JPS61185053A - Rotary electric machine - Google Patents

Rotary electric machine

Info

Publication number
JPS61185053A
JPS61185053A JP2393285A JP2393285A JPS61185053A JP S61185053 A JPS61185053 A JP S61185053A JP 2393285 A JP2393285 A JP 2393285A JP 2393285 A JP2393285 A JP 2393285A JP S61185053 A JPS61185053 A JP S61185053A
Authority
JP
Japan
Prior art keywords
field magnet
poles
magnetic pole
armature
cogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2393285A
Other languages
Japanese (ja)
Inventor
Kotoji Kawashima
琴司 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Kumagaya Seimitsu Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Kumagaya Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Kumagaya Seimitsu Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2393285A priority Critical patent/JPS61185053A/en
Priority to US06/813,769 priority patent/US4700098A/en
Priority to DE19853546226 priority patent/DE3546226A1/en
Publication of JPS61185053A publication Critical patent/JPS61185053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)

Abstract

PURPOSE:To reduce cogging force and cogging period, and to smoothly rotate by forming the magnitude of a field magnet irregularly. CONSTITUTION:A field magnet 1 to become an outer rotation rotor has 4 poles, and the core 3 of an armature 2 to become a stator has 6 slots 4 and salient poles 5. The size of the poles 5 is the same, and the poles 5 are provided at an equal interval. The sizes of the four poles of the magnet 1 are irregular, and cogging does not simultaneously occur when the magnet 1 is rotated by the poles.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、回転精度を要し、且回転時の振動を可及的に
低減した電動機や発電機に好適する回転電機に関し、界
磁マグネットと、電機子巻線を電機子鉄心のスロットに
巻装した電機子とを有する回転電機に関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to a rotating electrical machine suitable for an electric motor or a generator that requires rotational accuracy and reduces vibration during rotation as much as possible, and The present invention relates to a rotating electric machine having a magnet and an armature having an armature winding wound around a slot of an armature core.

〈口) 従来の技術 従来、たとえば8極の界磁マグネットと、3相電機子巻
線を電機子鉄心の12個のスロットに巻装した回転電機
においては、界磁マグネットに対する電機子の相対的1
回転当り24のフギングが生じる。
<Explanation> Conventional technology Conventionally, for example, in a rotating electrical machine with an 8-pole field magnet and 3-phase armature windings wound around 12 slots of the armature core, the relative position of the armature with respect to the field magnet is 1
24 fuggings occur per revolution.

第3図は回転電機が無刷子電動機である場合の界磁マグ
ネットと電機子鉄心の配置を示す模式正面図である。こ
の図面において、回転子となる界磁マグネット(1)は
各磁極の大きさく角度又は長さ)が等しい8極(2P極
)を有する。固定子となる電機子(2)の鉄心(3)は
、12個のスロット(4)を等間隔に有し、図示しない
が3相電機子巻線は、各相4個の分割コイルを有し、各
分割フイルは夫々1個の突極(5)に巻装され、各相の
4個の分割フィルは、3スロツトピツチの各突極に同一
極性に巻装される。この図示の場合に、界磁マグネット
(1)の同一極性の磁極、たとえばN極であるNl乃至
N4は、その回転時に異なるスロット(4)に対抗する
ため、コギング力は4倍に加算される。界磁マグネット
く1)の6極のコギング力の推移特性及びその合成特性
を、173回転分M4図に示す、この図面から明らかな
如く、界磁マグネット(1)の同一極性の磁極は、同一
の回転角度でコギングを生じ、その合成コギング力が各
磁極のコギング力の4倍になり、大きな値となる。
FIG. 3 is a schematic front view showing the arrangement of field magnets and armature cores when the rotating electrical machine is a brushless motor. In this drawing, a field magnet (1) serving as a rotor has eight poles (2P poles) in which each magnetic pole has the same size, angle, or length. The iron core (3) of the armature (2) serving as the stator has 12 slots (4) at equal intervals, and although not shown, the three-phase armature winding has four divided coils for each phase. Each of the divided films is wound around one salient pole (5), and the four divided films of each phase are wound with the same polarity around each of the salient poles of the 3-slot pitch. In this case, the magnetic poles of the same polarity of the field magnet (1), for example N poles Nl to N4, oppose different slots (4) during their rotation, so the cogging force is added four times. . The transition characteristics of the cogging force of the six poles of the field magnet (1) and its composite characteristics are shown in Figure M4 for 173 rotations.As is clear from this drawing, the magnetic poles of the field magnet (1) with the same polarity are Cogging occurs at a rotation angle of , and the resulting cogging force is four times the cogging force of each magnetic pole, which is a large value.

このコギング力を軽減する手段として、磁極の磁力を弱
めたり、界磁マグネット(1)の磁極と電機子(2)の
磁極の間を離したりする方法が考えられるが、効率及び
出力を低下させてしまう。
Possible ways to reduce this cogging force include weakening the magnetic force of the magnetic poles or separating the magnetic poles of the field magnet (1) and the magnetic poles of the armature (2), but these methods reduce efficiency and output. I end up.

またコギングをなくすには、電機子の磁極をスロットレ
ス構造にすれば可能であるが、磁路が形成され難く、大
出力を得るには、特殊な強力マグネットを必要とする。
Cogging can also be eliminated by making the armature's magnetic poles slotless, but this makes it difficult to form a magnetic path and requires a special strong magnet to obtain high output.

(ハ)発明が解決しようとする問題点 本発明はかかる点に鑑み発明きれたものにして、コギン
グ力を低減すると共にコギング周期を/J11<L、回
転子が滑らかに回転する回転11L41!を提供せんと
するものである。
(c) Problems to be Solved by the Invention The present invention has been developed in view of the above points, and reduces the cogging force and the cogging period by /J11<L, rotation 11L41 in which the rotor rotates smoothly! We aim to provide the following.

(ニ)問題点を解決するための手段 かかる問題点を解決するため、本発明はIE機子鉄心の
複数のスロットにN、機子巻線を巻装した電機子と、電
機子の磁極に対抗する多極界磁マグネットとを有する回
転電機において、界磁マグネットの磁極の大きさを不均
一にしたことを特徴とするものである。
(D) Means for Solving the Problems In order to solve the problems, the present invention provides an armature in which N and N meature windings are wound around a plurality of slots of an IE armature core, and a magnetic pole of the armature. A rotating electric machine having opposing multipolar field magnets is characterized in that the magnetic poles of the field magnets are made non-uniform in size.

具体的には、スロットの数をn、界磁マグネットの磁極
数をmとし、所定の位置から界磁マグネットの−の磁極
が各スロットを通過するまでの角度をTとするとき、 T −(360°/n)xKn+θm により定まる角度が全て異なるように界磁マグ 、ネッ
トの磁極の大きさを選定するものである。
Specifically, when the number of slots is n, the number of magnetic poles of the field magnet is m, and the angle from a predetermined position until the - magnetic pole of the field magnet passes through each slot is T, then T - ( The sizes of the magnetic poles of the field magnet and net are selected so that the angles determined by 360°/n)xKn+θm are all different.

尚、上式において、Knはスロット番号に対応する数で
あり、θmは前記所定の位置から前記−の磁極の回転方
向の手前の磁極までの角度であり、この角度は界磁マグ
ネットの磁極の大きぎにより変化する。
In the above equation, Kn is a number corresponding to the slot number, and θm is the angle from the predetermined position to the magnetic pole in front of the negative magnetic pole in the rotational direction, and this angle is equal to the magnetic pole of the field magnet. Varies depending on size.

(ホ) 作用 界磁マグネットの磁極の大ききを不均一にしたので、界
磁マグネットの相対的な回転時における界磁マグネット
の各磁極が同時にtm子のスロットに対抗することがな
く、その各磁極が検知するコギング力が加算されない、
このため、界磁マグネットの相対的回転による界磁マグ
ネットの合成コギング力は、大きさが小さく、且フギン
グ周期が短かくなり、従来装置に比し、前記回転が相対
的に滑らかになる。
(E) Since the sizes of the magnetic poles of the working field magnet are made nonuniform, each magnetic pole of the field magnet does not simultaneously oppose the slot of the tm element during relative rotation of the field magnet, and each The cogging force detected by the magnetic poles is not added.
Therefore, the resultant cogging force of the field magnet due to the relative rotation of the field magnet is small and the fugging period is short, and the rotation is relatively smooth compared to the conventional device.

(へ)実施例 本発明の一実施例を図面に基いて説明する。(f) Example An embodiment of the present invention will be described based on the drawings.

第1図は回転電機が外転型電動機である場合の界磁マグ
ネットと電機子の配置を示す模式図であり、従来装置と
共通する部分には同一符号を付す。
FIG. 1 is a schematic diagram showing the arrangement of field magnets and armatures when the rotating electrical machine is an external rotor type motor, and parts common to the conventional device are given the same reference numerals.

外転型回転子となる界磁マグネット(1)は4極であり
、固定子となる電機子(2)の鉄心(3)は、6個のス
ロット(4)と突極(5〉を有する。
The field magnet (1) serving as the outer rotor has four poles, and the iron core (3) of the armature (2) serving as the stator has six slots (4) and salient poles (5>). .

各突極(5)の大きさく角度又は長さ)が同じであり、
各突極は等間隔に設けられている。また電機子(3)は
3相電機子巻線を有するが、図面の簡略化のために図示
しない。この各相の電機子巻線は、夫々2個の分割コイ
ルを有し、各分割フィルは夫々1個の突極(5)に巻装
され、同一相の各分割フィルは対抗する突極、すなわち
3スロツトピツチの各突極に同一極性に巻装され、且直
列接続される。
The size, angle or length of each salient pole (5) is the same,
Each salient pole is provided at equal intervals. Further, the armature (3) has a three-phase armature winding, but it is not shown for the sake of simplification of the drawing. The armature winding of each phase has two divided coils, each divided fill is wound around one salient pole (5), and each divided fill of the same phase has an opposing salient pole, That is, each salient pole of the 3-slot pitch is wound with the same polarity and connected in series.

而して、界磁マグネット(1)の4個の磁極の大きさく
角度又は長き)が不均一になっており、この各磁極によ
って界磁マグネット(1)の回転時にコギングが同時に
生じないようになっている。
Therefore, the four magnetic poles of the field magnet (1) are uneven in size, angle, or length, and these magnetic poles prevent cogging from occurring at the same time when the field magnet (1) rotates. It has become.

すなわち、実施例においては、界磁マグネット(1)の
第1の磁極(N1)の大ききを角度くθ1)、第1磁極
(N1)の始端から第2磁極(Sl)の終端までの大き
きを角度(θ2)、第1磁極(Nl)の始端から第3磁
極(N2)の終端までの大きさを角度(o3)とすると
、界磁マグネット(1)の回転に伴って第1磁極(N1
)と各スロット(4)との間に生ずるコギング発生角度
T1は、′ T 1− (360’″/6)XKn の関係式に基づき、Knにスロット番号に対応した0か
ら5までの数字を順次代入した角度となる。従って第1
磁極(N1)の回転により1回転当り6個のコギングが
生ずる°。
That is, in the embodiment, the size of the first magnetic pole (N1) of the field magnet (1) is expressed as an angle θ1), and the size from the starting end of the first magnetic pole (N1) to the ending end of the second magnetic pole (Sl) is Assuming that the angle is the angle (θ2) and the size from the starting end of the first magnetic pole (Nl) to the end of the third magnetic pole (N2) is the angle (o3), as the field magnet (1) rotates, the first magnetic pole (N1
) and each slot (4), based on the relational expression ' T 1 - (360'''/6)XKn, where Kn is a number from 0 to 5 corresponding to the slot number. These are the angles substituted in sequence. Therefore, the first
The rotation of the magnetic pole (N1) produces 6 coggings per revolution.

第2磁極(Sl)と各スロット(4)との間に生ずるコ
ギング発生角度T2は、 T2−(360°/6)XKn+Ot に基づき、6個のコギングが生ずる。
The cogging angle T2 that occurs between the second magnetic pole (Sl) and each slot (4) is based on T2-(360°/6)XKn+Ot, and six coggings occur.

また第3磁極(N2)及び第4磁極(N2)と各スロッ
ト(4)との間に生ずるコギング発生角度T3及びT4
は、 T3−(360°/6)XKn+O* T4−(360°/8)XKn+03 に基づいて夫々6個のコギングを生ずる。
Additionally, cogging angles T3 and T4 occur between the third magnetic pole (N2) and the fourth magnetic pole (N2) and each slot (4).
yields 6 coggings based on T3-(360°/6)XKn+O* T4-(360°/8)XKn+03, respectively.

また実施例においては、第1磁極(Nl)の太きさを9
0度、第2磁極(Sl)の大きさを105度、第3磁極
(N2)の大きξを90度、第4磁極(N2)の大きさ
を75度に選定したので、θ1−90°、θ2−195
@、  θ3−285@ となり、別表に示すように各
コギングの発生位置が全て異なることが分かる。
In addition, in the embodiment, the thickness of the first magnetic pole (Nl) is 9
The size of the second magnetic pole (Sl) is 105 degrees, the size of the third magnetic pole (N2) is 90 degrees, and the size of the fourth magnetic pole (N2) is 75 degrees, so θ1-90 degrees , θ2-195
@, θ3-285@, and it can be seen that the positions where each cogging occurs are all different as shown in the attached table.

この表から明らかなように、第1磁極(N1)がら第4
磁極(N2)までの各磁極の大きさを適当に選定すれば
、界磁マグネット(1)が回転するとき、同時に複数の
コギングが生じなくなり、コギングが分散される。
As is clear from this table, from the first magnetic pole (N1) to the fourth magnetic pole
If the size of each magnetic pole up to the magnetic pole (N2) is appropriately selected, when the field magnet (1) rotates, multiple coggings will not occur at the same time, and the cogging will be dispersed.

第2図はコギングの特性図である。この図面がら明らか
な如く、界磁マグネット(1)の各磁極の回転によって
コギングが生ずるのは従来装置と同様であるが、同時に
複数のコギングが重ならないので、合成コギング力はそ
の犬ききが小きく、且その周期が短い。
FIG. 2 is a characteristic diagram of cogging. As is clear from this drawing, cogging occurs due to the rotation of each magnetic pole of the field magnet (1), similar to the conventional device, but since multiple coggings do not overlap at the same time, the resulting cogging force is small. I can hear it, and the period is short.

この場合に、界磁マグネット(1〉の各磁極によって生
ずるコギングをその合成時に均一に分散させる場合には
、一般に界磁マグネットの磁極数を2P、電機子の突極
数をQとすると、界磁マグネットの各磁極の太ききを、
360/ (2P−Q)の整数倍の角度だけ、角度36
0/ 2Fからずらせばよい。
In this case, if the cogging caused by each magnetic pole of the field magnet (1) is to be uniformly dispersed during synthesis, generally speaking, if the number of magnetic poles of the field magnet is 2P and the number of salient poles of the armature is Q, the field The thickness of each magnetic pole of the magnetic magnet,
360/Angle that is an integral multiple of (2P-Q), angle 36
Just shift it from 0/2F.

実施例では、磁極数が4、突極数が6であるから、第2
及び第4磁極(Sl)(N2)を15度づつずらしてい
る。
In the example, since the number of magnetic poles is 4 and the number of salient poles is 6, the second
and the fourth magnetic pole (Sl) (N2) are shifted by 15 degrees.

因みに界磁マグネットの磁極数が6、電機子の突極数が
9であるときには、界磁マグネットの磁極の太ききは、
順次角度60度、53.3度、73.4度、60度、4
6.6度、66.7度にすれば各コギングがその合成時
に均一に分散する。
Incidentally, when the number of magnetic poles of the field magnet is 6 and the number of salient poles of the armature is 9, the thickness of the magnetic poles of the field magnet is
Sequential angle: 60 degrees, 53.3 degrees, 73.4 degrees, 60 degrees, 4
If the angles are set to 6.6 degrees and 66.7 degrees, each cogging will be uniformly dispersed when combined.

しかしながら、合成コギング力を小さくするだけであれ
ば、各コギングが同時に発生しなければよく、その発生
時点が等間隔である必要はない。
However, if only the combined cogging force is to be reduced, each cogging need not occur at the same time, and the points of occurrence do not need to be at equal intervals.

(ト)発明の効果 本発明によれば、電機子鉄心の複数のスロットに電機子
巻線を巻装した電機子と、電機子の磁極に対抗する多極
界磁マグネットとを有する回転電機において、界磁マグ
ネットの磁極の太ききを不均一にしたことを特徴とする
ものであるから、電機子に対して相対的に回転する界磁
マグネットの各磁極の回転によるコギング発生の回転角
度が分散して一致することがなく、合成コギング力が従
来装置に比し弱くなり、その発生周期も短かくなる。こ
のため回転は従来装置に比し静かで清らがなものとなり
、またコギング周期が短かくなるため、前後のコギング
が打ち消し合うことも可能となり、合成コギング力は一
層小びくなる可能性がある。このようにコギング力が小
びくなるので、強力なマグネットを採用したり、を機子
と界磁マグネットの間のエアギャップを小きくする等に
より、出力向上あるいは小型化が可能となる。
(G) Effects of the Invention According to the present invention, in a rotating electric machine having an armature in which armature windings are wound around a plurality of slots of an armature core, and a multipolar field magnet opposing the magnetic poles of the armature, , since the magnetic poles of the field magnet are characterized by non-uniform thickness, the rotation angle at which cogging occurs due to the rotation of each magnetic pole of the field magnet that rotates relative to the armature is distributed. Therefore, the resultant cogging force is weaker than that of the conventional device, and its generation cycle is also shortened. As a result, the rotation is quieter and cleaner than with conventional devices, and since the cogging period is shortened, it is possible for the front and rear cogging to cancel each other out, and the resulting cogging force may become even smaller. . Since the cogging force is reduced in this way, it is possible to improve the output or downsize by using a strong magnet or by reducing the air gap between the machine and the field magnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、界磁マグネットと電
機子の配置を示す模式正面図、第2図は昇高マグネット
の各磁極によるコギング力の推移特性及び合成特性を示
す図、第3図は第1図に対応して示す従来装置の模式正
面図、第4図は第2図に対応して示す従来装置の特性図
である。 (3)・・・電機子鉄心、(4)・・・スロット、(2
)・・電機子、(1)・−界磁マグネット、(N 1)
(S 1)(N2)(S2)・・・磁極。
FIG. 1 shows an embodiment of the present invention, and is a schematic front view showing the arrangement of the field magnet and armature, and FIG. 2 is a diagram showing the transition characteristics and composite characteristics of the cogging force due to each magnetic pole of the elevation magnet. FIG. 3 is a schematic front view of the conventional device shown in correspondence to FIG. 1, and FIG. 4 is a characteristic diagram of the conventional device shown in correspondence to FIG. (3)...Armature core, (4)...Slot, (2
)・・Armature, (1)・−field magnet, (N 1)
(S 1) (N2) (S2)...Magnetic pole.

Claims (2)

【特許請求の範囲】[Claims] (1)電機子鉄心の複数のスロットに電機子巻線を巻装
した電機子と、電機子の磁極に対抗する多極界磁マグネ
ットとを有する回転電機において、前記界磁マグネット
の磁極の大きさを不均一にしたことを特徴とする回転電
機。
(1) In a rotating electric machine having an armature in which armature windings are wound around a plurality of slots in an armature core, and a multipolar field magnet opposing the magnetic poles of the armature, the size of the magnetic pole of the field magnet is A rotating electrical machine that is characterized by non-uniformity.
(2)スロットの数をn、界磁マグネットの磁極数をm
とし、所定の位置から界磁マグネットの−の磁極が各ス
ロットを通過するまでの角度をTとするとき、 T=(360°/n)×Kn+θm (但し、Knはスロット番号に対応する数であり、θm
は前記所定の位置から前記−の磁極の回転方向の手前の
磁極までの角度である。) により定まる角度が全て異なるように角度θmを選定し
たことを特徴とする特許請求の範囲第1項記載の回転電
機。
(2) The number of slots is n, and the number of magnetic poles of the field magnet is m.
If the angle from the predetermined position until the negative magnetic pole of the field magnet passes through each slot is T, then T=(360°/n)×Kn+θm (However, Kn is the number corresponding to the slot number. Yes, θm
is the angle from the predetermined position to the magnetic pole in front of the negative magnetic pole in the rotating direction. ) The rotating electrical machine according to claim 1, wherein the angle θm is selected such that all angles determined by the angles θm are different from each other.
JP2393285A 1984-12-28 1985-02-08 Rotary electric machine Pending JPS61185053A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2393285A JPS61185053A (en) 1985-02-08 1985-02-08 Rotary electric machine
US06/813,769 US4700098A (en) 1984-12-28 1985-12-27 D.C. motors with unequal pole spacing
DE19853546226 DE3546226A1 (en) 1984-12-28 1985-12-27 ROTATING ELECTRICAL MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2393285A JPS61185053A (en) 1985-02-08 1985-02-08 Rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61185053A true JPS61185053A (en) 1986-08-18

Family

ID=12124299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2393285A Pending JPS61185053A (en) 1984-12-28 1985-02-08 Rotary electric machine

Country Status (1)

Country Link
JP (1) JPS61185053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291649A (en) * 1988-05-13 1989-11-24 Nippon Densan Corp Brushless motor
JP2005245052A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Corp Rotor of synchronous induction motor and compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157247A (en) * 1980-05-02 1981-12-04 Matsushita Electric Ind Co Ltd Rotary electrical machine and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157247A (en) * 1980-05-02 1981-12-04 Matsushita Electric Ind Co Ltd Rotary electrical machine and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291649A (en) * 1988-05-13 1989-11-24 Nippon Densan Corp Brushless motor
JP2005245052A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Corp Rotor of synchronous induction motor and compressor

Similar Documents

Publication Publication Date Title
US4692646A (en) Rotating electric motor with reduced cogging torque
US5804904A (en) Brushless DC motor and a method of generation power therewith
JPH1198791A (en) Brushless dc motor
JP2000295805A (en) Permanent magnet rotating electric machine
JPS6046634B2 (en) rotating electric machine
JP2003134772A (en) Permanent magnet dynamo-electric machine
JP2010057208A (en) Rotary electric machine
JPS63124750A (en) Brushless dc motor
US10886801B2 (en) Vernier machine with shaped permanent magnet groups
JP2018026985A (en) Three-phase rotary electric machine for starter generator
JPS61185053A (en) Rotary electric machine
JPH02123953A (en) Permanent magnet motor
IT9019794A1 (en) MULTIPLE STAGE COILS, WRAPPED IN SHAPE, FOR SWITCHED RELUCTANCE MOTOR
JPH03243155A (en) Revolving armature
JP2972907B2 (en) Permanent magnet rotating electric machine with concentrated winding stator
Qu et al. Design and analysis of a new consequent-pole interior permanent magnet synchronous motor
US20190312476A1 (en) Motor
JP3103435B2 (en) AC generator for vehicles
JP2614437B2 (en) Rotating electric machine
JP3840715B2 (en) Permanent magnet synchronous motor
JPS6216786Y2 (en)
JPH04322152A (en) Three-phase brushless motor
JPS6223535B2 (en)
JP2000060092A (en) Multipolar generator
JPH0670524A (en) Brushless motor