JPS61183613A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPS61183613A
JPS61183613A JP60023326A JP2332685A JPS61183613A JP S61183613 A JPS61183613 A JP S61183613A JP 60023326 A JP60023326 A JP 60023326A JP 2332685 A JP2332685 A JP 2332685A JP S61183613 A JPS61183613 A JP S61183613A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
diaphragm
zooming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60023326A
Other languages
Japanese (ja)
Inventor
Keiji Ikemori
敬二 池森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60023326A priority Critical patent/JPS61183613A/en
Publication of JPS61183613A publication Critical patent/JPS61183613A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To reduce an outside diameter of a lens barrel by providing a diaphragm for determining an F-number, on the back of the final surface of the second lens group, and moving this diaphragm to an object side, when zooming is executed from a wide angle to a telephone. CONSTITUTION:The second lens group 2 of a positive refractive power is provided on an image side of the first lens group 1 of a negative refractive power, and zooming is attached by drawing, for instance, a locus which is developed and drawn as Z1, Z2. In this case, a diaphragm 3 for determining an F-number is placed immediately behind the lens group 2, and it is moved as one body with the lens group 2, or independently to an object side at the time of zooming from a wide angle to a telephone. At this time, an axial light L is subjected to a divergent action by the lens group 1 and made incident on the lens 2 in a high axial height, converged strongly therein and emitted from the lens group 2. Accordingly, when the diaphragm 3 is placed immediately behind the lens group 2, an open aperture diameter can be reduced comparing with the case when it is provided on the front part of the lens group 2 or immediately before it. In this way, the diameter of the diaphragm mechanism is reduced, the outside diameter of a lens barrel is decreased, and the mechanical structure is simplified.

Description

【発明の詳細な説明】 本発明はズームレンズに関し、特に鏡筒外観を小型化1
得る様なズームレンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zoom lens, and in particular, to miniaturizing the external appearance of the lens barrel.
Related to zoom lenses.

(従来技術の説明) レンズ鏡筒の寸法は内部に収納するレンズ系の構成によ
って影響を受ける0例えば、ズームレンズの鏡筒の外径
は下ナンバーを決定する開口絞りの開放径の大きさによ
り定まることが多い。絞りの機械構造は絞り羽根を収納
するケース中に設けられるが、羽根ケースを含めた絞り
構造は開放絞り径よりもかなり大きく、通常、開放絞り
径の2倍から3倍程度である。
(Description of Prior Art) The dimensions of a lens barrel are affected by the configuration of the lens system housed inside. For example, the outer diameter of a zoom lens barrel depends on the open diameter of the aperture stop, which determines the lower number. Often fixed. The mechanical structure of the aperture is provided in a case that houses the aperture blades, and the aperture structure including the blade case is considerably larger than the open aperture diameter, and is usually about two to three times the open aperture diameter.

ズームレンズの鏡筒の先端付近の外径は、レンズ自体の
外径により決定される場合が多いが、それよりカメラ本
体側の部分では鏡筒外径を細くできるか否かは開放絞り
径の大きさで定まる。
The outer diameter near the tip of the lens barrel of a zoom lens is often determined by the outer diameter of the lens itself, but whether or not the outer diameter of the lens barrel can be made thinner on the camera body side depends on the maximum aperture diameter. Determined by size.

近年、カメラ本体は電子工学技術の導入によって小型化
が促進されているが、鏡筒の部分はガラスレンズとメカ
ニズムから成るため小型にするのが難しく、明るいレン
ズではカメラ本体とのデザイン上の釣合いが悪くなった
り、鏡筒把握がし難くなる欠点もある。
In recent years, the introduction of electronic engineering technology has promoted the miniaturization of camera bodies, but since the lens barrel is made up of a glass lens and mechanism, it is difficult to make it smaller. It also has the disadvantage that it may worsen and make it difficult to grasp the lens barrel.

一方、物体側より順に負の屈折力の第1レンズ群および
正屈折力の第2レンズ群を具え、第1レンズ群と第2レ
ンズ群とを互いに独立に光軸上移動してズーミングを行
う2群あるいは3群構成の逆望遠型ズームレンズにあっ
ては、開口絞りは第2レンズ群内の物体側位置あるいは
第1レンズ群と第2レンズ群の間に配したものが多い、
しかしながら、逆望遠型ズームレンズの場合、軸上光束
は負の第1レンズ群で一旦発散されて第2レンズ群へ入
射するため、その位置における開放絞り径は第1レンズ
面に入射する軸上開放光束径より大きくなる。
On the other hand, a first lens group with a negative refractive power and a second lens group with a positive refractive power are provided in order from the object side, and zooming is performed by moving the first lens group and the second lens group independently of each other on the optical axis. In reverse telephoto zoom lenses with two or three group configurations, the aperture stop is often placed on the object side within the second lens group or between the first and second lens groups.
However, in the case of a reverse telephoto zoom lens, the axial light beam is once diverged at the negative first lens group and then enters the second lens group, so the open aperture diameter at that position is It becomes larger than the open luminous flux diameter.

従って特に望遠端の開放口径を大きくすると、鏡筒を細
くすることは困難となる。中にはこの現象を避けるため
、広角端より望遠端の開放口径を小さく(下ナンバーが
大きく、暗く)シているレンズも多いが、レンズ性能を
低下させる方向なので望ましくない。
Therefore, especially when the open aperture at the telephoto end is increased, it becomes difficult to make the lens barrel thinner. To avoid this phenomenon, there are many lenses that have a smaller aperture at the telephoto end (the lower number is larger and darker) than at the wide-angle end, but this is undesirable as it tends to degrade lens performance.

尚、逆望遠型ズームレンズの中には第2レンズ群の背後
に絞りを具えるレンズも多いが、この絞りは開口径が一
定で軸外光束の不要部を遮断するためのものであり、軸
上光束には影響を与えない。
Note that many reverse telephoto zoom lenses have an aperture behind the second lens group, but this aperture has a constant aperture diameter and is designed to block unnecessary off-axis light beams. It does not affect the axial luminous flux.

(目的) 本発明の第1の目的は鏡筒の外径を縮小し得る様なズー
ムレンズを提供することにある。
(Objective) A first object of the present invention is to provide a zoom lens whose outer diameter can be reduced.

また第2の目的は鏡筒全体を外径の小さな形態とするた
め、逆望遠レンズの第1レンズ群径を減少させることに
ある。
A second purpose is to reduce the diameter of the first lens group of the reverse telephoto lens in order to make the entire lens barrel smaller in outer diameter.

更に第3の目的は全長を短縮することにある。Furthermore, the third purpose is to shorten the overall length.

そして上記目的を達成するため本発明は、負屈折力の第
1レンズ群とその像側に配された正屈折力の第2レンズ
群を独立に光軸方向へ移動してズーミングを行うレンズ
において、前記第2レンズ群の最終面の背後にFナンバ
ーを決定する絞りを設け、広角から望遠へズーミングす
る際は前記絞りを物体側へ移動している。
In order to achieve the above object, the present invention provides a lens that performs zooming by independently moving a first lens group having a negative refractive power and a second lens group having a positive refractive power disposed on the image side in the optical axis direction. A diaphragm for determining the F number is provided behind the final surface of the second lens group, and the diaphragm is moved toward the object side when zooming from wide-angle to telephoto.

尚、更なる特徴は以下の記述から明らかになろう。Further features will become clear from the description below.

(実施例の説明) 第1図は本発明の実施例を示しており、1は負屈折力の
第1レンズ群、2は正屈折力の第2レンズ群で、例えば
Zlと22の様に展開して描かれた軌跡を描きズーミン
グを達成する。
(Description of an embodiment) Fig. 1 shows an embodiment of the present invention, in which 1 is a first lens group with negative refractive power, 2 is a second lens group with positive refractive power, for example, Zl and 22. Achieve zooming by drawing a trajectory drawn by unfolding.

尚、両レンズ群1.2はそれぞれ複数のレンズから成る
Note that both lens groups 1.2 each consist of a plurality of lenses.

3は、本発明に係る下ナンバーを決定する絞りで第2レ
ンズ群2の直後に配置され、広角から望遠へズーミング
するとき第2レンズ群2と一体もしくは独立に物体側へ
移動する。
Reference numeral 3 denotes an aperture that determines the lower number according to the present invention, and is disposed immediately after the second lens group 2, and moves toward the object side either integrally or independently with the second lens group 2 when zooming from wide-angle to telephoto.

Llは軸上光線の一本で、第1レンズ群1で発散作用を
受けて高い軸上高で第2レンズ群2八入射し、そこで強
く収斂されて第2レンズ群2を射出する。従って絞り3
を第2レンズ群2の直後に配すれば第2レンズ群2の前
、側部分又の直前に設ける場合に比べて開放開口径を縮
小することができる。
Ll is one of the axial rays, which undergoes a divergent action in the first lens group 1 and enters the second lens group 28 at a high axial height, where it is strongly converged and exits the second lens group 2. Therefore, aperture 3
If it is arranged immediately after the second lens group 2, the open aperture diameter can be reduced compared to the case where it is arranged in front of the second lens group 2, or just before the side portion.

これにより絞り機構の径は縮小し、鏡筒外径が減少する
効果があるが、加えて絞りがカメラ本体に近づくから絞
りを駆動するためのカメラ本体との連絡機構が第2レン
ズ群2の駆動機構と交差しなくなり、機械構造が容易に
なる利点もある。
This has the effect of reducing the diameter of the aperture mechanism and reducing the outer diameter of the lens barrel, but in addition, since the aperture moves closer to the camera body, the communication mechanism with the camera body for driving the aperture becomes smaller in the second lens group 2. It also has the advantage that it does not intersect with the drive mechanism, making the mechanical structure easier.

以上によって鏡筒外径は減少するが、更にレンズ前玉径
が縮小されるのは望ましいことである。これを解決する
には2つの構成が可能であり、並設することもできる。
Although the outer diameter of the lens barrel is reduced by the above, it is desirable that the diameter of the front lens element is further reduced. To solve this problem, two configurations are possible, and they can also be installed in parallel.

第2図は前玉径を縮小するための実施例で。Figure 2 shows an example of reducing the diameter of the front lens.

絞り3の像側に第3レンズ群4を設けて負の屈折力を負
担させる。これにより第1レンズ群から第2レンズ群ま
での屈折力を強くすることができるから、第1レンズ群
と第2レンズ群の移動量を小さくしても所定のズーム比
が得られることになり、レンズ全長の短縮化が可能とな
る。従って絞りから最前レンズ面までの長さが縮まった
ことになりレンズ前玉径の増大を防ぐことができる。
A third lens group 4 is provided on the image side of the aperture 3 to bear negative refractive power. This makes it possible to strengthen the refractive power from the first lens group to the second lens group, so a predetermined zoom ratio can be obtained even if the amount of movement of the first and second lens groups is reduced. , the total length of the lens can be shortened. Therefore, the length from the diaphragm to the foremost lens surface is reduced, and an increase in the diameter of the front lens element can be prevented.

第3レンズ群は物体側より順に負レンズと正レンズを接
合した物体側へ凹面を向けたメニスカス形状で、負レン
ズの屈折率を正レンズの屈折率より高くするのが好まし
い。
The third lens group has a meniscus shape in which a negative lens and a positive lens are cemented in order from the object side, with a concave surface facing the object side, and it is preferable that the refractive index of the negative lens is higher than the refractive index of the positive lens.

他方、第3図A、Bは従来の逆望遠型ズームレンズの最
も一般的な第1レンズ群の形状を描いている0図Aでは
1番目のレンズが物体側へ凸のメニスカス負レンズのた
め1番目のレンズと2番目のレンズとの空気間隔を大き
く取らなければならない、また図Bの正レンズが前置さ
れるタイプでは2番目のレンズの後面が極端に曲率半径
が小さくなるため、やはり2番目と3番目のレンズの空
気間隔を大きく取らなければならない。第4図は従来形
式のズームレンズの光束の挙動を示すもので、Aは負の
第1レンズ群、Bは正の第2レンズ群、Cは負の第3レ
ンズ群、Dは絞りである。またLlは軸上光束、L2は
軸外光束で、軸外光束L2の光路かられかる様に第1レ
ンズ群Aの1番目のレンズの形態がこのレンズ径を増大
させる原因になっている。
On the other hand, Figures 3A and 3B depict the most common shape of the first lens group of a conventional inverted telephoto zoom lens. In Figure 3A, the first lens is a negative meniscus lens that is convex toward the object side. A large air gap must be maintained between the first lens and the second lens, and in the case of the type shown in Figure B where a positive lens is placed in front, the radius of curvature of the rear surface of the second lens is extremely small. A large air gap must be provided between the second and third lenses. Figure 4 shows the behavior of the light flux of a conventional zoom lens, where A is the negative first lens group, B is the positive second lens group, C is the negative third lens group, and D is the aperture. . Further, Ll is an on-axis light beam, and L2 is an off-axis light beam.As can be seen from the optical path of the off-axis light beam L2, the shape of the first lens in the first lens group A causes the diameter of this lens to increase.

第5図は本発明の実施例であるレンズ形状を示している
0図Aは両凹レンズと物体へ凸を向けた正メニスカスレ
ンズを装置して第1レンズ群を構成したものであり、1
番目のレンズの像側面もしくは2番目のレンズの物体側
面に非球面を導入するのが良い、この非球面の意義は後
述する。
FIG. 5 shows the lens shape according to an embodiment of the present invention. FIG.
It is preferable to introduce an aspherical surface on the image side surface of the second lens or the object side surface of the second lens.The significance of this aspherical surface will be described later.

第5図Bは更に第1レンズ群の屈折力が強くなった場合
に適した構成で、物体側より順に両凹レンズ、負レンズ
、物体側へ凸を向けた正メニスカスレンズを配置してい
る。最も有利な形状としては中央の負レンズも両凹形状
にすることで°あるが、物体側の面は平面あるいは緩い
凸面とすることもできる。尚、1番目のレンズの像側面
あるいは2番目のレンズの像側面もしくは3番目のレン
ズの物体側面を非球面にするのが良い、また、図A0図
Bのいずれのレンズでも非球面を1面導入すれば済むが
、非球面量を複数のレンズ面に分担させることもできる
FIG. 5B shows a configuration suitable for the case where the refractive power of the first lens group is further increased, in which a biconcave lens, a negative lens, and a positive meniscus lens with a convex surface facing the object side are arranged in order from the object side. The most advantageous shape is for the central negative lens to also be biconcave, but the object-side surface can also be flat or slightly convex. In addition, it is better to make the image side surface of the first lens, the image side surface of the second lens, or the object side surface of the third lens an aspheric surface. However, it is also possible to share the amount of aspherical surface among a plurality of lens surfaces.

第6図は、第2図で述べた負の第3レンズ群と第5図で
述べたレンズ形状を共に適用した例である0図かられか
る様に最軸外光束を取り入れる最前レンズの直径は縮小
されており、また第4図との比較で明らかな様にレンズ
全長が短縮されている。尚、後述のレンズ・データとそ
の諸収差図から見取れる様に、全長短縮にもかかわらず
光学性能は維持されている。
Figure 6 is an example in which the negative third lens group described in Figure 2 and the lens shape described in Figure 5 are applied together.As shown in Figure 0, the diameter of the foremost lens that takes in the most off-axis light flux. has been reduced, and as is clear from a comparison with FIG. 4, the total length of the lens has been shortened. As can be seen from the lens data and various aberration diagrams described later, the optical performance is maintained despite the shortened overall length.

次に前述した通り、さらに第1レンズ群内の面に少なく
とも非球面を一面設け、前記非球面は光軸から遠ざかる
に従い、凹面の時は、負の屈折力が弱くなり、凸面の時
は正の屈折力が強くなる形状とする。この様な非球面形
状を負レンズの正レンズの向かい合う面に用いると、レ
ンズの周辺でレンズ同志がぶつかることなしにレンズ間
隔をつめることができる。つまり第1レンズ群の総合中
心厚を小さくでS7、前玉径増大の防止に寄与する。ま
た非球面のため少ないレンズ枚数で性能を良好に補正す
ることができ、上記非球面の形状は、特に第1レンズ群
の屈折力が強くなった時に生じ易い広角端での櫛型の歪
曲を補正するのに有効である。
Next, as mentioned above, at least one aspherical surface is provided in the first lens group, and as the aspherical surface moves away from the optical axis, when it is concave, the negative refractive power becomes weaker, and when it is convex, the negative refractive power becomes weaker. The shape is such that the refractive power is strong. When such an aspherical shape is used for the surfaces of the negative lens and the positive lens that face each other, the distance between the lenses can be reduced without the lenses colliding with each other around the periphery of the lenses. In other words, reducing the overall center thickness of the first lens group S7 contributes to preventing an increase in the diameter of the front lens. In addition, since it is aspherical, performance can be corrected well with a small number of lenses, and the shape of the aspherical surface prevents comb-shaped distortion at the wide-angle end, which tends to occur especially when the refractive power of the first lens group becomes strong. Effective for correction.

また第2レンズ群についても屈折力が強くなっているた
め、非球面を設けることにより高性能化が可能である。
Furthermore, since the second lens group also has a strong refractive power, it is possible to improve the performance by providing an aspherical surface.

この場合、凸面を非球面とし周辺に行くに従い正の屈折
力が弱くなる形状が良い、しかしながら目標とするレン
ズ性能によって対象となる収差が相違するからこの限り
でない。
In this case, it is preferable to use a shape in which the convex surface is aspheric and the positive refractive power becomes weaker toward the periphery, but this is not the case since the target aberrations differ depending on the target lens performance.

以上説明した本発明を更に積極的に推進していくことも
できるが、これはカメラ本体側との協調が必要になるか
も′知れない。カメラ本体を小型化する一法として、ク
イックリターンミラーをハーフミラ−あるいは固定プリ
ズムにすればミラー可動空間を詰めることができて有利
である。そしてこの場合、バックフォーカスが短かいレ
ンズでも装着することができるため、第1レンズ群と第
2レンズ群の屈折力を強めて極端な小型化も可能となる
。またレンジファインダー型のカメラでも同様である。
It is possible to further actively promote the present invention as described above, but this may require cooperation with the camera body. As a method of downsizing the camera body, it is advantageous to use a half mirror or a fixed prism as the quick return mirror because the mirror movable space can be reduced. In this case, even a lens with a short back focus can be attached, so that the refractive power of the first lens group and the second lens group can be strengthened, making it possible to achieve extreme miniaturization. The same applies to rangefinder type cameras.

以下、数値実施例を記載するものとし、Riは各レンズ
面の曲率半径、Dはレンズ面間隔、Nは屈折率、■はア
ツベ数である。
Numerical examples will be described below, where Ri is the radius of curvature of each lens surface, D is the distance between lens surfaces, N is the refractive index, and ■ is the Abbe number.

数値実施例1は第7図と第10図、数値実施例2は第8
図と第11図、数値実施例3は第9図と第12図に対応
する。
Numerical Example 1 is shown in Figures 7 and 10, Numerical Example 2 is shown in Figure 8.
11 and Numerical Example 3 correspond to FIG. 9 and FIG. 12.

(効果) 以上述べた本発明はレンズ鏡筒外径を減少させ得る点で
極めて優れる。また第2レンズ群中に絞りを設けていな
いから鏡筒を一体に構成することができ、レンズを高精
度に保持するのに有効である。また鏡筒構造の簡易化が
レンズ組立ての自動化を図る上で益することが多い。
(Effects) The present invention described above is extremely excellent in that the outer diameter of the lens barrel can be reduced. Furthermore, since no diaphragm is provided in the second lens group, the lens barrel can be constructed in one piece, which is effective in holding the lens with high precision. Furthermore, the simplification of the lens barrel structure is often beneficial in automating lens assembly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す光学断面図。 第2図は別実施例を示す光学断面図、第3図は従来の第
1レンズ群形状の断面図、第4図は従来方式のズームレ
ンズの光路図、第5図は第1レンズ群形状の実施例を示
す断面図、第6図は実施例の光路図、第7図は数値実施
例1のレンズ断面図、第8図は数値実施例2のレンズ断
面図、第9図は数値実施例3のレンズ断面図、第10図
、第11図、第12図は諸収差曲線図。 図中、1,1′は第1レンズ群、2.2′は第2レンズ
群、3はFナンバーを決める絞り。 4は第3レンズ群。 弓2回
FIG. 1 is an optical sectional view showing an embodiment of the present invention. Fig. 2 is an optical cross-sectional view showing another embodiment, Fig. 3 is a cross-sectional view of a conventional first lens group shape, Fig. 4 is an optical path diagram of a conventional zoom lens, and Fig. 5 is a first lens group shape. 6 is an optical path diagram of the example, FIG. 7 is a lens sectional view of numerical example 1, FIG. 8 is a lens sectional view of numerical example 2, and FIG. 9 is a numerical example. A cross-sectional view of the lens of Example 3, and FIGS. 10, 11, and 12 are various aberration curve diagrams. In the figure, 1 and 1' are the first lens group, 2 and 2' are the second lens group, and 3 is the aperture that determines the F number. 4 is the third lens group. bow twice

Claims (8)

【特許請求の範囲】[Claims] (1)負屈折力の第1レンズ群とその像側に配された正
屈折力の第2レンズ群を独立に光軸方向へ移動してズー
ミングを行うレンズにおいて、前記第2レンズ群の最終
レンズ面の直後に下ナンバーを決定する絞りを設け、広
角から望遠へズーミングする際は前記絞りを物体側へ移
動することを特徴とするズームレンズ。
(1) In a lens that performs zooming by independently moving a first lens group with negative refractive power and a second lens group with positive refractive power disposed on the image side in the optical axis direction, the final lens group of the second lens group A zoom lens characterized in that a diaphragm for determining a lower number is provided immediately after the lens surface, and the diaphragm is moved toward the object side when zooming from wide-angle to telephoto.
(2)前記絞りはズーミング中、前記第2レンズ群と一
体に移動する特許請求の範囲第1項記載のズームレンズ
(2) The zoom lens according to claim 1, wherein the diaphragm moves together with the second lens group during zooming.
(3)負屈折力の第1レンズ群とその像側に配された正
屈折力の第2レンズ群を独立に光軸方向へ移動してズー
ミングを行うレンズにおいて、前記第2レンズ群の最終
レンズ面の直後に下ナンバーを決定する絞りを設けて広
角から望遠へズーミングする際は前記絞りを物体側へ移
動する一方、前記絞りの像側へ負屈折力のレンズ群を配
置することを特徴とするズームレンズ。
(3) In a lens that performs zooming by independently moving a first lens group with negative refractive power and a second lens group with positive refractive power disposed on the image side in the optical axis direction, the final lens group of the second lens group A diaphragm that determines the lower number is provided immediately after the lens surface, and when zooming from wide angle to telephoto, the diaphragm is moved toward the object side, while a lens group with negative refractive power is placed on the image side of the diaphragm. A zoom lens.
(4)前記絞りの像側へ配置するレンズ群はズーミング
中固定である特許請求の範囲第3項記載のズームレンズ
(4) The zoom lens according to claim 3, wherein the lens group disposed on the image side of the aperture is fixed during zooming.
(5)前記絞りの像側へ配置するレンズ群は負レンズと
正レンズを物体側より順に接合した物体側へ凹面を向け
たメニスカス形状である特許請求の範囲第3項記載のズ
ームレンズ。
(5) The zoom lens according to claim 3, wherein the lens group disposed on the image side of the diaphragm has a meniscus shape with a concave surface facing the object side, which is formed by joining a negative lens and a positive lens in order from the object side.
(6)前記負レンズの屈折率は正レンズの屈折率より高
くした特許請求の範囲第5項記載のズームレンズ。
(6) The zoom lens according to claim 5, wherein the refractive index of the negative lens is higher than the refractive index of the positive lens.
(7)負屈折力の第1レンズ群とその像側に配された正
屈折力の第2レンズ群を独立に光軸方向へ移動してズー
ミングを行うレンズにおいて、前記第2レンズ群の最終
レンズ面の直後に下ナンバーを決定する絞りを設けて広
角から望遠へズーミングする際は前記絞りを物体側へ移
動する一方、前記第1レンズ群は最も物体側に両凹レン
ズ、そして最も像側に、物体へ凸面を向けたメニスカス
正レンズを具えることを特徴とするズームレンズ。
(7) In a lens that performs zooming by independently moving a first lens group with a negative refractive power and a second lens group with a positive refractive power disposed on the image side in the optical axis direction, the final lens group of the second lens group An aperture that determines the lower number is provided immediately after the lens surface, and when zooming from wide-angle to telephoto, the aperture is moved toward the object side, while the first lens group has a biconcave lens closest to the object side and a biconcave lens closest to the image side. , a zoom lens comprising a positive meniscus lens with a convex surface facing an object.
(8)前記第1レンズ群は少なくとも1枚の非球面を有
し、前記非球面はその面が凹面の場合、光軸から遠ざか
るに従い負の屈折力が弱くなる形状であり、凸面の場合
は光軸から遠ざかるに従い正の屈折力が強くなる形状で
ある特許請求の範囲第7項記載のズームレンズ。
(8) The first lens group has at least one aspherical surface, and when the aspherical surface is concave, the negative refractive power becomes weaker as it moves away from the optical axis, and when the aspherical surface is convex, The zoom lens according to claim 7, wherein the zoom lens has a shape in which the positive refractive power becomes stronger as the distance from the optical axis increases.
JP60023326A 1985-02-08 1985-02-08 Zoom lens Pending JPS61183613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023326A JPS61183613A (en) 1985-02-08 1985-02-08 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023326A JPS61183613A (en) 1985-02-08 1985-02-08 Zoom lens

Publications (1)

Publication Number Publication Date
JPS61183613A true JPS61183613A (en) 1986-08-16

Family

ID=12107456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023326A Pending JPS61183613A (en) 1985-02-08 1985-02-08 Zoom lens

Country Status (1)

Country Link
JP (1) JPS61183613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283693A (en) * 1990-06-13 1994-02-01 Minolta Camera Kabushiki Kaisha Compact zoom lens system
JPH0682694A (en) * 1992-08-26 1994-03-25 Asahi Optical Co Ltd Aspherical lens system
JP2010079311A (en) * 2009-12-21 2010-04-08 Hoya Corp Wide-angle zoom lens system
JP2010117676A (en) * 2008-11-14 2010-05-27 Nikon Corp Zoom lens, optical apparatus, and method for manufacturing the zoom lens
JP2012230432A (en) * 2008-01-28 2012-11-22 Panasonic Corp Zoom lens system, imaging device and camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283693A (en) * 1990-06-13 1994-02-01 Minolta Camera Kabushiki Kaisha Compact zoom lens system
US5446592A (en) * 1990-06-13 1995-08-29 Minolta Camera Kabushiki Kaisha Compact zoom lens system
JPH0682694A (en) * 1992-08-26 1994-03-25 Asahi Optical Co Ltd Aspherical lens system
JP2012230432A (en) * 2008-01-28 2012-11-22 Panasonic Corp Zoom lens system, imaging device and camera
JP2010117676A (en) * 2008-11-14 2010-05-27 Nikon Corp Zoom lens, optical apparatus, and method for manufacturing the zoom lens
JP2010079311A (en) * 2009-12-21 2010-04-08 Hoya Corp Wide-angle zoom lens system

Similar Documents

Publication Publication Date Title
JP2899005B2 (en) Zoom lens with built-in focus lens
JP2816436B2 (en) High-magnification large-aperture zoom optical system
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
JP4392901B2 (en) Zoom lens
JP3018723B2 (en) Zoom lens
US5325234A (en) Telephoto lens system
JP3302063B2 (en) Rear focus compact zoom lens
US5627677A (en) Rear conversion lens with vibration-reduction function
JPH11174328A (en) Zoom lens
JPS6155088B2 (en)
JP3352264B2 (en) Retrofocus type lens and camera having the same
US5963379A (en) Compact zoom lens
JPS62291613A (en) Retrofocusing type lens
JP2000338396A (en) Rear focus type middle-range telephoto lens
JPH0318162B2 (en)
JP3268824B2 (en) Small two-group zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JP3258375B2 (en) Small two-group zoom lens
JPS6144288B2 (en)
JPS61183613A (en) Zoom lens
JPH07318798A (en) Photographic lens
JP2828263B2 (en) High zoom lens for compact cameras
JPH0569209B2 (en)
US20020034005A1 (en) Real image mode variable magnification finder
JPH0777655A (en) Zoom lens