JPS6118425A - Bubble generating apparatus - Google Patents

Bubble generating apparatus

Info

Publication number
JPS6118425A
JPS6118425A JP59138725A JP13872584A JPS6118425A JP S6118425 A JPS6118425 A JP S6118425A JP 59138725 A JP59138725 A JP 59138725A JP 13872584 A JP13872584 A JP 13872584A JP S6118425 A JPS6118425 A JP S6118425A
Authority
JP
Japan
Prior art keywords
gas
spiral
water
spiral groove
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138725A
Other languages
Japanese (ja)
Inventor
Kensaku Imaichi
今市 憲作
Isao Endo
遠藤 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yks Co Ltd
Original Assignee
Yks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yks Co Ltd filed Critical Yks Co Ltd
Priority to JP59138725A priority Critical patent/JPS6118425A/en
Publication of JPS6118425A publication Critical patent/JPS6118425A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To perform oxidation and reduction effectively by providing a gas dissolving part having a gas-liquid mixing part and a screw flow path member, a gas-liquid mixing dissolver having an excess gas separating vessel and a compressor feeding the pressurized gas to the dissolver, etc. CONSTITUTION:When air contg. a large quantity of oxygen of the almost same pressure and water are fed to a gas-liquid introducing cylinder part 111 in a gas- liquid mixing dissolver 100 before feeding raw material to a pressurizing-floatation-separation vessel 200, both the two are mixed and sent into a gas dissolving part B via fluid holes 113a. Since a screw flow path is formed in the inside of an external cylindrical body 112a of the gas dissolving part B, a long flow path is obtained in the short straight distance and the mixing-dissolving process is made long and thereby the mixing-dissolving efficiency is increased. Also, since the respective screw groove members consist of plural streaks, the flow path is divided into small area and useful to the improvement of the mixing-dissolving efficiency.

Description

【発明の詳細な説明】 本発明は気泡発生装置の改良に関する。[Detailed description of the invention] The present invention relates to improvements in bubble generators.

従来、水と空気とを混合して徽細な気泡を発生させ、こ
の気液混合水を用いて水処理を行ったりまた、例えば酵
母菌の培養など生物化学反応を行なう場合には、水中に
直接酸素または水素を補給して酸化作用や環元作用を促
進させ、水の脱臭、脱色をするようにしていた。この方
法により水の脱臭脱色を行なうには、水と気体とが混り
難いため多量の酸素または水素を補給しなければらす、
コストアップの一因となっていた。
Conventionally, water and air are mixed to generate fine air bubbles, and this gas-liquid mixed water is used for water treatment, and when performing biochemical reactions such as culturing yeast, for example, it is necessary to Oxygen or hydrogen was directly supplied to promote oxidation and oxidation, thereby deodorizing and decolorizing the water. In order to deodorize and decolorize water using this method, a large amount of oxygen or hydrogen must be supplied because water and gas are difficult to mix.
This was a cause of increased costs.

本発明は上記欠点を除き、少ない酸素または水素の補給
量で間に合う気泡発生装置を提供することを目的とする
It is an object of the present invention to provide a bubble generator which eliminates the above-mentioned drawbacks and which can be used with a small amount of oxygen or hydrogen supply.

上記目的達成のため本発明の構成は、気液混合溶解器1
00と、該器へ送液管15を介して加圧供給するための
給液槽1と、送気t°23を介して前記気液混合溶解器
100へ加圧気体を送給するようにしたコンプレッサ2
と、前記送気管23の途中に接続された酸化または還元
補助気体源3とを有することでるる。
In order to achieve the above object, the configuration of the present invention includes a gas-liquid mixing dissolver 1
00, a liquid supply tank 1 for supplying pressurized gas to the container via a liquid supply pipe 15, and a pressurized gas supply tank 1 for supplying pressurized gas to the gas-liquid mixing dissolver 100 via an air supply t°23. compressor 2
and an oxidizing or reducing auxiliary gas source 3 connected to the middle of the air pipe 23.

以下本発明を図面に示す一実施例にもとづいて説明する
The present invention will be explained below based on an embodiment shown in the drawings.

第1図は気泡発生装置を汚水処理装置に用いたものであ
るが、同図に示されるように気泡発生装置は、気液混合
溶解器100と、核器へポンプ1t1の作動により給水
するための給水槽1と、送気管2Bを介して、前記気液
混合溶解器100へ空気を送給するようにしたニアコン
プレッサ2と、前記送気管2Bの途中に接続される酸素
ボンベ3とを有する。前記給水槽1とポンプ11および
気液混合溶解器100とは送水管15によって接続され
、該送水管15の途中には、給水搾1とポンプ11との
間にストレーナ12か、ポンプ11と気液混合溶解器1
00との間に電磁弁18が介在される。また、前記ポン
プ11と電磁弁18との間の送水915の途中にリリー
フバルブ1−4e4/l#えた進水+1f16が接続さ
れる。
Fig. 1 shows the use of a bubble generator in a sewage treatment system, and as shown in the figure, the bubble generator is used to supply water to a gas-liquid mixer 100 and a nuclear vessel by the operation of a pump 1t1. A water supply tank 1, a near compressor 2 configured to supply air to the gas-liquid mixer 100 via an air supply pipe 2B, and an oxygen cylinder 3 connected in the middle of the air supply pipe 2B. . The water tank 1, the pump 11, and the gas-liquid mixer 100 are connected by a water pipe 15, and there is a strainer 12 between the water pump 1 and the pump 11, or a strainer 12 between the water pump 11 and the pump 11, or a strainer 12 between the water pump 11 and the pump 11. Liquid mixing dissolver 1
A solenoid valve 18 is interposed between the 00 and 00. Further, a relief valve 1-4e4/l#+1f16 is connected in the middle of the water supply 915 between the pump 11 and the electromagnetic valve 18.

前記酸素ポバ8が接続開口された送気管23の下流側途
中には圧力計21と電磁弁22とが介装されている。酸
素ボンベ3と前記送気管23とを連結するガヌ管38の
途中にはオリフィス31と手動弁32とが接続されてい
る。
A pressure gauge 21 and a solenoid valve 22 are interposed on the downstream side of the air supply pipe 23 to which the oxygen pump 8 is connected. An orifice 31 and a manual valve 32 are connected in the middle of a Ganu tube 38 that connects the oxygen cylinder 3 and the air supply pipe 23.

気液混合溶解器100の下流には気体溶解水管140が
接続さnるが、骸骨140の途中には、逆止弁4および
オリフィス5が設けられ、更にその下流側は加圧浮上分
離相200に連結されている。
A gas dissolving water pipe 140 is connected downstream of the gas-liquid mixing dissolver 100, and a check valve 4 and an orifice 5 are provided in the middle of the skeleton 140, and further downstream thereof a pressurized flotation separation phase 200 is provided. is connected to.

加圧浮上分離槽200で処理された清澄水は処理水導出
管225を経て次の濾過槽(図示省l118)へ送られ
るが、該清澄水の一部は4処理水導出管225から分岐
された補給水管17を経て前記給水槽1へ還元補給され
るよう形成されている。
The clarified water treated in the pressurized flotation separation tank 200 is sent to the next filtration tank (l118, not shown) through the treated water outlet pipe 225, but a part of the clarified water is branched from the 4 treated water outlet pipes 225. It is formed so that the water is returned and replenished to the water supply tank 1 through a replenishment water pipe 17.

酸素ボンベ3からはオリフィス31によって流量調節さ
れた一定波の酸素が常時送気管28内に送給混合される
A constant wave of oxygen whose flow rate is regulated by an orifice 31 is constantly fed and mixed into the air supply pipe 28 from the oxygen cylinder 3 .

気液混合溶解器100は、第2図に示されるように、空
気と水とを導入して気泡を発生させる気液混合部Aと、
気泡混合水中の気泡を細分化して加圧下のもとに空気を
水中に溶解させる気体溶解部Bと、該液体の脈動を消し
、余剰空気を分離排出するための余剰空気分離4’曽1
20とからなる。
As shown in FIG. 2, the gas-liquid mixing and dissolving device 100 includes a gas-liquid mixing section A that introduces air and water to generate bubbles;
A gas dissolving section B that subdivides the bubbles in the bubble-mixed water and dissolves the air in the water under pressure, and an excess air separation section 4'so1 that eliminates the pulsation of the liquid and separates and discharges excess air.
It consists of 20.

しかして、気液混合部Aにおいて、管状をなす気液導入
筒部111に液体導入管15  と空気導入管23  
とが接続される。
Thus, in the gas-liquid mixing section A, the liquid introduction tube 15 and the air introduction tube 23 are connected to the tubular gas-liquid introduction cylinder section 111.
are connected.

気体溶解部Bは前記気液混合部Aの下流側に端板11B
の流体孔113aを介して連通された螺旋流路部材11
2からなる。螺旋流路部材112は外円筒体112aと
、その内側にそれと同心で互いの円周内面と円周外面と
を接触させた螺旋溝部材112bとを有する。
The gas dissolving section B has an end plate 11B on the downstream side of the gas-liquid mixing section A.
Helical flow path member 11 communicated via fluid hole 113a of
Consists of 2. The spiral channel member 112 has an outer cylindrical body 112a, and a spiral groove member 112b that is concentric with the outer cylindrical body 112a and whose circumferential inner surface and circumferential outer surface are in contact with each other.

該螺旋溝部材112bは円柱体112Cの1つの軸直角
断面において、外周に複数の螺旋流路力i形成されるよ
う複数条(図示2条)の螺旋而112dが設けられる。
The spiral groove member 112b is provided with a plurality of spiral grooves 112d (two in the figure) so that a plurality of spiral channel forces i are formed on the outer periphery in one axis-perpendicular cross section of the cylindrical body 112C.

これら螺旋溝112dfi円柱体112cのまわりに1
回以上複数回(図示4@J)周回する。円柱体112c
の両端には突部112e設けられる。そして、螺旋溝部
材112bは前記突部112eを接して複数本(実施例
では第1、vJ2.第8の8本)が直列に隣接配置され
る。
These spiral grooves 112dfi 1 around the cylindrical body 112c.
It goes around more than once (4@J in the figure). Cylindrical body 112c
Protrusions 112e are provided at both ends. A plurality of helical groove members 112b (eight in the embodiment, first, vJ2, and eighth) are arranged adjacent to each other in series so as to be in contact with the protrusion 112e.

従って、これら各突部112eの外周には液体混合室1
14となる空間部が形成される。これら隣接自装置され
る螺旋溝部材112bは螺旋ねじ方向が隣りどうし互い
に逆向きとされる。
Therefore, the liquid mixing chamber 1 is located on the outer periphery of each of these protrusions 112e.
A space section 14 is formed. These adjacent spiral groove members 112b have spiral thread directions opposite to each other.

螺旋溝部材112bの最下流側は抜は止め116が設け
られ、円筒体112aの末端部上面が切欠かれて流体出
口115とされ、次の余剰空気分離re 120の下部
に開口する。
A retainer 116 is provided on the most downstream side of the spiral groove member 112b, and the upper surface of the distal end of the cylindrical body 112a is cut out to form a fluid outlet 115, which opens at the bottom of the next surplus air separation re 120.

余剰空気分離槽120は、下部に気体溶解水管140か
設けられた円筒形側壁121と、空気排出球弁122b
を備えた空気排出口122aを有する頂壁122と、底
壁123とからなる。
The surplus air separation tank 120 has a cylindrical side wall 121 provided with a gas dissolving water pipe 140 at the bottom thereof, and an air discharge bulb valve 122b.
It consists of a top wall 122 having an air outlet 122a and a bottom wall 123.

該檜120内は上下方向はぼ中間部が多数の孔131を
もつ仕切板180によって仕切られている。
The interior of the cypress 120 is partitioned at approximately the middle in the vertical direction by a partition plate 180 having a large number of holes 131.

しかして、前記気体溶解水管140が加圧浮上分離楢2
00の気泡混合水尋人管281.282に接続されてい
る。なお、第2図中の124は水面計、125は圧力検
出口である。
Therefore, the gas dissolving water pipe 140
It is connected to the bubble mixing water pipes 281 and 282 of 00. In addition, 124 in FIG. 2 is a water level gauge, and 125 is a pressure detection port.

次に第8図において、加圧浮上分離槽200は外形が鉛
直円筒状をなす第1N210、第2 m 220と、該
第2筒220の上部に接続された汚物導出管240とを
有する。
Next, in FIG. 8, the pressurized flotation separation tank 200 has a first N 210 and a second N 220 each having a vertical cylindrical outer shape, and a waste discharge pipe 240 connected to the upper part of the second cylinder 220.

第1筒210は有底の円筒状をなし、その本体211の
下部側壁の汚水入口211aが設けられ該入口には汚水
供給管230が接続される。また平担底壁212に気泡
混合水入口212aが開口され、該入口には第1気泡混
合水導入管231が接続されている。第1fg210上
端には外側へ90度以上180度未満(図示150度)
の角度Nで円環環流部21Bが張り出している。
The first cylinder 210 has a cylindrical shape with a bottom, and a sewage inlet 211a is provided in the lower side wall of the main body 211, and a sewage supply pipe 230 is connected to the inlet. Further, a bubbly mixed water inlet 212a is opened in the flat bottom wall 212, and a first bubbly mixed water introduction pipe 231 is connected to the inlet. The upper end of 1st FG210 is directed outward by more than 90 degrees and less than 180 degrees (150 degrees as shown)
The annular circulation part 21B protrudes at an angle N.

第2 動220は前記yjSi筒210に対して同心に
図示省略の隙間ピースを介して外被した円筒本体221
をもつ。そして、該第2筒220の底壁222には処理
水出口222aが設けられるとともに、円周方向等間隔
複数個所に気泡混合水入口222bが設けられ、これら
入口には夫々第2気泡混合水導入管232が接続される
The second cylinder body 220 is a cylindrical body 221 that is covered concentrically with the yjSi cylinder 210 via a gap piece (not shown).
have. The bottom wall 222 of the second cylinder 220 is provided with a treated water outlet 222a, and a plurality of aerated mixed water inlets 222b are provided at equal intervals in the circumferential direction, and the second aerated mixed water is introduced into each of these inlets. Tube 232 is connected.

第2g220向上部には、前記第1筒210の上方に高
さHな有する汚物浮上分離帯223たる空間が残されて
いる。
In the upper part of the second g220, a space is left above the first cylinder 210, which is a dirt flotation separation zone 223 and has a height H.

汚物導出管240は丁から上へ順に第2筒上端に接続さ
れて上狭縮径された円錐縮径部241およびエルボ部2
42からなる。エルボ部242の先端には間欠自動開閉
される電磁弁243が接続され、前記汚物導出管240
内に溜った汚物を間欠的に排出するllaとなっている
The waste discharge pipe 240 is connected to the upper end of the second cylinder in order from the top to the top, and has a conical diameter reduced part 241 and an elbow part 2 whose diameter is reduced at the top.
Consists of 42. A solenoid valve 243 that is automatically opened and closed intermittently is connected to the tip of the elbow portion 242, and the filth outlet pipe 240
It is a lla that intermittently discharges the filth that has accumulated inside.

活部導出管240の円錐縮径部241の側方には少なく
とも1個ののぞき窓250が設けられ、透明な蓋が施さ
れている。
At least one viewing window 250 is provided on the side of the conical diameter reduced part 241 of the active part outlet pipe 240, and is covered with a transparent lid.

前記電磁弁13.22は両管内の圧力がほぼ同一となる
よう調節声れる。電磁弁18で制御され余った水は還水
管16を経て元の給水槽1へ返される。
The solenoid valves 13, 22 are adjusted so that the pressures in both pipes are approximately the same. Excess water is controlled by a solenoid valve 18 and returned to the original water tank 1 via a return pipe 16.

前記酸素ボンベ8の代りに水素ボンベも用いられる。A hydrogen cylinder may also be used instead of the oxygen cylinder 8.

以上において作動状態を説明する。The operating state will be explained above.

浄化処理される原水は、図示省略の原水槽または懸濁物
質をフロック化するように形成された凝集装置から原水
ポンプを経て加圧浮上分離f6200へ送られる。これ
に先立ち気液混合溶解器10゜では、気液導入筒部11
1に11は同一圧力(約ス2kg/dG3の酸素を多量
に含む空気と水が供給されると、両者は混合されて流体
孔113aを経て気体溶解部Bに送りこまれる。気体溶
解部Bの外円筒体112a内には螺旋流路が形成される
ので、短い直線距離で長い流路が得られ、混合溶解過程
が長くなることにより混合溶解効率が向上し、装置の小
型化が可能となる。また、各螺旋溝部材は複数条からな
るので流路が小面積に分割され、混合溶解効率の向上に
役立つ。また、上記複数の螺旋溝部材間に設けられた混
合室114では全体的な混合溶解が促進される。更に、
螺旋溝部拐は軸方向隣りどうし、螺旋溝のねじ方向が逆
向きとされることにより流体の回転方向が逆方向に切り
換えられるので、乱流が生じて混合溶解効率が更に向上
することになる。かくして、螺旋溝112dによる長い
行程において、#記空気は強制的に水中にとけこむ。そ
して、空気の約20%が躊解し余りは気泡の状態を保つ
The raw water to be purified is sent from a raw water tank (not shown) or a flocculation device formed to flocculate suspended matter to a pressurized flotation separator F6200 via a raw water pump. Prior to this, in the gas-liquid mixing and dissolving device 10°, the gas-liquid introduction cylinder 11
When air and water containing a large amount of oxygen at the same pressure (approximately 2 kg/dG3) are supplied to 1 and 11, the two are mixed and sent to the gas dissolving section B through the fluid hole 113a. Since a spiral flow path is formed in the outer cylindrical body 112a, a long flow path can be obtained with a short straight line distance, and the mixing and dissolving process is lengthened, thereby improving the mixing and dissolving efficiency and making it possible to downsize the device. In addition, since each spiral groove member consists of a plurality of strips, the flow path is divided into small areas, which helps improve the mixing and dissolving efficiency.Furthermore, in the mixing chamber 114 provided between the plurality of spiral groove members, the overall Mixing and dissolution is promoted.Furthermore,
Since the thread directions of the spiral grooves are opposite to each other in the axial direction, the rotational direction of the fluid is switched to the opposite direction, thereby generating turbulent flow and further improving the mixing and dissolving efficiency. Thus, the # air is forcibly dissolved into the water during the long stroke of the spiral groove 112d. Approximately 20% of the air is dissolved and the remainder remains in the form of bubbles.

この空気混合溶解水は次の余剰空気分離槽120内へ導
入され、仕切板18oの孔131を通過することにより
脈動が防止されるとともに、気泡の粗粒化か阻止される
。そして、気体溶解水は出口121aがらオリフィスF
を経て低圧領域たる加圧浮上分離槽200(圧カ約09
#/cdG)に導入される。そこでは、たとえば30μ
という微細な気泡をもつ混合水が瞬時に生成され、しか
も計測結果によると気泡は約2分位もの長時間にわたり
消滅せず安定保持された。
This air-mixed dissolved water is introduced into the next surplus air separation tank 120 and passes through the holes 131 of the partition plate 18o, thereby preventing pulsation and preventing bubbles from becoming coarse particles. Then, the gaseous dissolved water flows from the outlet 121a to the orifice F.
The pressurized flotation separation tank 200 (pressure approximately 0.9
#/cdG). There, for example, 30μ
Mixed water with microscopic bubbles was instantly generated, and according to measurement results, the bubbles remained stable for about 2 minutes without disappearing.

一方、余剰空気は上部の空気排出口122aから外部へ
排気される。該空気排出口122a(7)球弁122b
は自重により口122aを閉鎖し、余剰空気承が一定値
より増加したとき口122aを開すてそれを逃がし、槽
内は略一定圧力(約7に9/dG)に保持される。また
、槽内の水位が上がり過ぎたとき、前記口122aを閉
じて水の排出を阻止する。
On the other hand, surplus air is exhausted to the outside from the upper air outlet 122a. The air outlet 122a (7) ball valve 122b
The tank closes the port 122a due to its own weight, and when the surplus air bearing increases beyond a certain value, the port 122a is opened to let it escape, and the inside of the tank is maintained at a substantially constant pressure (approximately 7 to 9/dG). Further, when the water level in the tank rises too much, the port 122a is closed to prevent water from being discharged.

次に加圧浮上分離槽200において、凝集装置1でフロ
ック化された汚物が混入された原水はポンプ圧力を加え
られて汚水入口211aから第1筒210内に送られる
が、第1筒210内には同時に気泡混合水導入管231
を経て微粒気泡が混合された水か送入されるので、従っ
て、第1筒210内の汚物に気泡が付着して汚物の浮力
が増大てれ、浮上分離帯223で清澄水と分離されて浮
上して上方の汚物導出管240内に蓄償される。そして
、汚物が除去された清澄水は第1筒210と第2筒22
0との間を上から下へ下降し処理水出口222aより流
出される。この作動中に汚物の一部が処理水側へ流入す
ることがあるが、この汚物は還流部213によって還流
される。即ち、処理水側へ流れこんだ汚物は還流部21
3の下面側の水勢の弱い部分に付着し、集積して塊状汚
物となり浮力を増すと共に、第2気泡混合水勇入管28
2からの気泡の付着によっても浮力を与えられて、つい
に浮力による上昇速度が下降流速より大となって、上方
へ還流し汚物導出管240へ到達するのである。
Next, in the pressurized flotation separation tank 200, the raw water mixed with the flocculated waste from the flocculation device 1 is sent into the first cylinder 210 from the wastewater inlet 211a under pump pressure. At the same time, the bubble mixed water introduction pipe 231
Since water mixed with fine air bubbles is sent through the filtration zone 210, the air bubbles adhere to the filth in the first cylinder 210, increasing the buoyancy of the filth, and separating it from clear water in the flotation separation zone 223. The waste floats to the surface and is stored in the waste discharge pipe 240 above. The clear water from which filth has been removed is then transferred to the first cylinder 210 and the second cylinder 22.
0 from the top to the bottom and flows out from the treated water outlet 222a. During this operation, some of the filth may flow into the treated water, but this filth is refluxed by the reflux section 213. In other words, the waste that has flowed into the treated water side is transferred to the reflux section 21.
It adheres to the lower surface side of 3 where the water force is weak, accumulates, becomes lumpy dirt and increases buoyancy, and the second bubble mixed water inlet pipe 28
Buoyancy is also imparted by the adhesion of air bubbles from 2, and finally the rising speed due to the buoyant force becomes greater than the descending flow speed, and the waste flows back upward and reaches the waste discharge pipe 240.

第2筒220の浮上分離帯223空間、および円錐縮径
部241に浮上集積された汚物は、電磁弁24aが間欠
開放されたとき、水圧によりおし出される。円錐縮径部
241に溜った汚物は加圧浮上分離槽が(1j1れたり
傾いた際に、前記エルボ部242から水が流出するのを
阻止するのに役立つ。
The dirt floated and accumulated in the flotation separation zone 223 space of the second cylinder 220 and the conical reduced diameter portion 241 is forced out by water pressure when the solenoid valve 24a is intermittently opened. The dirt accumulated in the conical reduced diameter portion 241 serves to prevent water from flowing out from the elbow portion 242 when the pressurized flotation separation tank is tilted or tilted.

実験の結果によると、前記円錐縮径部241の水平に対
する傾斜角度Mが500〜75°(好捷しくけ600)
の場合汚物導出管240に汚物のっ18が発生しなかっ
た。また、還流部213の第1筒外周面に対する角度N
は90’〜 165°(標準150’)が適当であった
According to the results of the experiment, the inclination angle M of the conical diameter reducing portion 241 with respect to the horizontal is 500 to 75° (favorable mechanism 600).
In this case, no filth was generated in the filth outlet pipe 240. Also, the angle N of the reflux part 213 with respect to the first cylinder outer circumferential surface is
The appropriate angle was 90' to 165° (standard 150').

上記作動中、給水槽1へは補給水管17を経て清澄水か
逐次補充され、該槽内は常時一定量の水が確保される。
During the above operation, the water supply tank 1 is successively replenished with clear water through the supply water pipe 17, and a constant amount of water is always secured in the tank.

ガス管38の手動弁32は酸素または水素の補給が必要
ないときやポンベ交換の時などに閉鎖される。
The manual valve 32 of the gas pipe 38 is closed when there is no need to replenish oxygen or hydrogen or when replacing the gas cylinder.

第4図示は他の実施例の螺旋溝部材115bを示し、一
つの軸断面における流路の数を増加させて全体の流路面
積を増加させたものである。即ち外円筒体112aの内
側に嵌合される1以上(図示8本)の互いに嵌合された
内円筒体116c。
The fourth illustration shows a spiral groove member 115b of another embodiment, in which the number of channels in one axial section is increased to increase the total channel area. That is, one or more (eight as shown) inner cylindrical bodies 116c are fitted inside the outer cylindrical body 112a.

117c、118cと、これらのルiJ>のもの116
0の内側に同心に嵌合された円柱体115Cからなる。
117c, 118c, and these 116
It consists of a cylindrical body 115C fitted concentrically inside the cylindrical body 0.

そして、各部分の外円周面に螺旋溝115d、116d
、117d、118dが設けられている。螺旋溝のねじ
方向は半径方向隣りどうし互いに逆向きとなっている。
Spiral grooves 115d and 116d are formed on the outer circumferential surface of each part.
, 117d, and 118d are provided. The thread directions of the spiral grooves are opposite to each other in the radial direction.

また、円柱体115Cと最小内pH筒体116Cの溝1
16 d(d図示の場合4条ねじ、中間内円筒体117
cのは6条、湿大内円筒体118Cのは8条ねじとされ
ている。
In addition, groove 1 of the cylinder body 115C and the minimum internal pH cylinder body 116C.
16 d (4-thread thread in case of d illustration, intermediate inner cylindrical body 117
C has a 6-thread thread, and the wet inner cylinder 118C has an 8-thread thread.

なお、螺旋溝は内円筒体や外円筒体の内円周面に設けら
れてもよい。この場合、円柱体には螺旋溝が設けられな
い。内円筒体のいくつかには螺旋尚管設けないで、軸方
向に沿う溝等の流路を設けるか、又は流路を全く設けな
り場合も含咬れる。即ち、内円筒体および円柱体のうち
の少なくとも1つの外円周面又は内円周面に螺旋面が設
けられていればよい。
Note that the spiral groove may be provided on the inner circumferential surface of the inner cylindrical body or the outer cylindrical body. In this case, the cylindrical body is not provided with a spiral groove. Some of the inner cylindrical bodies may not be provided with a spiral tube but may be provided with a flow path such as a groove along the axial direction, or may be provided with a flow path at all. That is, it is sufficient that the spiral surface is provided on the outer circumferential surface or the inner circumferential surface of at least one of the inner cylindrical body and the cylindrical body.

気液混合溶解器100において、前記気液混合部A 、
 n¥解部B jdそれらの軸線を鉛直に向けてもよい
。この場合、溶解部Bの上端が余剰空気排出槽120の
底壁123に接続される。気体と液体の圧力は約4〜1
0 kq〜Gの範囲が適当である。
In the gas-liquid mixing dissolver 100, the gas-liquid mixing section A,
n¥ Solution part B jd Their axes may be oriented vertically. In this case, the upper end of the melting section B is connected to the bottom wall 123 of the excess air discharge tank 120. The pressure of gas and liquid is about 4-1
A range of 0 kq to G is suitable.

m前記子弁322bに代えて、油室の圧力調整弁等も用
いられる。また、前記混合部Aどしてノズルによって液
体と気体とが混合されるものも適用される。
Instead of the child valve 322b, a pressure regulating valve for an oil chamber or the like may also be used. In addition, a device in which liquid and gas are mixed by a nozzle, such as the mixing portion A, is also applicable.

気液混合溶解器100では気体の溶解が短時間になされ
、タンクが小さくてすむ。気体溶解液として、酸素が多
量にまざった気泡混合液が瞬時に生成され、しかも気泡
、は長時間にわたり安定に保持されるので、水中に酸素
がよく滲透し、酸化作片が促進され、浄水効率を格段に
向上させることかできる。
In the gas-liquid mixer 100, gas is dissolved in a short time, and the tank can be small. As a gaseous solution, a bubble mixture containing a large amount of oxygen is instantly generated, and the bubbles are stably maintained for a long time, allowing oxygen to permeate into the water well, promoting oxidation debris, and improving water purification. It is possible to significantly improve efficiency.

加圧浮上分離、嗜200はm造がコンパクトであり、導
出汚物中に水が混入することがなく節水ができ、そのう
え、還流部の作用によって、浮上しにくい汚物も効率よ
く浮上される。そのため、汚物の分離排除が確実に行な
われることとなり、浄水効果を向上させる。!た、鉛直
第1筒210の下部に汚水および気泡混合水入口212
aを持つので、第1Th210内には上昇流が生じて汚
物が底にたまることがない。
The pressurized flotation separation system 200 has a compact structure and saves water by preventing water from being mixed into the discharged waste, and furthermore, by the action of the reflux section, even waste that is difficult to float can be efficiently floated. Therefore, the separation and removal of filth is reliably performed, improving the water purification effect. ! In addition, a sewage and bubble mixed water inlet 212 is provided at the bottom of the first vertical cylinder 210.
a, an upward flow occurs in the first Th 210 and dirt does not accumulate at the bottom.

本発明の気泡発生装置は上記実施例に示す汚水処理装置
のほか、気液混合水を利用した他の工業生産部門、加工
部門或いは医療衛生部門などにも汎用される。
The bubble generator of the present invention is widely used in the sewage treatment apparatus shown in the above embodiments, as well as in other industrial production departments, processing departments, medical hygiene departments, etc. that utilize gas-liquid mixed water.

不発明は以上の如く構成されるので、被処刑水中に酸素
または水素が気泡状態で混合されることにより艮好な混
合が達成され、酸素または水素の少い量でも高効率の酸
化°または環元作用が行なわれて脱臭脱色が促進される
。これにより、酸素または水素の補給量が従来に比較し
て格段に減少し生産コストの大幅な低下が可能となった
Since the invention is constructed as described above, excellent mixing is achieved by mixing oxygen or hydrogen in the form of bubbles in the execution water, and even with a small amount of oxygen or hydrogen, highly efficient oxidation or oxidation can be achieved. The original action is carried out to promote deodorization and decolorization. As a result, the amount of oxygen or hydrogen replenishment is significantly reduced compared to the conventional method, making it possible to significantly reduce production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す加圧浮上分離槽りjと
結合しf′c系絖図、第2図は気液混合溶解器の縦断面
図、第3図は加圧浮上分離槽の卸ヒ断面図、第41狙r
よ螺旋流路部材の他の実施例断面図である。 1・・・&を水f’L 2・・・ニアコンプレッサ、8
・・・酸素ボンベ、4・・・逆止弁、5・・・オリフィ
ス、100・・・気液混合溶解器、A・・・気液混合部
、B・・・気体溶解部、111・・・気液導入筒部、1
12・・・螺旋流路部材、120・・・余剰空気分キ槽
、200・・・加圧浮上分離槽、210・・・第1筒、
220・・・第2筒出 願 人  株式会社 ワイ ケ
イ ニス化 理 人  弁理士 西 教 圭一部〃 犬
飼新平 〃  石 間 壬生弥 9ム○
Fig. 1 is a diagram of the f'c system connected to the pressurized flotation separation tank j showing an embodiment of the present invention, Fig. 2 is a vertical cross-sectional view of the gas-liquid mixing dissolver, and Fig. 3 is the pressurized flotation system. Cross section of separation tank, 41st aim
FIG. 7 is a cross-sectional view of another embodiment of the spiral flow path member. 1... & water f'L 2... Near compressor, 8
... Oxygen cylinder, 4... Check valve, 5... Orifice, 100... Gas-liquid mixing dissolver, A... Gas-liquid mixing section, B... Gas dissolving section, 111...・Gas/liquid introduction cylinder part, 1
DESCRIPTION OF SYMBOLS 12... Spiral channel member, 120... Excess air separation tank, 200... Pressure flotation separation tank, 210... First cylinder,
220...Second applicant: YK Niska Co., Ltd. Patent attorney Keiichi Nishi, Shinpei Inukai, Ishimaya Mibuya 9mm○

Claims (8)

【特許請求の範囲】[Claims] (1)気体と液体とを導入して混合する気液混合部Aと
、該気液混合部の下流側に接続されて螺旋流路を形成す
るための螺旋流路部材をもつ気体溶解部Bと、該気体溶
解部の末端が開口し、余剰気体を分離排出させる余剰気
体分離槽120とを有する気液混合溶解器100と、該
器へ送液管15を介して加圧供給するための給液槽1と
、送気管23を介して前記気液混合溶解器100へ加圧
気体を送給するようにしたコンプレッサ2と、前記送気
管23の途中に接続された他の酸化または環元補助気体
源3とを有することを特徴とする気泡発生装置。
(1) Gas-liquid mixing section A that introduces and mixes gas and liquid, and gas dissolving section B that has a spiral flow path member connected to the downstream side of the gas-liquid mixing section to form a spiral flow path. , a gas-liquid mixing dissolver 100 having an excess gas separation tank 120 which is open at the end of the gas dissolving part and separates and discharges excess gas; A liquid supply tank 1 , a compressor 2 configured to supply pressurized gas to the gas-liquid mixer 100 via an air supply pipe 23 , and other oxidizing or cyclic elements connected in the middle of the air supply pipe 23 . A bubble generator characterized in that it has an auxiliary gas source 3.
(2)螺旋流路部材は外円筒体と、その内側に同心に嵌
合された螺旋溝部材とを含む特許請求の範囲第(1)項
記載の気泡発生装置。
(2) The bubble generator according to claim (1), wherein the spiral channel member includes an outer cylindrical body and a spiral groove member fitted concentrically inside the outer cylindrical body.
(3)螺旋溝部材は円柱体の外円周面に螺旋溝が設けら
れてなる特許請求の範囲第(2)項記載の気泡発生装置
(3) The bubble generating device according to claim (2), wherein the spiral groove member has a spiral groove provided on the outer circumferential surface of a cylindrical body.
(4)螺旋溝部材は1以上の内円筒体と、該内円筒体の
内側にそれと同心で嵌合された円柱体とを含み、前記内
円筒体および円柱体のうち少なくとも1つの外円周面又
は内円周面には螺旋溝が設けられた特許請求の範囲第(
2)項記載の気泡発生装置。
(4) The spiral groove member includes one or more inner cylindrical bodies and a cylindrical body concentrically fitted inside the inner cylindrical body, and the outer circumference of at least one of the inner cylindrical bodies and the cylindrical bodies. Claim No.
2) The bubble generator described in section 2).
(5)螺旋溝部材は、複数本が軸方向に隣接配置された
とき、それらの間に流体の混合室が形成されるような突
部が設けられた特許請求の範囲第(2)項又は第(3)
項又は第(4)項の気泡発生装置。
(5) The spiral groove member is provided with a protrusion such that a fluid mixing chamber is formed between the spiral groove members when a plurality of the spiral groove members are arranged adjacent to each other in the axial direction. Chapter (3)
or (4).
(6)螺旋溝部材は、複数本が軸方向に直列に配置され
、かつ、前記螺旋溝のねじ方向が軸方向隣りどうし互い
に逆向きとされた特許請求の範囲第(2)項または第3
項又は第(4)項記載の気泡発生装置。
(6) A plurality of spiral groove members are arranged in series in the axial direction, and the screw directions of the spiral grooves are opposite to each other in the axial direction.
or (4).
(7)螺旋溝のねじ方向は、半径方向隣りどうし互いに
逆向きとされた特許請求の範囲第(4)項記載の気泡発
生装置。
(7) The bubble generating device according to claim (4), wherein the thread directions of the spiral grooves are opposite to each other in the radial direction.
(8)螺旋溝部材は、少なくとも1つの螺旋巻き付け面
において、1つの軸直角断面で複数の流路が構成される
ように複数条の螺旋溝をもつ特許請求の範囲第(2)項
または第(3)項または第(4)項記載の気泡発生装置
(8) The spiral groove member has a plurality of spiral grooves on at least one spiral wrapping surface so that a plurality of channels are formed in one axis-perpendicular cross section. The bubble generator according to item (3) or item (4).
JP59138725A 1984-07-03 1984-07-03 Bubble generating apparatus Pending JPS6118425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138725A JPS6118425A (en) 1984-07-03 1984-07-03 Bubble generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138725A JPS6118425A (en) 1984-07-03 1984-07-03 Bubble generating apparatus

Publications (1)

Publication Number Publication Date
JPS6118425A true JPS6118425A (en) 1986-01-27

Family

ID=15228691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138725A Pending JPS6118425A (en) 1984-07-03 1984-07-03 Bubble generating apparatus

Country Status (1)

Country Link
JP (1) JPS6118425A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705038A1 (en) * 1993-05-11 1994-11-18 Graco Inc Liquid integrator.
WO1996027434A1 (en) * 1995-03-03 1996-09-12 Floimayr Gesmbh Reaction container for the continuous chemical treatment of liquids, in particular effluents
JP2001300276A (en) * 2000-04-24 2001-10-30 Isao Endo Bubble generating device
JP2010029770A (en) * 2008-07-28 2010-02-12 Mdk:Kk Air bubble generation apparatus
KR102613233B1 (en) * 2022-12-08 2023-12-13 농업회사법인주식회사엘바이오텍 Apparatus for mixing and dissolving oxygen
EP4324796A1 (en) * 2022-08-15 2024-02-21 Ustav Geotechniky Slovenskej Akademie Vied Verejna Vyskumna Institucia A flotation column and a system for treatment of wastewater containing said flotation column

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705038A1 (en) * 1993-05-11 1994-11-18 Graco Inc Liquid integrator.
WO1996027434A1 (en) * 1995-03-03 1996-09-12 Floimayr Gesmbh Reaction container for the continuous chemical treatment of liquids, in particular effluents
JP2001300276A (en) * 2000-04-24 2001-10-30 Isao Endo Bubble generating device
JP2010029770A (en) * 2008-07-28 2010-02-12 Mdk:Kk Air bubble generation apparatus
EP4324796A1 (en) * 2022-08-15 2024-02-21 Ustav Geotechniky Slovenskej Akademie Vied Verejna Vyskumna Institucia A flotation column and a system for treatment of wastewater containing said flotation column
KR102613233B1 (en) * 2022-12-08 2023-12-13 농업회사법인주식회사엘바이오텍 Apparatus for mixing and dissolving oxygen

Similar Documents

Publication Publication Date Title
EP0963784B1 (en) Swirling fine-bubble generator and method
JP3397154B2 (en) Revolving microbubble generator
EP0225965B1 (en) Method of treating waste water and equipment therefor
US4735750A (en) Process and device for the dissolution of gas in liquid
US4566971A (en) Process and apparatus for the biological purification of wastewater
US5616240A (en) Device for sewage clarification
JPS6038007A (en) Oil-water separator for ship
US4532038A (en) Flow control apparatus for aerobic sewage treatment
US4324657A (en) Apparatus for the treatment of liquids
JPS6118425A (en) Bubble generating apparatus
CN110510815A (en) Integrated sewage treating apparatus and sewage water treatment method based on simultaneous nitrification-denitrification
CA2282326C (en) Swirling type micro-bubble generating system
JP2003181259A (en) Swirling type fine bubble formation method and apparatus
CN113023879A (en) Sludge selector and sludge purification and separation system
CA2573511A1 (en) Process and reactor for intensified and energy-efficient, biological (waste-)water treatment
CN110526397A (en) (AO)2Precipitate integrated multi-stage recirculation reactor
KR100447812B1 (en) Process and plant of the ubr formation for wastewater treatment
AU770174B2 (en) Swirling type micro-bubble generating system
RU2137720C1 (en) Plant for biological cleaning of domestic waste water
SU1373692A1 (en) Apparatus for biochemical cleaning of waste water
SU1726393A1 (en) Waste water cleaning apparatus
CA1093716A (en) Biological sewage treatment plant
JP2023069090A (en) purifier
CN111439837A (en) Vertical integrated sewage treatment device of inner loop
SU1411294A1 (en) Apparatus for purifying waste water