JPS61185320A - Purification of exhaust gas - Google Patents

Purification of exhaust gas

Info

Publication number
JPS61185320A
JPS61185320A JP60025114A JP2511485A JPS61185320A JP S61185320 A JPS61185320 A JP S61185320A JP 60025114 A JP60025114 A JP 60025114A JP 2511485 A JP2511485 A JP 2511485A JP S61185320 A JPS61185320 A JP S61185320A
Authority
JP
Japan
Prior art keywords
exhaust gas
denitration
reducing agent
nh4cl
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60025114A
Other languages
Japanese (ja)
Inventor
Shigeaki Mitsuoka
光岡 薫明
Toshikuni Sera
世良 俊邦
Yoshiaki Obayashi
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60025114A priority Critical patent/JPS61185320A/en
Publication of JPS61185320A publication Critical patent/JPS61185320A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To facilitate the handling of a reducing agent in the storage and transport thereof, by performing selective colalytic reductive denitration by using NH4Cl as a reducing agent. CONSTITUTION:The exhaust gas 2 generated from a boiler 1 is passed through the catalyst 4 allowed to pack a denitration apparatus 3 along with NH3 generated by thermally decomposing an aqueous NH4Cl solution, which is supplied to an injection line 10 from a storage tank 8 by a quantitative pump 9 while receives the control of an injection amount, to be denitrated and the exhaust gas after denitration is heat-exchanged by an air heater 6 to be transferred to the downstream machinery. The effect of NH4Cl to denitration reaction is not different from that of NH3 and handling in storage and transport becomes easy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は重油焚ボイラをはじめとして、石炭焚ボイラ、
各種化学装置に付設する燃焼炉、製鉄プラント、ディー
ゼルエンジンやタービンの如き、内燃機関からの排ガス
中に含有される窒素酸化物(以下NOxと略称する)を
効果的かつ経済的に還元する排ガスの浄化方法に関する
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to heavy oil-fired boilers, coal-fired boilers,
Exhaust gas that effectively and economically reduces nitrogen oxides (hereinafter abbreviated as NOx) contained in exhaust gas from internal combustion engines such as combustion furnaces attached to various chemical equipment, steel plants, diesel engines, and turbines. It concerns a purification method.

(従来の技術) 排ガス中のklozは大気中に放出されて、有害な物質
を生成し、人体に悪影響を及ばずために、その排出が規
制されているとともに、各徳除去方法が提案されている
。その方法としては溶液に吸収させる湿式法、吸着剤を
用いる方法あるいはアンモニア(以下NH,と略称する
)や−酸化炭素々どの還元性ガスの存在下で、触媒を用
いて、無害な窒素と水に分解する方法など数多くの方法
がある。そのなかでもNH3を用いた選択的接触還元法
がもつとも経済的でかつ効果的な方法として工業化され
ておシ、現在では本方式を採用した数多くのプラントが
稼動している。
(Prior art) KLOZ in exhaust gas is emitted into the atmosphere and produces harmful substances, so that its emission is regulated and various methods have been proposed to prevent it from having a negative impact on the human body. There is. The method is a wet method in which it is absorbed into a solution, a method using an adsorbent, or a catalyst is used to combine harmless nitrogen and water in the presence of a reducing gas such as ammonia (hereinafter abbreviated as NH) or -carbon oxide. There are many ways to decompose it. Among these, the selective catalytic reduction method using NH3 has been industrialized as an economical and effective method, and many plants employing this method are currently in operation.

(発明が解決しようとする問題点) 選択的接触還元法による脱硝法で、従来通常に使用され
るNH,は常温でも加圧すると容易に液体となるところ
から、液体アンモニアの形で貯蔵されておシ、大気圧に
もどしてガス化し、煙道内に吹き込んでいる。Nu、は
周知のように、特定化学物質、劇物に属する物質であり
、その貯蔵および取扱いには十分な注意が必要である。
(Problems to be Solved by the Invention) In the selective catalytic reduction method for denitrification, NH, which is commonly used in the past, is stored in the form of liquid ammonia because it easily becomes liquid when pressurized even at room temperature. The gas is then returned to atmospheric pressure, gasified, and blown into the flue. As is well known, Nu is a substance that belongs to a specified chemical substance or a deleterious substance, and sufficient care must be taken when storing and handling it.

(問題点を解決するための手段) 本発明者らはこのようなアンモニアを使用する上での煩
雑さを解消し、それでいてNH,の脱硝反応用還元剤と
してのすぐれた特性を生かすことのできる永W琳6L畢
化豹ム11【東()壬/l″l乃ろ。
(Means for Solving the Problems) The present inventors have solved the complexity of using ammonia as described above, and at the same time made use of the excellent properties of NH as a reducing agent for the denitrification reaction. EiW 琳6L 畢化鱹Mu 11 [東()壬/l″lノロ.

(問題点を解決するための手段) すなわち本発明は選択的接触還元脱硝法において、塩化
アンモニウム(以下mH4atと略称する)を還元剤と
して用いることを特徴とする排ガスの浄化方法である。
(Means for Solving the Problems) That is, the present invention is an exhaust gas purification method characterized by using ammonium chloride (hereinafter abbreviated as mH4at) as a reducing agent in a selective catalytic reduction denitrification method.

NH2Clは加熱すると、約340℃で(1)式の反応
によって NH40L−+NHs + HCl      ・・・
・・(1)NH3が発生する。また水に対する溶解度が
高く、容易に水に溶解し、水溶液となり、加熱するとN
H,が発生するなどの特性を有しておシ、その′還元剤
としての利用方法は水溶液を脱硝装置上流の煙道内に噴
霧する方法や脱硝前後の排ガスの熱を利用して、MH,
Olを分解して発生したNH3を煙道に供給する方法な
どが採用される。
When NH2Cl is heated, NH40L-+NHs + HCl...
...(1) NH3 is generated. It also has high solubility in water, easily dissolves in water, becomes an aqueous solution, and when heated, N
It has characteristics such as generating H, MH,
A method is adopted in which NH3 generated by decomposing Ol is supplied to the flue.

次に添付図面に基づいて、本発明の実施態様を説明する
Next, embodiments of the present invention will be described based on the accompanying drawings.

第1図は重油焚きボイラ用脱硝装置に適用した場合の1
例を示す。ボイラ1で重油を燃焼させ、発生した排ガス
2は脱硝装置3に充填された触媒4を通過し、その脱硝
後の排ガス5はエアヒータ6で熱交換された後、後流機
器に移る。
Figure 1 shows one example when applied to a denitrification device for heavy oil-fired boilers.
Give an example. Heavy oil is burned in a boiler 1, and the generated exhaust gas 2 passes through a catalyst 4 filled in a denitrification device 3, and the denitrified exhaust gas 5 undergoes heat exchange with an air heater 6, and then moves to downstream equipment.

脱硝反応に必要なNHsはN H4c を水溶液を貯蔵
したタンク8から定量ポンプ9によって注入量を制御し
、注入ライン10を通して煙道に供給される。
NHs necessary for the denitrification reaction is supplied from a tank 8 storing an aqueous solution of N H4c to the flue through an injection line 10 with the injection amount controlled by a metering pump 9.

この実施態様ではNH4Cjt水溶液を用いる例を示し
たが、これに限ることなく、ボイラ1の400℃付近の
熱源を利用して、NH4C4を加熱分解して、NH3を
発生させ、加圧して、煙道に吹き込む方法も採用され得
る。
In this embodiment, an example is shown in which an aqueous NH4Cjt solution is used, but the present invention is not limited to this. Using a heat source near 400°C in the boiler 1, NH4C4 is thermally decomposed to generate NH3, which is pressurized to produce smoke. A method of blowing into the road may also be adopted.

(作用) 本発明の方法は以上述べたごとく、選択的接触還元脱硝
法の還元剤であるNH,の供給源を、常温では固体であ
り、しかも水に対する溶解度が著めて高いxH4ctか
ら得ようとするもので、各種規制に触れることのないN
H4O/!、の利用は従来の液体アンモニウムに比べて
、脱硝反応に対゛する効果は同等である上に貯蔵、輸送
等の取扱いが容易になるメリットがある。
(Function) As described above, in the method of the present invention, the source of NH, which is the reducing agent for selective catalytic reduction denitrification, is obtained from xH4ct, which is solid at room temperature and has extremely high solubility in water. N, which does not touch various regulations.
H4O/! Compared to conventional liquid ammonium, the use of ammonium has the same effect on the denitrification reaction and has the advantage of being easier to handle, such as storage and transportation.

次に本発明゛の方法を実験室規模での実施例によって説
明する。
Next, the method of the present invention will be explained by an example on a laboratory scale.

(実施例1) 重油焚き用脱硝触媒(格子状触媒、7醜ピツチ)50■
口X450■b14本を横型の反応器に充填し、表1に
示す組成の排ガスを温度350℃、ガス量2 + Nm
3/Hで流入した3、脱硝反応の還元剤であるNH,は
NH40Lを水溶液にして、定量ポンプで、触媒層入口
の約400℃の部分に注入する方法で供給した。
(Example 1) Denitration catalyst for heavy oil firing (lattice catalyst, 7 ugly pitches) 50■
A horizontal reactor was filled with 14 ports of 450 x 45 mm, and exhaust gas having the composition shown in Table 1 was heated at a temperature of 350°C and a gas amount of 2 + Nm.
3, NH, which is a reducing agent for the denitrification reaction, which flowed in at 3/H, was supplied by making 40 L of NH into an aqueous solution and injecting it into the approximately 400° C. portion at the inlet of the catalyst layer using a metering pump.

表1 排ガス組成 その結果、50時間に及ぶ連続試験においても、NH,
の供給に関して、何んらトラブルが起きることなく、安
定し九Nu、の供給が可能であった。試験の結果を第2
図に示すが、液体アンモニウムを使用した場合と同等の
結果が得られた。図中、○はN H4Cを水溶液法、Δ
は従来法の結果を示す。
Table 1 Exhaust gas composition As a result, even in a continuous test lasting 50 hours, NH,
Regarding the supply of 9 Nu, it was possible to stably supply 9 Nu without any trouble. Second test result
As shown in the figure, results equivalent to those obtained when liquid ammonium was used were obtained. In the figure, ○ indicates N H4C using an aqueous solution method, Δ
shows the results of the conventional method.

(実施例2) NH,をyEI4atを分解したガスで供給することと
し、mH4ct約5001を約1tの金属製容器に詰め
、マントルヒータで外部から加熱した。
(Example 2) NH was supplied as a gas obtained by decomposing yEI4at, and about 5001 mH4ct was packed in a metal container of about 1 ton and heated from the outside with a mantle heater.

その容器の上部には加圧空気圧の注入口と分解ガスの取
出口、さらにマントルヒータの温度調節用の熱電対を取
付け、NH40tが一定温度になるようにコントロール
した。
At the top of the container, an inlet for pressurized air pressure, an outlet for decomposed gas, and a thermocouple for controlling the temperature of the mantle heater were installed to control the temperature of NH40t to be constant.

NHsの注入量は取出口に設けた流量計で制御し、触媒
の活性評価試験を表2の条件で実施した。
The amount of NHs injected was controlled by a flow meter installed at the outlet, and a catalyst activity evaluation test was conducted under the conditions shown in Table 2.

表2 活性試験条件 その結果、NH,供給源としてmH4atを用いても、
長時間にわたって、安定したNH3の供給が可能である
ことが確認された。
Table 2 Activity test conditions As a result, even if mH4at was used as the NH source,
It was confirmed that stable supply of NH3 was possible over a long period of time.

得られた試験結果を液体アンモニアを使用した場合と比
較して第3図に示すが、通常の液体アンモニウムを使用
した場合と何んら変わることなく、通常の活性評価試験
が可能であることが明らかとなった。図中、○はNH4
at分解法、Δは従来法の結果を示す。
The test results obtained are shown in Figure 3 in comparison with those using liquid ammonia, and it is clear that normal activity evaluation tests are possible without any difference from using normal liquid ammonium. It became clear. In the figure, ○ indicates NH4
At decomposition method, Δ indicates the results of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す図であり、第2図はN
H4C!j水溶液をに4n3供給源とした場合の試験に
おいて、NH3/NOx比と脱硝率の関係を液体アンモ
ニアを使用した従来の方法と比較した図であり、第3図
はN H,Ctを熱分解させて、発生したNH3を用い
た試験において、NH3/NOx比と脱硝率の関係を従
来の方法と比較した図である。 復代理人  内 1)  明
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an embodiment of the present invention.
H4C! This is a diagram comparing the relationship between the NH3/NOx ratio and the denitrification rate with the conventional method using liquid ammonia in a test using an aqueous solution as the 4n3 supply source. FIG. 3 is a diagram comparing the relationship between the NH3/NOx ratio and the denitrification rate with a conventional method in a test using generated NH3. Among the sub-agents: 1) Akira

Claims (1)

【特許請求の範囲】[Claims] 選択的接触還元脱硝法において、塩化アンモニウムを還
元剤として用いることを特徴とする排ガスの浄化方法。
A method for purifying exhaust gas characterized by using ammonium chloride as a reducing agent in a selective catalytic reduction denitrification method.
JP60025114A 1985-02-14 1985-02-14 Purification of exhaust gas Pending JPS61185320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025114A JPS61185320A (en) 1985-02-14 1985-02-14 Purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025114A JPS61185320A (en) 1985-02-14 1985-02-14 Purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPS61185320A true JPS61185320A (en) 1986-08-19

Family

ID=12156899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025114A Pending JPS61185320A (en) 1985-02-14 1985-02-14 Purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPS61185320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111240A1 (en) * 2007-03-09 2008-09-18 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating discharge gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111240A1 (en) * 2007-03-09 2008-09-18 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating discharge gas
JP2008221087A (en) * 2007-03-09 2008-09-25 Mitsubishi Heavy Ind Ltd Apparatus and method for treating exhaust gas
US7887768B2 (en) 2007-03-09 2011-02-15 Mitsubishi Heavy Industries, Ltd. Air pollution control apparatus and air pollution control method

Similar Documents

Publication Publication Date Title
TWI449569B (en) Enhancement of conventional scr and sncr processes with ammonia destruction catalyst
JP2005508486A (en) Continuous-variable adjustment method of pollution reducing agent for combustion source
CA2097914A1 (en) Process and apparatus for the thermal decomposition of nitrous oxide
EP0617698A4 (en) Aqueous ammonia injection scheme.
WO1998022209A1 (en) SELECTIVE CATALYTIC NOx REDUCTION UTILIZING UREA WITHOUT CATALYST FOULING
KR20150027808A (en) Exhaust-gas purification device and method for the reduction of nitrogen oxides from an exhaust gas of a fossil-fired power plant
KR20200072609A (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
König et al. Combined removal of particulate matter and nitrogen oxides from the exhaust gas of small-scale biomass combustion
EP0286268A2 (en) Method for preventing formation of ammonium bisulfate, sulfuric acid, and related products in combustion effluents
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
JPH05503662A (en) Catalytic decomposition of cyanuric acid and use of its products to reduce nitrogen oxide emissions
JPS61263618A (en) Improved method for reducing discharge of nox of combustion efluent
FI88363B (en) ROEKGASANLAEGGNING
US10450924B2 (en) Methods for assessing the condition of a selective catalytic reduction devices
JPH08281074A (en) Denitrification equipment using urea
CN110026082A (en) A kind of ozone injects the kiln gas denitrification apparatus and method of auxiliary SCR before ammonia
JPS61185320A (en) Purification of exhaust gas
US8815193B1 (en) Selective non-catalytic reduction for NOx removal
AT400114B (en) PLANT AND METHOD FOR CATALYTICALLY REDUCING STICKOXIDES CONTAINED IN THE SMOKE GASES OF A FIRE WITH LIQUID FUELS WITH AMMONIA, PLANT FOR BURNING LIQUID FOSSIL FUELS AND METHOD FOR REGULATING A CATALYST
CA2040500A1 (en) Integrated process and apparatus for control of pollutants in coal-fired boilers
Arand et al. Urea reduction of NOx in combustion effluents
JPS61181523A (en) Purification of exhaust gas
JPS61185319A (en) Purification of exhaust gas
JPS62262729A (en) Method for removing nitrogen oxide contained in exhaust gas
JPH01127028A (en) Apparatus for denitridation of combustion exhaust gas