generated from the pipe are introduced into the inside of the cylindrical mirror.
(3)レーザ光により化学反応を起す原料液を貯留する
反応器本体と、反応器本体に取りつけられレーザ光を反
応器本体内に導入するレーザ光導入口と、内面が鏡とな
っている上下端開放の筒状ミラーと、レーザ光導入口よ
り導入されるレーザ光を反射して、レーザ光が筒状ミラ
ー内周面において反射を反復するように導く、調節自在
はミラーとからなり、筒状ミラーは、上端が原料液の液
面下にあり、下端が反応器本体との間に隙間を有してい
ることを特徴とするレーザ光反応器。
(3) A reactor main body that stores the raw material liquid that undergoes a chemical reaction with laser light, a laser light inlet that is attached to the reactor main body and introduces the laser light into the reactor main body, and an upper and lower inner surface that is a mirror. It consists of a cylindrical mirror with an open end, and an adjustable mirror that reflects the laser light introduced from the laser light inlet and guides the laser light so that it is repeatedly reflected on the inner peripheral surface of the cylindrical mirror. A laser light reactor characterized in that the upper end of the shaped mirror is below the liquid level of the raw material liquid, and the lower end has a gap between it and the reactor main body.
(4)ミラーは筒状ミラーの軸心に対して偏心して位置
している特許請求の範囲第3項記載のレーザ光反応器。
(4) The laser light reactor according to claim 3, wherein the mirror is eccentrically located with respect to the axis of the cylindrical mirror.
(5)反応器本体は、気体導入パイプを、該パイプから
発生する気泡が筒状ミラーの内側に導入されるように備
えている特許請求の範囲第3項または第4項記載のレー
ザ光反応器。
(5) The laser light reaction according to claim 3 or 4, wherein the reactor main body is provided with a gas introduction pipe so that bubbles generated from the pipe are introduced into the inside of the cylindrical mirror. vessel.
JP2515285A 1985-02-14 1985-02-14 Laser light reactyor Pending JPS61185985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2515285A JPS61185985A (en) 1985-02-14 1985-02-14 Laser light reactyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2515285A JPS61185985A (en) 1985-02-14 1985-02-14 Laser light reactyor

Publications (1)

Publication Number Publication Date
JPS61185985A true JPS61185985A (en) 1986-08-19

Family

ID=12158036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2515285A Pending JPS61185985A (en) 1985-02-14 1985-02-14 Laser light reactyor

Country Status (1)

Country Link
JP (1) JPS61185985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337623B1 (en) * 1998-11-10 2002-05-24 모리 마코토 Apparatus for Photoreaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337623B1 (en) * 1998-11-10 2002-05-24 모리 마코토 Apparatus for Photoreaction

Similar Documents

Publication Publication Date Title
US6592723B2 (en) Process for efficient microwave hydrogen production
US4323810A (en) Irradiation apparatus including a low-pressure mercury lamp with fluid medium duct means
US6723999B2 (en) Electromagnetic wave assisted chemical processing
Suslick et al. Hot spot conditions during multi-bubble cavitation
US20060213759A1 (en) Pyrolysis apparatus and pyrolysis method
EP2457651A1 (en) Chemical reactor and its usage in chemical reaction
JP2705023B2 (en) Oxidation method of workpiece
de los Milagros Ballari et al. Mass transfer limitations in slurry photocatalytic reactors: Experimental validation
Satuf et al. Scaling-up of slurry reactors for the photocatalytic degradation of 4-chlorophenol
CN101146605A (en) Device, method and use for continuously carrying out photochemical processes with thin optical layer thicknesses, narrow residence time distribution and high throughputs
JPS61185985A (en) Laser light reactyor
JP2011104526A (en) Microwave reactor
EP2998019B1 (en) Chemical reaction apparatus
US4517063A (en) Photochemical reactor and method for carrying out photochemical reactions therein
JP2003284946A (en) Photocatalyst reaction device and unit therefor
Ray Photocatalytic reactor configurations for water purification: experimentation and modeling
JPS6082132A (en) Reactor using laser beam
KR100329805B1 (en) Photocatalytic reactor
Rizzuti et al. The measurement of light transmission through an irradiated fluidised bed
JP2010264433A (en) Ultrasonic-photochemical hybrid reaction apparatus
JPS61187930A (en) Photoreactor
CA2409891C (en) Electromagnetic wave assisted chemical processing
JPH10230286A (en) Hydroxyl radical forming vessel
CN105582871A (en) Ultrasonic-assisted photo-catalytic reaction device
JPS6087847A (en) Reactor by laser beam