JPS61185707A - Device for connection between semiconductor laser and polarization plane maintaining optical fiber - Google Patents

Device for connection between semiconductor laser and polarization plane maintaining optical fiber

Info

Publication number
JPS61185707A
JPS61185707A JP2690985A JP2690985A JPS61185707A JP S61185707 A JPS61185707 A JP S61185707A JP 2690985 A JP2690985 A JP 2690985A JP 2690985 A JP2690985 A JP 2690985A JP S61185707 A JPS61185707 A JP S61185707A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
linearly polarized
optical fiber
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2690985A
Other languages
Japanese (ja)
Inventor
Kazuo Toda
戸田 和郎
Osamu Kamata
修 鎌田
Sumiko Morizaki
森崎 澄子
Yoshinobu Tsujimoto
辻本 好伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2690985A priority Critical patent/JPS61185707A/en
Publication of JPS61185707A publication Critical patent/JPS61185707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4216Packages, e.g. shape, construction, internal or external details incorporating polarisation-maintaining fibres
    • G02B6/4218Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain a high-quality light source of high extinction ratio by separating and condensing only a linearly polarized light of the oscillated light of a semiconductor laser and connecting this light in accordance with the axis of polarization peculiar to a polarization plane maintaining optical fiber by a lens system including a convex lens consisting of a uniaxial crystal. CONSTITUTION:A polarizer is constituted with a lens 12 consisting of the uniaxial crystal which is so formed that the convex lens function is attained, and an optical axis 13 peculiar to this crystal is set at an angle other than right angles to the optical path of the oscillated light in a plane perpendicular to or parallel with the linearly polarized light of the oscillated light of a semiconductor laser 11, and only ordinary rays are condensed selectively when the optical axis is in the plane perpendicular to the linearly polarized light, and only extraordi nary rays are condensed selectively when the optical axis is in the plane parallel with the linearly polarized light, and thereby, only the linearly polarized light of the oscillated light of the semiconductor laser 11 is connected in accordance with the axis of polarization peculiar to a polarization plane maintaining optical fiber 15 by the lens 12. By this constitution, a high extinction ratio is attained, and the polarizer is made small-sized and low-cost because the lens 12 consisting of the uniaxial crystal is used as the polarizer. Further, this device can be used to obtain a light source of high quality used in optical fiber metrology engineer ing, coherent optical communication, etc.

Description

【発明の詳細な説明】 座業上の利用分野 本発明は半導体レーザを偏波面保存光ファイバに偏光特
性良く結合する半導体レーザ偏波面保存光ファイバ結合
装置に関するものである。
Detailed Description of the Invention Field of the Invention The present invention relates to a semiconductor laser polarization maintaining optical fiber coupling device for coupling a semiconductor laser to a polarization maintaining optical fiber with good polarization characteristics.

従来の技術 従来、第3図に示すような断面形状を持つ光ファイバは
楕円ジャケット形偏波面保存光ファイノくと呼ばれてお
り偏波面保存光ファイバの一例である。第3図において
1はコア、2はクラッド、3は楕円ジャケット、4はサ
ポートである。このような構成の偏波面保存光ファイバ
では、楕円ゲヤケットの短軸および長軸は固有偏光軸と
呼ばれこの方向に入射されたExモード、Eyモードの
直線偏光成分は保存される。上記の偏波面保存光ファイ
バと半導体レーザの発振光の直線偏光を結合するには、
入射する直線偏波光を偏波面保存光ファイバの固有偏光
軸に合わせる必要があり、−30dB以上の高い消光比
を得るには、約2度以内に精度良く合わせる必要がある
ことから半導体レーザを固定した後、偏波面保存光ファ
イノ;を回転させて偏光軸を合わせるか、あるいは第4
図(=)に示すように半導体レーザ5の発振光を口・ソ
ドレンズ6でレセプタクル了に取り付けられたコネクタ
タイプの偏波面保存光ファイバ8に集光し偏波面保存光
ファイバ8とロッドレンズ6の間に設けた回転、調整可
能な阿波長板9で偏光軸を精度良く合わせており、また
通常半導体レーザ6の発振光には、活性層に平行な直線
偏光のみが存在するのが理想であるが実際には活性層に
垂直な直線偏光もわずかに存在しているため偏波面保存
光ファイバ8に結合すると消光比が劣化し信号のS/N
比を悪くさせるので、半導体レーザ6の発振光の直線偏
光と垂直な直線偏光を取り除くため第4図(b)に示す
ようにロッドレズ6と%波長板9と間に偏光子10(偏
光ビームスプリッタあるいは偏光プリズム)を設けた半
導体V−ザ偏波面保存光ファイバ結合装置となっていた
(例えば特開昭59−28116号公報)。
2. Description of the Related Art Conventionally, an optical fiber having a cross-sectional shape as shown in FIG. 3 is called an elliptical jacket type polarization-maintaining optical fiber, and is an example of a polarization-maintaining optical fiber. In FIG. 3, 1 is a core, 2 is a cladding, 3 is an oval jacket, and 4 is a support. In a polarization-maintaining optical fiber having such a configuration, the short axis and long axis of the elliptical gear are called intrinsic polarization axes, and the linearly polarized light components of Ex mode and Ey mode incident in these directions are preserved. To combine the polarization-maintaining optical fiber described above with the linearly polarized light emitted from the semiconductor laser,
It is necessary to align the incident linearly polarized light with the unique polarization axis of the polarization-maintaining optical fiber, and in order to obtain a high extinction ratio of -30 dB or more, it is necessary to precisely align it within about 2 degrees, so the semiconductor laser is fixed. After that, either rotate the polarization preserving optical fiber to align the polarization axis, or
As shown in the figure (=), the oscillation light of the semiconductor laser 5 is focused by a rod lens 6 onto a connector-type polarization-maintaining optical fiber 8 attached to the receptacle. The polarization axis is aligned with high precision by a rotatable and adjustable wavelength plate 9 provided in between, and it is ideal that the oscillation light of the semiconductor laser 6 normally contains only linearly polarized light parallel to the active layer. However, since there is actually a small amount of linearly polarized light perpendicular to the active layer, when coupled to the polarization maintaining optical fiber 8, the extinction ratio deteriorates and the S/N of the signal decreases.
In order to remove the linearly polarized light perpendicular to the linearly polarized light of the oscillation light of the semiconductor laser 6, a polarizer 10 (polarizing beam splitter) is installed between the rod lens 6 and the wavelength plate 9, as shown in FIG. 4(b). In other words, a semiconductor V-the polarization maintaining optical fiber coupling device is provided with a polarization prism (for example, Japanese Patent Laid-Open No. 59-28116).

発明が解決しようとする問題点 しかし第4図(切に示すような構成では偏光子1゜とな
る偏光ビームスプリッタ、偏光プリズムは大型で高価で
ある。そこで本発明は、偏光子を小型で安価なものとし
、その偏光子で半導体レーザの発振光の直線偏光に垂直
な直線偏光を除去し発振光の直線偏光のみを効率よく結
合し高い消光比の得られる半導体レーザ偏波面保存光フ
ァイバ結合装置を提供することを目的としている。
Problems to be Solved by the Invention However, in the configuration shown in FIG. A semiconductor laser polarization-maintaining optical fiber coupling device that uses the polarizer to remove linearly polarized light perpendicular to the linearly polarized light of the oscillated light of the semiconductor laser, efficiently couples only the linearly polarized light of the oscillated light, and obtains a high extinction ratio. is intended to provide.

問題点を契決するだめの手段 上記問題点を解決する本発明の技術的手段は、上記偏光
子を凸レンズ機能の得られる形状を有する一軸性結晶か
ら成るレンズで構成し、この結晶固有の光学軸を、半導
体レーザの発振光の直線偏光に対して垂直な面内又は平
行な面内で発振光の光路に対して垂直でない角度に設定
し光学軸が垂直な面内にある時は常光のみを、平行な面
内にある時は異常光のみを選択集光することにより、半
導体レーザの発振光の直線偏光のみをレンズ系で偏波面
保存光ファイバの固有偏光軸に合わせて結合するもので
ある。
Means for solving the problem The technical means of the present invention for solving the above problem is to configure the polarizer with a lens made of a uniaxial crystal having a shape that provides a convex lens function, and to adjust the optical axis unique to this crystal. is set at an angle that is not perpendicular to the optical path of the oscillated light in a plane perpendicular or parallel to the linearly polarized light of the oscillated light of the semiconductor laser, and when the optical axis is in the perpendicular plane, only the ordinary light is transmitted. By selectively focusing only the extraordinary light when it is in parallel planes, only the linearly polarized light of the semiconductor laser's oscillation light is coupled with the lens system in alignment with the unique polarization axis of the polarization-maintaining optical fiber. .

作   用 本発明は上記した構成により、一軸性結晶より成る凸レ
ンズを含むレンズ系によって、半導体レーザの発振光の
直線偏光のみを分離、集光し偏波面保存光ファイバの固
有偏光軸に合わせて結合することが可能となるため、高
い消光比が得られ、偏光子を一軸性結晶より成るレンズ
としているので小型で低価格となる。
According to the above-described configuration, the present invention uses a lens system including a convex lens made of uniaxial crystal to separate and focus only the linearly polarized light of the oscillated light of the semiconductor laser, and combines the linearly polarized light of the oscillated light of the semiconductor laser in alignment with the inherent polarization axis of the polarization-maintaining optical fiber. This makes it possible to obtain a high extinction ratio, and since the polarizer is a lens made of uniaxial crystal, it is small and inexpensive.

実施例 第1図は本発明の半導体レーザ偏波面保存光ファイバ結
合装置の一実施例の基本的構成を示す図である。第1図
において、11は半導体レーザ、12は一軸性結晶より
成る球レンズ、13は一軸性結晶より成る球レンズ12
の光学軸、14はロッドレンズ、15は偏波面保存光フ
ァイバである。
Embodiment FIG. 1 is a diagram showing the basic configuration of an embodiment of a semiconductor laser polarization-maintaining optical fiber coupling device of the present invention. In FIG. 1, 11 is a semiconductor laser, 12 is a ball lens made of uniaxial crystal, and 13 is a ball lens 12 made of uniaxial crystal.
14 is a rod lens, and 15 is a polarization maintaining optical fiber.

また第2図は一軸性結晶の説明図である。16は光源、
17は平行平板の一軸性結晶、1日は一軸性結晶17の
光学軸、19は常光、20は異常光である。まず第2図
を用いて一軸性結晶17による常光19および異常光2
oの分離について説明する。一軸性結晶17の光学軸1
8が図の紙面内にあり光源16からの出射光の光路に対
してθだけ傾いている場合光源16から出射光の紙面に
対して垂直な偏光成分(図中○印)は常光19となり直
進し平行な偏光成分(図中1印)は異常H。
FIG. 2 is an explanatory diagram of a uniaxial crystal. 16 is a light source,
17 is a parallel plate uniaxial crystal, 1st is the optical axis of the uniaxial crystal 17, 19 is ordinary light, and 20 is extraordinary light. First, using FIG. 2, the ordinary light 19 and the extraordinary light 2 due to the uniaxial crystal 17 are
The separation of o will be explained. Optical axis 1 of uniaxial crystal 17
If 8 is within the plane of the figure and is tilted by θ with respect to the optical path of the light emitted from the light source 16, the polarized light component (marked with ○ in the figure) perpendicular to the plane of the paper of the light emitted from the light source 16 becomes ordinary light 19 and travels straight. The parallel polarization component (marked 1 in the figure) is abnormal H.

となり一軸性結晶17の中で入射面に対しαだけ傾き次
式に示されるdだけ離れた平行光となって出射される。
Then, in the uniaxial crystal 17, the light is emitted as parallel light that is tilted by α with respect to the incident plane and separated by d as shown in the following equation.

ここでtは一軸性結晶17の光路方向の厚さであり、n
o、n、l″iそれぞれ一軸性結晶17の常光。
Here, t is the thickness of the uniaxial crystal 17 in the optical path direction, and n
o, n, l″i are the ordinary lights of the uniaxial crystal 17, respectively.

異常光に対する屈折率である。例えば一軸性結晶1了と
してルチル結晶(T 102 )を用いると1.3−の
波長の光に対しt = 1 yas 、θ=48°で約
d=100μmとなる。
This is the refractive index for extraordinary light. For example, if a rutile crystal (T 102 ) is used as the uniaxial crystal, d=100 μm for light with a wavelength of 1.3−1 at t=1 yas and θ=48°.

次に一軸性結晶17を球レンズ12とした第1図に示す
半導体レーザ偏波面保存光ファイバ結合装置の原理につ
いて説明する。ここでは半導体レーザ11の直線偏光は
紙面に対して垂直方向とする。一軸性結晶球レンズを用
いる場合第2図と同じように光学軸13が第1図の紙面
内にあるとすると常光と異常光の位置ずれdは平行平板
の場合の式(1)より複雑になり、球レンズ12の直径
と同じ厚さの平行平板の場合と同程度である。また球レ
ンズであるため一軸性結晶球レンズ12の出射光の常光
、異常光は第1図のように平行とはならない。ルチル結
晶を用いた直径1間の球レンズでθ=48°の場合、常
光および異常光の位置すれと角度ずれはそれぞれ約1o
○μm、約数度となる。半導体レーザ11の発振光の直
線偏光が全紙面に対して垂直としているので第2図に示
したように発振光の直線偏光は常光となりロッドレンズ
14を通り偏波面保存光ファイバ16に結合される。
Next, the principle of the semiconductor laser polarization-maintaining optical fiber coupling device shown in FIG. 1 in which the uniaxial crystal 17 is used as the ball lens 12 will be explained. Here, it is assumed that the linearly polarized light of the semiconductor laser 11 is perpendicular to the plane of the paper. When using a uniaxial crystal ball lens, assuming that the optical axis 13 is within the plane of the paper in Figure 1 as in Figure 2, the positional deviation d between the ordinary and extraordinary rays is more complicated than equation (1) in the case of a parallel plate. This is comparable to the case of a parallel plate having the same thickness as the diameter of the ball lens 12. Moreover, since it is a spherical lens, the ordinary light and extraordinary light of the light emitted from the uniaxial crystal ball lens 12 are not parallel as shown in FIG. When θ = 48° with a 1-diameter spherical lens made of rutile crystal, the positional deviation and angular deviation of the ordinary and extraordinary rays are each approximately 1o.
○μm, approximately several degrees. Since the linearly polarized light of the oscillated light from the semiconductor laser 11 is perpendicular to the entire paper surface, the linearly polarized light of the oscillated light becomes ordinary light as shown in FIG. 2 and is coupled to the polarization-maintaining optical fiber 16 through the rod lens 14. .

また半導体レーザ11の発振光にわずかに含まれる発振
光の直線偏光に垂直な直線偏光成分は従来例で述べたよ
うにS/N比の劣化、消光比の低下を引き起こすのであ
るが、一軸性結晶球レンズ12により異常光となり常光
の焦点位置よりも偏波面保存光ファイバ15のコア径(
通常6〜10μm)以上に離れた位置に集光され、偏波
面保存光ファイバ16には結合されない。式(1)から
も解かるように紙面内において光学軸が光路に対して垂
直のときθ=9o0でd=Qとなシ常光、異常光とも直
進し、半導体レーザ11の発振光の直線偏光とそれに垂
直なわずかに含まれる直線偏光成分の両方が偏波面保存
光ファイバ16に結合されS/N比の劣化、消光比の低
下が起こる。
Furthermore, the linearly polarized light component perpendicular to the linearly polarized light of the oscillated light slightly contained in the oscillated light of the semiconductor laser 11 causes deterioration of the S/N ratio and decrease of the extinction ratio as described in the conventional example, but the uniaxial The crystal ball lens 12 generates extraordinary light, and the core diameter of the polarization-maintaining optical fiber 15 (
The light is focused at a position separated by at least 6 to 10 μm (usually 6 to 10 μm) and is not coupled to the polarization-maintaining optical fiber 16. As can be seen from equation (1), when the optical axis is perpendicular to the optical path in the plane of the paper, θ = 9o0 and d = Q. Both the ordinary light and the extraordinary light travel straight, and the oscillation light of the semiconductor laser 11 is linearly polarized. Both the light beam and the slightly included linearly polarized component perpendicular thereto are coupled to the polarization maintaining optical fiber 16, resulting in deterioration of the S/N ratio and reduction of the extinction ratio.

また、一軸性結晶レンズ12の光学軸13を半導体レー
ザ11の発振光の直線偏光と平行な面内に発振光の光路
に対して垂直でない位置に設定すると半導体レーザ11
の発振光の直線偏光が異常光となりそれと垂直な直線偏
光成分が常光となる。
Furthermore, if the optical axis 13 of the uniaxial crystal lens 12 is set at a position not perpendicular to the optical path of the oscillated light within a plane parallel to the linearly polarized light of the oscillated light of the semiconductor laser 11, the semiconductor laser 11
The linearly polarized light of the oscillated light becomes extraordinary light, and the linearly polarized component perpendicular to it becomes ordinary light.

この場合は、異常光を集光して偏波面保存光ファイバに
結合する。
In this case, the extraordinary light is focused and coupled to a polarization maintaining optical fiber.

一軸性結晶球レンズ12の光学軸13を半導体レーザ1
1の発振光の直線偏光と垂直な面内あるいは平行な面内
のいずれかに設定し発振光の直線偏光のみを選択結合す
る時は、半導体レーザ11の発振光の光路と光学軸13
のなす角θは一軸性結晶球レンズ12の材質、直径、ロ
ッドレンズの焦点距離等に応じて偏波面保存光ファイバ
16に発振光の直線偏光と垂直な直線偏光成分が結合さ
れない範囲で決定される。なお、ここでは一軸性結晶の
凸レンズとして球レンズとしたが、同様の効果が得られ
る凸レンズ機能をもつ形状も利用できる。また偏波面保
存光ファイバとの最終的な結板を加えることも可能であ
る。
The optical axis 13 of the uniaxial crystal ball lens 12 is connected to the semiconductor laser 1
When selectively coupling only the linearly polarized light of the oscillated light by setting it in a plane perpendicular or parallel to the linearly polarized light of the oscillated light of the semiconductor laser 11, the optical path of the oscillated light of the semiconductor laser 11 and the optical axis 13
The angle θ formed by the uniaxial crystal ball lens 12 is determined according to the material and diameter of the uniaxial crystal ball lens 12, the focal length of the rod lens, etc., within a range in which the linearly polarized light component perpendicular to the linearly polarized light of the oscillation light is not coupled to the polarization preserving optical fiber 16. Ru. Here, a spherical lens is used as the convex lens of the uniaxial crystal, but a shape having a convex lens function that can obtain the same effect can also be used. It is also possible to add a final junction with a polarization maintaining optical fiber.

発明の効果 以上述べてきたように、本発明によれば、小型で低価格
化が可能となり、さらに光の位相、偏光。
Effects of the Invention As described above, according to the present invention, it is possible to reduce the size and cost, and also improve the phase and polarization of light.

光の干渉などを利用した光フアイバ計測技術、高品質、
大容量で長距離伝送が期待されているコヒーレント光通
信などの用いる高品質な光源が実現できる。
Optical fiber measurement technology using optical interference, high quality,
This makes it possible to create high-quality light sources for use in coherent optical communications, which are expected to provide large-capacity, long-distance transmission.

【図面の簡単な説明】 第1図は本発明の一実施例における半導体レーザ偏波面
保存光ファイバ結合装置の基本構成を示す図、第2図は
一軸性結晶の機能について説明するだめの図、第3図は
一般的楕円ジャケット型偏波面保存光ファイバの断面図
、第4図(a) t (b)は従来の半導体レーザ偏波
面保存光フフイバ結合装置の概略構成を示す斜視図であ
る。 11・・・・・・半導体レーザ、12・・・・・・一軸
性結晶球レンズ、13・・・・・・光学軸、15・・・
・・・偏波面保存光ファイバ。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第3図 第4図 4尤各
[Brief Description of the Drawings] Fig. 1 is a diagram showing the basic configuration of a semiconductor laser polarization-maintaining optical fiber coupling device in an embodiment of the present invention, Fig. 2 is a diagram illustrating the function of a uniaxial crystal, FIG. 3 is a cross-sectional view of a general elliptical jacket type polarization-maintaining optical fiber, and FIGS. 4(a) and 4(b) are perspective views showing the schematic structure of a conventional semiconductor laser polarization-maintaining optical fiber coupling device. 11... Semiconductor laser, 12... Uniaxial crystal ball lens, 13... Optical axis, 15...
...Polarization maintaining optical fiber. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 4 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザと、前記半導体レーザの発振光の直線偏光
を偏波面保存光ファイバに結合するレンズ系が凸レンズ
機能の得られる形状を有する一軸性結晶から成るレンズ
を含み、前記一軸性結晶から成るレンズを、その結晶固
有の光学軸が、前記半導体レーザの発振光の直線偏光の
方向に対して垂直な面内あるいは平行な面内で前記半導
体レーザの発振光の光路に対して垂直でない角度で位置
されるように設定したことを特徴とする半導体レーザ偏
波面保存光ファイバ結合装置。
A semiconductor laser and a lens system for coupling linearly polarized light of oscillation light of the semiconductor laser to a polarization maintaining optical fiber include a lens made of a uniaxial crystal having a shape that provides a convex lens function, and the lens made of the uniaxial crystal has a shape that provides a convex lens function. , the optical axis specific to the crystal is located at an angle that is not perpendicular to the optical path of the oscillated light of the semiconductor laser in a plane perpendicular to the direction of linearly polarized light of the oscillated light of the semiconductor laser or in a plane parallel to the direction of the linearly polarized light of the oscillated light of the semiconductor laser. What is claimed is: 1. A semiconductor laser polarization maintaining optical fiber coupling device, characterized in that the device is configured to
JP2690985A 1985-02-14 1985-02-14 Device for connection between semiconductor laser and polarization plane maintaining optical fiber Pending JPS61185707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2690985A JPS61185707A (en) 1985-02-14 1985-02-14 Device for connection between semiconductor laser and polarization plane maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2690985A JPS61185707A (en) 1985-02-14 1985-02-14 Device for connection between semiconductor laser and polarization plane maintaining optical fiber

Publications (1)

Publication Number Publication Date
JPS61185707A true JPS61185707A (en) 1986-08-19

Family

ID=12206341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2690985A Pending JPS61185707A (en) 1985-02-14 1985-02-14 Device for connection between semiconductor laser and polarization plane maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPS61185707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062305U (en) * 1992-06-09 1994-01-14 ホーヤ株式会社 Optical coupling device
KR100522930B1 (en) * 2002-12-09 2005-10-24 주식회사 레이칸 A polarization switching vertical-cavity surface emitting laser and an optical transmitter employing the laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062305U (en) * 1992-06-09 1994-01-14 ホーヤ株式会社 Optical coupling device
KR100522930B1 (en) * 2002-12-09 2005-10-24 주식회사 레이칸 A polarization switching vertical-cavity surface emitting laser and an optical transmitter employing the laser

Similar Documents

Publication Publication Date Title
JP2986295B2 (en) Optical isolator
JP3316543B2 (en) Optical circulator
JP2774467B2 (en) Polarization independent optical isolator
JP2986302B2 (en) Optical isolator
US9563073B2 (en) Combined splitter, isolator and spot-size converter
JP3953529B2 (en) Optical isolator
JP2010156842A (en) Optical modulator
JPS5928116A (en) Photocoupler
JPS61185707A (en) Device for connection between semiconductor laser and polarization plane maintaining optical fiber
US6407861B1 (en) Adjustable optical circulator
JPH0668584B2 (en) Optical isolator
JP2000180789A (en) Optical isolator
JPH05313094A (en) Optical isolator
JP3077554B2 (en) Optical isolator
US20050207010A1 (en) Optical isolator and method of producing the same
JPS6365419A (en) Semiconductor laser device with optical isolator
US11768329B2 (en) High isolation optical splitter
JPS59228610A (en) Polarizing prism
JPS6250071B2 (en)
JP2794437B2 (en) Depolarization device
JPS62170918A (en) Semiconductor laser module
JPS63139318A (en) Ld module optical system
JPS59184584A (en) Semiconductor laser module
JPH04140709A (en) Optical isolator
JP2004029335A (en) Optical isolator and optical isolator module